| adjten | Adjust tensor for covariates. | 
| adjvec | Adjust vector for covariates. | 
| catch | Fit a CATCH model and predict categorical response. | 
| catch_matrix | Fit a CATCH model for matrix and predict categorical response. | 
| csa | Colorimetric sensor array (CSA) data | 
| cv.catch | Cross-validation for CATCH | 
| cv.dsda | Cross validation for direct sparse discriminant analysis | 
| cv.msda | Cross-validation for DSDA/MSDA through function 'msda' | 
| cv.SeSDA | Cross validation for semiparametric sparse discriminant analysis | 
| dsda | Solution path for direct sparse discriminant analysis | 
| dsda.all | Direct sparse discriminant analysis | 
| GDS1615 | GDS1615 data introduced in Burczynski et al. (2012). | 
| getnorm | Direct sparse discriminant analysis | 
| msda | Fits a regularization path of Sparse Discriminant Analysis and predicts | 
| predict.catch | Predict categorical responses for matrix/tensor data. | 
| predict.dsda | Prediction for direct sparse discriminant analysis | 
| predict.msda | Predict categorical responses for vector data. | 
| predict.SeSDA | Prediction for semiparametric sparse discriminant analysis | 
| ROAD | Solution path for regularized optimal affine discriminant | 
| SeSDA | Solution path for semiparametric sparse discriminant analysis | 
| sim.bi.vector | Simulate data | 
| sim.tensor.cov | Simulate data | 
| SOS | Solution path for sparse discriminant analysis | 
| x | GDS1615 data introduced in Burczynski et al. (2012). | 
| y | GDS1615 data introduced in Burczynski et al. (2012). |