library(presenter)
library(dplyr)Transpose a tibble of summary statistics in tidy format. Convenient
function for transposing the output of dplyr”s group_by and
summarize operation.
Transpose a 1 row numerical summary:
wide format
iris %>% 
  summarize(across(where(is.numeric), mean), .groups = "drop") -> sumr0
sumr0
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1     5.843333    3.057333        3.758    1.199333long format
sumr0 %>% 
  pivot_summary()
#> # A tibble: 4 × 2
#>   column          V1
#>   <chr>        <dbl>
#> 1 Sepal.Length  5.84
#> 2 Sepal.Width   3.06
#> 3 Petal.Length  3.76
#> 4 Petal.Width   1.20A grouped summary can be transposed by providing the name of the group column.
wide format
iris %>% 
  group_by(Species) %>% 
  summarize(across(where(is.numeric), mean), .groups = "drop") -> sumr1
sumr1
#> # A tibble: 3 × 5
#>   Species    Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   <fct>             <dbl>       <dbl>        <dbl>       <dbl>
#> 1 setosa             5.01        3.43         1.46       0.246
#> 2 versicolor         5.94        2.77         4.26       1.33 
#> 3 virginica          6.59        2.97         5.55       2.03long format
sumr1 %>% 
  pivot_summary(Species)
#> # A tibble: 4 × 4
#>   column       setosa versicolor virginica
#>   <chr>         <dbl>      <dbl>     <dbl>
#> 1 Sepal.Length  5.01        5.94      6.59
#> 2 Sepal.Width   3.43        2.77      2.97
#> 3 Petal.Length  1.46        4.26      5.55
#> 4 Petal.Width   0.246       1.33      2.03Supports transposing numerical summaries with multiple groups using tidyselect.
long format
iris %>%
  mutate(Species1 = sample(Species)) %>%
  group_by(Species, Species1) %>% 
  summarize(across(where(is.numeric), mean), .groups = "drop") -> sumr2
 
sumr2
#> # A tibble: 9 × 6
#>   Species    Species1   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   <fct>      <fct>             <dbl>       <dbl>        <dbl>       <dbl>
#> 1 setosa     setosa             5.13        3.61         1.46       0.269
#> 2 setosa     versicolor         4.99        3.34         1.46       0.217
#> 3 setosa     virginica          4.93        3.38         1.47       0.258
#> 4 versicolor setosa             5.92        2.78         4.34       1.32 
#> 5 versicolor versicolor         5.94        2.78         4.23       1.35 
#> 6 versicolor virginica          5.95        2.75         4.2        1.3  
#> 7 virginica  setosa             6.73        3.11         5.73       2.08 
#> 8 virginica  versicolor         6.62        2.92         5.44       1.95 
#> 9 virginica  virginica          6.42        2.87         5.44       2.02Group names are concatenated and pivoted.
wide format
sumr2 %>% 
   pivot_summary(matches("Spec")) 
#> # A tibble: 4 × 10
#>   column setos…¹ setos…² setos…³ versi…⁴ versi…⁵ versi…⁶ virgi…⁷ virgi…⁸ virgi…⁹
#>   <chr>    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#> 1 Sepal…   5.13    4.99    4.93     5.92    5.94    5.95    6.73    6.62    6.42
#> 2 Sepal…   3.61    3.34    3.38     2.78    2.78    2.75    3.11    2.92    2.87
#> 3 Petal…   1.46    1.46    1.47     4.34    4.23    4.2     5.73    5.44    5.44
#> 4 Petal…   0.269   0.217   0.258    1.32    1.35    1.3     2.08    1.95    2.02
#> # … with abbreviated variable names ¹setosa_setosa, ²setosa_versicolor,
#> #   ³setosa_virginica, ⁴versicolor_setosa, ⁵versicolor_versicolor,
#> #   ⁶versicolor_virginica, ⁷virginica_setosa, ⁸virginica_versicolor,
#> #   ⁹virginica_virginica