# Package 'AgeTopicModels'

October 21, 2025

**Title** Inferring Age-Dependent Disease Topic from Diagnosis Data **Version** 0.1.0

Description We propose an age-dependent topic modelling (ATM) model, providing a low-rank representation of longitudinal records of hundreds of distinct diseases in large electronic health record data sets. The model assigns to each individual topic weights for several disease topics; each disease topic reflects a set of diseases that tend to co-occur as a function of age, quantified by age-dependent topic loadings for each disease. The model assumes that for each disease diagnosis, a topic is sampled based on the individual's topic weights (which sum to 1 across topics, for a given individual), and a disease is sampled based on the individual's age and the age-dependent topic loadings (which sum to 1 across diseases, for a given topic at a given age). The model generalises the Latent Dirichlet Allocation (LDA) model by allowing topic loadings for each topic to vary with age.

References: Jiang (2023) <doi:10.1038/s41588-023-01522-8>.

License MIT + file LICENSE

**Depends** R (>= 3.5)

**Imports** dplyr, ggplot2, ggrepel, grDevices, gtools, magrittr, pROC, reshape2, rlang, stats, stringr, tibble, tidyr, utils

**Suggests** testthat (>= 3.0.0)

Config/testthat/edition 3

**Encoding UTF-8** 

LazyData true

LazyDataCompression xz

RoxygenNote 7.3.3

**NeedsCompilation** no

Author Xilin Jiang [aut, cre] (ORCID: <a href="https://orcid.org/0000-0001-6773-9182">https://orcid.org/0000-0001-6773-9182</a>)

Maintainer Xilin Jiang <jiangxilin1@gmail.com>

**Repository** CRAN

**Date/Publication** 2025-10-21 17:50:11 UTC

2 age\_imputation

# **Contents**

| age_imputation                      |
|-------------------------------------|
| diseasematrix2longdata              |
| disease_info_phecode_icd10          |
| HES_age_example                     |
| HES_icd10_example                   |
| icd2phecode                         |
| loading2weights                     |
| longdata2diseasematrix              |
| phecode_icd10                       |
| phecode_icd10cm                     |
| plot_age_topics                     |
| plot_lfa_topics                     |
| prediction_OR                       |
| short_icd10                         |
| short_icd10cm                       |
| simulate_genetic_disease_from_topic |
| simulate_topics                     |
| SNOMED_ICD10CM                      |
| UKB_349_disease                     |
| UKB_HES_10topics                    |
| wrapper_ATM                         |
| wrapper_LFA                         |
|                                     |
| 20                                  |

age\_imputation

**Index** 

imputing missing age if you can't find some of them The function does two stage imputation: i. if the individual has other age label – use the mean, min, or max of other age labels for the missing ones. ii. if the individual has no age label – use the mean, min, max for all the diagnosis codes iii. if there is no age info available for any of this code, we will impute it as the mean of all age codes in the data

# Description

imputing missing age if you can't find some of them The function does two stage imputation: i. if the individual has other age label – use the mean, min, or max of other age labels for the missing ones. ii. if the individual has no age label – use the mean, min, max for all the diagnosis codes iii. if there is no age info available for any of this code, we will impute it as the mean of all age codes in the data

```
age_imputation(rec_data_missing_age, method = "mean")
```

diseasematrix2longdata 3

## **Arguments**

```
rec_data_missing_age
a data frame with missing age info

method use one of the three choices "mean", "min", "max"
```

