
Package ‘AnimalSequences’
January 20, 2025

Type Package

Title Analyse Animal Sequential Behaviour and Communication

Version 0.2.0

Description All animal behaviour occurs sequentially. The package has a number of functions to for-
mat sequence data from different sources, to analyse sequential behaviour and communica-
tion in animals. It also has functions to plot the data and to calculate the entropy of sequences.

License Apache License (>= 2.0)

Encoding UTF-8

Suggests testthat (>= 3.0.0), knitr, rmarkdown

Depends R (>= 4.0.0)

Imports stringr, dplyr, tidytext, ggplot2, fpc, mclust, kernlab,
dbscan, apcluster, tidyr, tibble, stats, rlang, igraph, ggraph,
magrittr, naivebayes, ranger

RoxygenNote 7.3.1

NeedsCompilation yes

ByteCompile true

Config/testthat/edition 3

Author Alex Mielke [aut, cre]

Maintainer Alex Mielke <a.mielke@qmul.ac.uk>

Repository CRAN

Date/Publication 2024-09-23 13:02:06 UTC

Contents
association_metrics . 2
average_seq_length . 3
calculate_conditional_entropy . 4
calculate_distance_matrix . 4
calculate_transition_counts . 5
calculate_transition_probs . 6

1

2 association_metrics

cluster_elements . 7
compare_distinct_elements_per_list_item . 8
cooccurrence_matrix . 8
count_distinct_elements . 9
count_distinct_elements_per_list_item . 10
count_distinct_elements_per_list_item_shuffled . 10
element_covariate . 11
element_covariate_network . 12
element_duration . 13
element_position . 13
find_most_similar_columns . 14
generate_sequence . 15
long_to_sequences . 16
median_seq_length . 17
menzerath_plot . 18
min_max_seq_length . 19
perform_clustering . 19
plot_seq_length_distribution . 20
redundancy . 21
sd_seq_length . 22
sequences_to_long . 23
sequence_duration_summary . 24
sequence_length_summary . 25
sequence_length_summary_covariate . 26
sequence_length_summary_element . 27
shuffle_sequences_across . 28
shuffle_sequences_within . 28
temporal_overlap . 29
transition_chisq . 30
transition_entropy . 31
transition_predictions . 31
transition_test . 32
zipf_plot . 33

Index 35

association_metrics Calculate Association Metrics for Sequences

Description

This function calculates various association metrics for elements in a sequence, such as Pointwise
Mutual Information (PMI), normalized PMI, attraction, reliance, Delta P, z-score, t-score, Chi-
squared, Jaccard coefficient, Dice coefficient, log odds ratio, and geometric mean.

Usage

association_metrics(sequences)

average_seq_length 3

Arguments

sequences A character vector of sequences to analyze.

Value

A data frame with the calculated association metrics for each dyad (pair of elements).

Examples

Example usage:
sequences <- c("A B C", "A B", "A C", "B C", "A B C D")
result <- association_metrics(sequences)
print(result)

average_seq_length Calculate the Average Length of Sequences

Description

This function calculates the average length of a sequence of elements, where each sequence is split
by spaces.

Usage

average_seq_length(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A numeric value representing the average length of the sequences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
average_seq_length(sequences)

4 calculate_distance_matrix

calculate_conditional_entropy

Calculate Conditional Entropy of B given A in Bits

Description

This function calculates the conditional entropy of B given A in bits between two categorical vectors

Usage

calculate_conditional_entropy(vectorA, vectorB)

Arguments

vectorA A categorical vector representing the conditioning variable A

vectorB A categorical vector representing the conditioned variable B

Value

The conditional entropy of B given A in bits

Examples

vectorA <- c("A", "B", "A", "A", "B", "C", "C", "C", "A", "B")
vectorB <- c("X", "Y", "X", "Y", "X", "Y", "Y", "X", "X", "Y")
calculate_conditional_entropy(vectorA, vectorB)

calculate_distance_matrix

Calculate Distance Matrix from Co-occurrence Matrix

Description

This function calculates a distance matrix from a given co-occurrence matrix.