#### Value

a data frame that is imputed and ready for wrapper\_ATM

#### **Examples**

```
rec_data_missing_age <- HES_age_example
rec_data_missing_age$age_diag[1:10000] <- NA
rec_data_imputed <- age_imputation(rec_data_missing_age, method= "mean")
cor(rec_data_imputed$age_diag[1:10000], HES_age_example$age_diag[1:10000])
rec_data_imputed <- age_imputation(rec_data_missing_age, method= "min")
cor(rec_data_imputed$age_diag[1:10000], HES_age_example$age_diag[1:10000])
rec_data_imputed <- age_imputation(rec_data_missing_age, method= "max")
cor(rec_data_imputed$age_diag[1:10000], HES_age_example$age_diag[1:10000])</pre>
```

diseasematrix2longdata

Disease matrix reformatting for ATM

# **Description**

Disease matrix reformatting for ATM

# Usage

```
diseasematrix2longdata(disease_matrix)
```

# **Arguments**

disease\_matrix a disease matrix with the first column name "eid", other column are disease names. Disease should be coded as 0,1.

## Value

a data frame which can be feed into wrapper\_ATM

```
disease_matrix <- longdata2diseasematrix(HES_age_example)
diseasematrix2longdata(disease_matrix)</pre>
```

4 HES\_age\_example

```
disease_info_phecode_icd10
```

Disease information linking PheCodes and ICD-10

# **Description**

A helper table with disease metadata to support mapping between PheCodes and ICD-10.

## Usage

```
disease_info_phecode_icd10
```

#### **Format**

A data frame/tibble. Common columns include:

```
phecode PheCode as character.
```

ICD10 Alternative PheCode column name (if present).

exclude\_range ancestor PheCode range (character).

**phenotype** Human-readable phenotype/label (character), if available.

exclude\_name ancestor PheCode name (character).

## **Examples**

head(disease\_info\_phecode\_icd10)

HES\_age\_example

Example HES diagnosis ages

# **Description**

A realistic sized simulated Hospital Episode Statistics (HES) data with participant IDs and ages at diagnosis, used in examples and tests. You would expect the run time of AgeTopicModels on these data is similar to what you face in real life

## Usage

```
HES_age_example
```

# **Format**

A data frame/tibble with example rows. Typical columns include:

```
eid Participant identifier (integer or character).
```

```
age_diag Age at diagnosis (numeric).
```

diag\_icd10 ICD-10 diagnosis code (character).

HES\_icd10\_example 5

## **Examples**

```
head(HES_age_example)
```

HES\_icd10\_example

Example HES ICD-10 diagnoses

# **Description**

A realistic sized simulated HES diagnoses with participant IDs and ICD-10 codes.

## Usage

```
HES_icd10_example
```

# **Format**

A data frame/tibble with example rows. Typical columns include:

```
eid Participant identifier (integer or character).
```

diag\_icd10 ICD-10 diagnosis code (character).

age\_diag ICD-10 diagnosis age point (double).

## **Examples**

head(HES\_icd10\_example)

icd2phecode

Mapping the disease code from icd10 to phecode

# Description

Mapping the disease code from icd10 to phecode; the mapping are based on https://phewascatalog.org/phecodes; The input if using ICD-10 should be a string f numbers and capital letters only. For example, "I25.1" should be "I251".

## Usage

```
icd2phecode(rec_data)
```

## **Arguments**

rec\_data

input data which use ICD10 encoding; please refer to the internal example data HES\_icd10\_example for the formatting of the data.

6 loading2weights

# Value

a data frame where most entries are mapped from ICD10 code to phecode

# **Examples**

```
phecode_data <- icd2phecode(HES_icd10_example)</pre>
```

loading2weights

Mapping individuals to fixed topic loadings.

# **Description**

Mapping individuals to fixed topic loadings.

# Usage

```
loading2weights(data, ds_list = UKB_349_disease, topics = UKB_HES_10topics)
```

# **Arguments**

| data    | the set of diseases, formatted same way as HES_age_example                                                                                                                                                                                                                                                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ds_list | a list of diseases that correspond to the topic loadings that patients are mapped to formatted as UKB_349_disease; default is set to be UKB_349_disease.                                                                                                                                                                                     |
| topics  | The topics that are used to map patients. Default is set to be UKB_HES_10topics, which are the inferred topics from 349 Phecodes from the UK Biobank HES data. Details of these topics are available in the paper "Age-dependent topic modelling of comorbidities in UK Biobank identifies disease subtypes with differential genetic risk". |

#### Value

a list with two dataframes: the topic\_weights dataframe has the first column being the individual id, the other columns are the patient topic weights mapped to the topic loadings; The second dataframe column incidence\_weight\_sum is eid and the cumulative topic weights across all disease diagnoses.

```
set.seed(1)
new_weights <- loading2weights(HES_age_example[1:1000,])</pre>
```

longdata2diseasematrix

Title

# **Description**

Title

## Usage

longdata2diseasematrix(rec\_data)

# **Arguments**

rec\_data

A diagnosis data frame with three columns; format data as HES\_age\_example; first column is individual ids (eid), second column is the disease code (diag\_icd10); third column is the age at diagnosis (age\_diag). Note for each individual, we only keep the first onset of each diseases. Therefore, if there are multiple incidences of the same disease within each individual, the rest will be ignored.

## Value

a disease matrix with first column being the individual ids, columns follows are diseases with 0,1 coding.

# **Examples**

```
disease_matrix <- longdata2diseasematrix(HES_age_example)</pre>
```

phecode\_icd10

ICD-10 <-> PheCode mapping

# **Description**

Mapping table between ICD-10 codes and PheCodes.

# Usage

phecode\_icd10

## **Format**

A data frame/tibble. Common columns include:

ICD10 ICD-10 code (character).

PheCode PheCode (character).

**Excl..Phecodes** ancestor PheCode range (character).

Excl..Phenotypes ancestor PheCode name (character).

8 plot\_age\_topics

# **Examples**

```
head(phecode_icd10)
```

phecode\_icd10cm

*ICD-10-CM <-> PheCode mapping* 

# Description

Mapping table between ICD-10-CM codes and PheCodes.

# Usage

```
phecode_icd10cm
```

## **Format**

A data frame/tibble. Common columns include:

```
ICD10 ICD-10-CM code (character).

phecode PheCode (character).

exclude_range ancestor PheCode range (character).

exclude_name ancestor PheCode name (character).
```

# **Examples**

```
head(phecode_icd10cm)
```

plot\_age\_topics

Title plot the topic loadings across age.

# Description

Title plot the topic loadings across age.

```
plot_age_topics(
   disease_names,
   trajs,
   plot_title = "",
   start_age = 30,
   top_ds = 10
)
```

plot\_lfa\_topics 9

# Arguments

disease\_names the list of disease names, ordered as the topic.

trajs one disease topic, which should be a matrix of age-by-disease.

plot\_title the title of the figure.

start\_age starting age of the matrix, default 30.

top\_ds How many disease to show, default is 10. This will filter the disease by the

average topic laodings across age and pick the top.

#### Value

a ggplot object of the topic loading.

## **Examples**

plot\_lfa\_topics

Title plot topic loadings for LFA.

# Description

Title plot topic loadings for LFA.

## Usage

```
plot_lfa_topics(disease_names, beta, plot_title = "")
```

## **Arguments**

disease\_names the list of disease names, ordered as the topic.

beta disease topics, which should be a matrix of K-by-disease.

plot\_title the title of the figure.

#### Value

a ggplot object of the topic loading.

10 prediction\_OR

#### **Examples**

```
disease_list <- UKB_349_disease$diag_icd10[1:50]</pre>
topics <- matrix(rnorm(10*length(UKB_349_disease)), nrow = length(UKB_349_disease), ncol = 10)
plot_lfa_topics(disease_names = disease_list,
        beta = topics,
        plot_title = "Example noisy topics presentation")
```

prediction\_OR

Title Compute prediction odds ratio for a testing data set using pretraining ATM topic loading. Note only diseases listed in the ds\_list will be used. The prediction odds ratio is the odds predicted by ATM versus a naive prediction using disease probability.