Usage

calculate_distance_matrix(cooccurrence_matrix)

Arguments

cooccurrence_matrix

A matrix representing the co-occurrence counts of elements.

Value

A distance matrix computed from the normalized co-occurrence matrix.

calculate_transition_counts 5

Examples

Example usage:
cooccurrence_matrix <- matrix(c(3, 2, 1, 2, 5, 0, 1, 0, 4), nrow = 3, byrow = TRUE)
result <- calculate_distance_matrix(cooccurrence_matrix)
print(result)

calculate_transition_counts

Calculate Transition Counts from Sequences

Description

This function calculates the transition counts between elements in a set of sequences. It creates a
matrix where each element represents the number of times a transition occurs from one element to
another.

Usage

calculate_transition_counts(sequences)

Arguments

sequences A vector of character strings, where each string represents a sequence of ele-
ments separated by spaces. Elements should be labeled with prefixes (e.g., "e1",
"e2").

Details

The function assumes that elements in the sequences are labeled with prefixes (e.g., "e1", "e2"),
which are stripped to extract the integer labels for counting. The matrix is initialized to be of size
num_elements x num_elements, where num_elements should be defined in your script or session.
Ensure that num_elements is set to the correct number of unique elements before running this
function.

Value

A matrix where the entry at [i, j] represents the number of times an element labeled i is followed
by an element labeled j across all sequences.

Examples

sequences <- c("e1 e2 e3", "e2 e3 e1", "e1 e3")
num_elements <- 3
calculate_transition_counts(sequences)

6 calculate_transition_probs

calculate_transition_probs

Calculate Transition Probabilities from Sequences

Description

This function calculates the transition probabilities between elements in a set of sequences. It
computes the probability of transitioning from one element to another based on the frequency of
transitions observed in the input sequences.

Usage

calculate_transition_probs(sequences)

Arguments

sequences A vector of character strings, where each string represents a sequence of ele-
ments separated by spaces.

Details

The function uses the ‘unnest_tokens‘ function from the ‘tidytext‘ package to split sequences into
individual elements. It then calculates transition counts and probabilities for each pair of consecu-
tive elements in the sequences. The resulting data frame shows the transition probabilities for each
possible element pair.

Value

A data frame with the following columns:

previous_element

The element that transitions to the next element.

element The element that follows the previous element.

count The number of times the transition from the previous element to the current
element occurs.

probability The probability of transitioning from the previous element to the current ele-
ment.

Examples

library(tidytext)
sequences <- c("A B C", "A B", "B C A")
calculate_transition_probs(sequences)

cluster_elements 7

cluster_elements Cluster Elements Using Hierarchical Clustering

Description

This function performs hierarchical clustering on a distance matrix and optionally plots the dendro-
gram. It uses the specified method for clustering and can visualize the results.

Usage

cluster_elements(distance_matrix, method = "complete", plot = TRUE)

Arguments

distance_matrix

A matrix of distances between elements. Should be a symmetric matrix with
row and column names representing elements.

method A character string specifying the method for hierarchical clustering. Options
include "complete", "average", "single", etc. Default is "complete".

plot A logical value indicating whether to plot the dendrogram. Default is TRUE.

Details

Hierarchical clustering is performed using the specified method. If plot is TRUE, the function will
generate a dendrogram to visualize the clustering.

Value

An object of class "hclust" representing the hierarchical clustering result.

Examples

Create a distance matrix
distance_matrix <- dist(matrix(rnorm(20), nrow = 5))

Perform hierarchical clustering and plot the dendrogram
cluster_elements(distance_matrix, method = "complete", plot = TRUE)

8 cooccurrence_matrix

compare_distinct_elements_per_list_item

Compare True and Shuffled Distinct Elements per List Item

Description

This function compares the true number of distinct elements per list item in a list of sequences to
the number of distinct elements per list item in shuffled sequences. The comparison is done by
calculating p-values from shuffled sequences.