## **Description**

Title Compute prediction odds ratio for a testing data set using pre-training ATM topic loading. Note only diseases listed in the ds\_list will be used. The prediction odds ratio is the odds predicted by ATM versus a naive prediction using disease probability.

#### **Usage**

```
prediction_OR(testing_data, ds_list, topic_loadings, max_predict = NULL)
```

## **Arguments**

testing\_data

A data set of the same format as HES\_age\_example; Note: for cross-validation, split the training and testing based on individuals (eid) instead of diagnosis to avoid using training data for testing. Note the test data that has diagnosis age outside the topic loading is disgarded, as we don't recommend extrapolate topic loadings outside the training data.

ds\_list

The order of disease code that appears in the topic loadings. This is a required input as the testing data could miss some of the records. The first column should be the disease code, second column being the occurrence (to serve as the baseline for prediction odds ratio). See AgeTopicModels::UKB\_349\_disease as an example.

topic\_loadings A three dimension array of topic loading in the format of AgeTopicModels::UKB\_HES\_10topics;

max\_predict

The logic of prediction is using 1,..N-1 records to predict the Nth diagnosis; we perform this prediction in turn, starting from using first disease to predict sencond.... for the max\_predict^th disease, we will just predict all diseases afterwards, using only 1,..(max\_predict-1) diseseas to learn the topic weights; default is set to be 11 (using 1,...10 disease to predict).

short\_icd10

# Value

The returned object has four components: OR\_top1, OR\_top2, OR\_top5 is the prediction odds ratio using top 1%, top 2%, or top 5% of ATM predicted diseases as the target set; the fourth component prediction\_precision is as list, with first element saves the prediction probability for 1%, 2%, 5% and 10%; additional variables saves the percentile of target disease in the ATM predicted set; for example 0.03 means the target disease ranked at 3% of the diseases ordered by ATM predicted probability.

## **Examples**

short\_icd10

Short labels (at most first for letters/digits) for ICD-10 codes

# **Description**

A lookup table mapping ICD-10 codes to concise human-readable labels.

# Usage

```
short_icd10
```

## **Format**

A data frame/tibble. Common columns include:

```
ICD10 ICD-10 code (character).
```

parent\_phecode phecode of parent node (character).

Excl..Phecodes ancestor PheCode range (character).

**Excl..Phenotypes** ancestor PheCode name (character).

occ number of distinct patient in UKB

```
head(short_icd10)
```

short\_icd10cm

Short labels (at most first for letters/digits) for ICD-10-CM codes

# **Description**

A lookup table mapping ICD-10-CM codes to concise human-readable labels.

## Usage

```
short_icd10cm
```

#### **Format**

A data frame/tibble. Common columns include:

```
ICD10 ICD-10 code (character).

parent_phecode phecode of parent node (character).

exclude_range ancestor PheCode range (character).

exclude_name ancestor PheCode name (character).

occ number of distinct patient in UKB
```

# **Examples**

```
head(short_icd10cm)
```

# **Description**

Second step of the two-step simulation. Consumes outputs from simulate\_topics() and generates disease outcomes under several genetic/topic-effect configurations.

```
simulate_genetic_disease_from_topic(
  para,
  genetics_population,
  causal_disease,
  disease_number,
  ds_per_idv = 6.1,
  itr_effect = 0,
  topic2disease = 2,
  v2t = 20,
  liability_thre = 0.8
)
```

## **Arguments**

| para            | Simulated topic parameters; the first element returned by simulate_topics().                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| genetics_popula | tion                                                                                                                                                                         |
|                 | Simulated genotypes; the second element returned by simulate_topics().                                                                                                       |
| causal_disease  | Simulated causal disease; the third element returned by simulate_topics().                                                                                                   |
| disease_number  | Number of additional diseases to simulate from the topic. The total number of diseases will be disease_number + 5.                                                           |
| ds_per_idv      | Mean number of diseases per individual (default 6.1, as observed in UKB).                                                                                                    |
| itr_effect      | Interaction effect size to simulate (default 0).                                                                                                                             |
| topic2disease   | Topic-to-disease effect size (default 2).                                                                                                                                    |
| v2t             | $Number \ of \ variants \ that \ affect \ topic \ 1 \ (must \ match \ the \ value \ used \ in \ simulate\_topics()).$                                                        |
| liability_thre  | Liability threshold for simulating disease: the proportion set to <i>healthy</i> . For example, 0.8 means the top 20% of liability are set to <i>diseased</i> (default 0.8). |

#### **Details**

Five configurations across three SNP sets:

- 1. **SNP -> disease -> topic**: SNP IDs 1-20; disease ID para\$D + 1; topic ID 1.
- 2. **SNP** \* topic -> disease: SNP IDs 41-60; disease ID para\$D + 2; topic ID 1.
- 3. **SNP -> topic -> disease**; **SNP -> disease**: SNP IDs 21-(20 + v2t); disease ID para\$D + 3; topic ID 1.
- 4. **SNP -> topic -> disease**; **SNP + SNP^2 -> disease**: SNP IDs 21-(20 + v2t); disease ID para\$D + 4; topic ID 1.
- 5. **SNP -> topic + topic^2 -> disease**; **SNP -> disease**: SNP IDs 21-(20 + v2t); disease ID para\$D + 5; topic ID 1.

## Value

A list with four elements:

- rec\_data: Simulated disease records (primary output).
- ds\_list: Auxiliary data objects used in the simulation.
- interact\_disease: Binary disease outcomes for configuration 2.
- pleiotropy\_disease: Binary disease outcomes for configuration 3.

## See Also

```
simulate_topics()
```

14 simulate\_topics

## **Examples**

simulate\_topics

Simulate genetic-disease-topic structure (step 1)

# **Description**

First step of a two-step procedure to simulate a genetic-disease-topic structure. In this step, all genetic effects act on topic 1.

## Usage

```
simulate_topics(
  topic_number,
  num_snp = 100,
  pop_sz = 10000,
  disease2topic = 0,
  v2t = 20,
  snp2t = 0.04,
  snp2d = 0.15,
  liability_thre = 0.8
)
```

# Arguments

num\_snp Total number of SNPs (default 100; must be  $\geq$  60).

pop\_sz Number of individuals (default 10,000). disease2topic Disease-to-topic effect size (default 0).

v2t Number of variants affecting topic 1 (0-20; default 20). snp2t SNP-to-topic effect size (default 0.04; informed by UKB).

snp2d SNP-to-disease effect size (default 0.15).

liability\_thre Liability threshold: proportion set to healthy. For example, 0.8 means the top

20% of liability are set to diseased (default 0.8).

simulate\_topics 15

#### **Details**

Five configurations across three SNP sets:

- 1. **SNP -> disease -> topic**: SNP IDs 1-20; disease ID para\$D + 1; topic ID 1.
- 2. **SNP** \* topic -> disease: SNP IDs 41-60; disease ID para\$D + 2; topic ID 1.
- 3. **SNP -> topic -> disease**; **SNP -> disease**: SNP IDs 21-(20 + v2t); disease ID para\$D + 3; topic ID 1.
- 4. **SNP -> topic -> disease; SNP + SNP^2 -> disease**: SNP IDs 21-(20 + v2t); disease ID para\$D + 4; topic ID 1.
- 5. **SNP -> topic + topic^2 -> disease**; **SNP -> disease**: SNP IDs 21-(20 + v2t); disease ID para\$D + 5; topic ID 1.

#### Value

A list of length 3:

- para: Topic parameters.
- genetics\_population: Simulated genotype matrix.
- causal\_disease: One simulated binary disease caused by loading on topic 1.

#### See Also

```
simulate_genetic_disease_from_topic()
```

```
set.seed(1)
disease2topic <- 0</pre>
v2t small <- 20
# Step 1: simulate topics (fast)
rslts <- simulate_topics(</pre>
  topic_number = 2, pop_sz = 1000,
  disease2topic = disease2topic, v2t = v2t_small
)
                     <- rslts[[1]]
para_sim
genetics_population <- rslts[[2]]</pre>
causal_disease
                   <- rslts[[3]]
# Step 2 (optional): generate diseases from topics
reslt_ds <- simulate_genetic_disease_from_topic(</pre>
  para_sim, genetics_population, causal_disease,
  disease_number = 20, itr_effect = 1,
  topic2disease = 2, v2t = 20
rec_data <- reslt_ds[[1]]</pre>
```

16 UKB\_349\_disease

SNOMED\_ICD10CM

SNOMED <-> ICD-10(-CM) mapping (excerpt)

# **Description**

A small mapping table used by functions such as icd2phecode

# Usage

SNOMED\_ICD10CM

#### **Format**

A data frame/tibble. Common columns include:

**SNOMED** SNOMED CT concept identifier (character).

ICD10 ICD-10 code (character), and/or

ICD10\_name ICD-10-CM code (character).

**SNOMED\_description** SNOMED readable explanation

occ ICD10 occurence in UKB

# **Examples**

head(SNOMED\_ICD10CM)

UKB\_349\_disease

List of 349 UK Biobank diseases (example)

# **Description**

A character vector or table listing the set of disease phenotypes used in examples/vignettes.

## Usage

UKB\_349\_disease

## **Format**

A data frame/tibble containing disease identifiers/names. Columns include:

diag\_icd10 Phecode (character).

occ number of distinct patient in UKB

@examples head(UKB\_349\_disease)

UKB\_HES\_10topics 17

UKB\_HES\_10topics

Example topic model output (10 topics, UKB HES)

# **Description**

An illustrative result object/table from a 10-topic model fit to UKB HES-like data; used for examples, plotting, and tests.

# Usage

```
UKB_HES_10topics
```

#### **Format**

An array for UKB topic loadings. Dimention is age, disease, topics. the ordering of disease is the same as UKB\_349\_disease.

## **Examples**

```
head(UKB_HES_10topics)
```

wrapper\_ATM

Run ATM on diagnosis data.

# Description

Run ATM on diagnosis data to infer topic loadings and topic weights. Note one run of ATM on 100K individuals would take ~30min (defualt is 5 runs and pick the best fit); if the data set is small and the goal is to infer patient-level topic weights (i.e. assign comorbidity profiles to individuals based on the disedases), please use loading2weights.

```
wrapper_ATM(
  rec_data,
  topic_num = 10,
  degree_free_num = 3,
  CVB_num = 5,
  save_data = FALSE
)
```

18 wrapper\_LFA

#### **Arguments**

rec\_data A diagnosis data frame with three columns; format data as HES\_age\_example;

first column is individual ids (eid), second column is the disease code (diag\_icd10); third column is the age at diagnosis (age\_diag). Note for each individual, we only keep the first onset of each diseases. Therefore, if there are multiple incidences of the same disease within each individual, the rest will be ignored. If there is no age variation in the third column, LDA (no age information) will be

run instead of ATM.

topic\_num Number of topics to infer. Default is 10 but we highly recommend running

multiple choices of this number.

degree\_free\_num

control the parametric for of topic loadings: Degrees of freedom (d.f.) from 2 to 7 represent linear, quadratic polynomial, cubic polynomial, spline with one knot, spline with two knots, and spline with three knots. Default is set to 3.

CVB\_num Number of runs with random initialization. The final output will be the run with

highest ELBO value.

save\_data A flag which determine whether full model data will be saved. If TRUE, a

Results/ folder will be created and full model data will be saved. Default is set

to be FALSE.

#### Value

Return a list object with topic\_loadings (of the best run), topic\_weights (of the best run), ELBO\_convergence (ELBO until convergence), patient\_list (list of eid which correspond to rows of topic\_weights), ds\_list (gives the ordering of diseases in the topic\_loadings object), disease\_number (number of total diseases), patient\_number(total number of patients), topic\_number (total number of topic), topic\_configuration (control the parametric for of topic loadings: Degrees of freedom (d.f.) from 2 to 7 represent linear, quadratic polynomial, cubic polynomial, spline with one knot, spline with two knots, and spline with three knots. Default is set to 3.), multiple\_run\_ELBO\_compare (ELBO of each runs).

# **Examples**

```
# minimal, always-run example (tiny data/iterations)
set.seed(1)
inference_results <- wrapper_ATM(HES_age_example[1:500,], topic_num = 2, CVB_num = 1)</pre>
```

wrapper\_LFA

Run LFA on diagnosis data.

## **Description**

Run LFA on diagnosis data to infer topic loadings and topic weights. Note one run of LFA on 100K individuals would take ~30min (defualt is 5 runs and pick the best fit); if the data set is small and the goal is to infer patient-level topic weights (i.e. assign comorbidity profiles to individuals based on the disedases), please use loading2weights.

wrapper\_LFA 19

## Usage

```
wrapper_LFA(
  rec_data,
  topic_num,
  CVB_num = 5,
  save_data = FALSE,
  beta_prior_flag = FALSE,
  topic_weight_prior = NULL
)
```

## **Arguments**

rec\_data A diagnosis data frame with three columns; format data as HES\_age\_example;

first column is individual ids, second column is the disease code; third column is the age at diagnosis. Note for each individual, we only keep the first onset of each diseases. Therefore, if there are multiple incidences of the same disease

within each individual, the rest will be ignored.

topic\_num Number of topics to infer.

CVB\_num Number of runs with random initialization. The final output will be the run with

highest ELBO value.

save\_data A flag which determine whether full model data will be saved. If TRUE, a

Results/ folder will be created and full model data will be saved. Default is set

to be FALSE.

beta\_prior\_flag

A flag if true, will use a beta prior on the topic loading. Default is set to be

FALSE.

topic\_weight\_prior

prior of individual topic weights, default is set to be a vector of one (non-

informative)

## Value

Return a list object with topic\_loadings (of the best run), topic\_weights (of the best run), ELBO\_convergence (ELBO until convergence), patient\_list (list of eid which correspond to rows of topic\_weights), ds\_list (gives the ordering of diseases in the topic\_loadings object), disease\_number (number of total diseases), patient\_number(total number of patients), topic\_number (total number of topic), ,multiple\_run\_ELBO\_compare (ELBO of each runs).

```
HES_age_small_sample <- HES_age_example[1:100,]
inference_results <- wrapper_LFA(HES_age_small_sample, topic_num = 3, CVB_num = 1)</pre>
```

# **Index**

```
* datasets
                                                UKB_349_disease, 16
    disease_info_phecode_icd10, 4
                                                UKB_HES_10topics, 17
    HES_age_example, 4
                                                wrapper_ATM, 17
    HES_icd10_example, 5
                                                wrapper_LFA, 18
    phecode_icd10, 7
    phecode_icd10cm, 8
    short_icd10, 11
    short_icd10cm, 12
    SNOMED_ICD10CM, 16
    UKB_349_disease, 16
    UKB_HES_10topics, 17
age\_imputation, 2
disease_info_phecode_icd10,4
disease matrix 2 long data, 3
HES_age_example, 4
HES_icd10_example, 5
icd2phecode, 5, 16
loading2weights, 6
longdata2diseasematrix, 7
phecode_icd10, 7
phecode_icd10cm, 8
plot_age_topics, 8
plot_lfa_topics, 9
prediction_OR, 10
short_icd10, 11
short_icd10cm, 12
simulate_genetic_disease_from_topic,
simulate_genetic_disease_from_topic(),
        15
simulate_topics, 14
simulate_topics(), 13
SNOMED_ICD10CM, 16
```