Usage

compare_distinct_elements_per_list_item(sequences, iterations = 100)

Arguments

sequences A list of character vectors, where each vector contains sequences of elements
separated by spaces.

iterations An integer specifying the number of shuffling iterations.

Value

A data frame with columns:

true_distinct_elements

The number of distinct elements per list item in the original sequences.
shuffled_distinct_elements

The average number of distinct elements per list item in shuffled sequences.

p_value The p-value representing the proportion of shuffled sequences where the number
of distinct elements is less than or equal to the true number.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world', 'hello world')
compare_distinct_elements_per_list_item(sequences, iterations = 100)

cooccurrence_matrix Calculate Co-occurrence Matrix for Sequences

Description

This function calculates a co-occurrence matrix for elements in sequences.

Usage

cooccurrence_matrix(sequences)

count_distinct_elements 9

Arguments

sequences A character vector of sequences to analyze.

Value

A matrix representing the co-occurrence counts of elements.

Examples

Example usage:
sequences <- c("e1 e2 e3", "e2 e3 e4", "e1 e4", "e1 e2 e4")
result <- cooccurrence_matrix(sequences)
print(result)

count_distinct_elements

Count Distinct Elements in Sequences

Description

This function counts the number of distinct elements across all sequences, where each sequence is
split by spaces.

Usage

count_distinct_elements(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

An integer representing the number of distinct elements across all sequences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
count_distinct_elements(sequences)

10 count_distinct_elements_per_list_item_shuffled

count_distinct_elements_per_list_item

Count Distinct Elements per List Item

Description

This function calculates the average number of distinct elements per item in a list of sequences,
where each sequence is split by spaces.

Usage

count_distinct_elements_per_list_item(sequences)

Arguments

sequences A list of character vectors, where each vector contains sequences of elements
separated by spaces.

Value

A numeric value representing the average number of distinct elements per list item.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
count_distinct_elements_per_list_item(sequences)

count_distinct_elements_per_list_item_shuffled

Count Distinct Elements per List Item in Shuffled Sequences

Description

This function calculates the number of distinct elements per list item in a list of sequences shuffled
using the ’shuffle_sequences_across’ function. The shuffling is performed a specified number of
times.

Usage

count_distinct_elements_per_list_item_shuffled(sequences, iterations = 100)

Arguments

sequences A list of character vectors, where each vector contains sequences of elements
separated by spaces.

iterations An integer specifying the number of shuffling iterations.

element_covariate 11

Value

A numeric vector of length ‘iterations‘, each element representing the number of distinct elements
per list item in a shuffled sequence.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
count_distinct_elements_per_list_item_shuffled(sequences, iterations = 100)

element_covariate Calculate Element-Covariate Conditional Probabilities

Description

This function calculates the conditional probability of each element given each covariate and per-
forms permutation tests to compute the expected conditional probabilities and p-values.

Usage

element_covariate(
sequences_long,
element = "element",
covariate = "covariate",
n_permutations = 1000

)

Arguments

sequences_long A data frame containing the sequences, with columns for elements and covari-
ates.

element A string specifying the column name for elements in the sequences data frame.

covariate A string specifying the column name for covariates in the sequences data frame.

n_permutations An integer specifying the number of permutations for the bootstrapping process.

Value

A data frame with the calculated probabilities, expected probabilities, and p-values for each element-
covariate pair.

Examples

Example usage:
sequences_long <- data.frame(

element = rep(letters[1:3], each = 4),
covariate = rep(letters[4:7], times = 3)

)
result <- element_covariate(sequences_long,

12 element_covariate_network

element = 'element',
covariate = 'covariate',
n_permutations = 50)

print(result)

element_covariate_network

Plot the network of elements and covariates based on the long format
of sequences

Description

Plot the network of elements and covariates based on the long format of sequences

Usage

element_covariate_network(
sequences_long,
cutoff = 3,
element,
covariate,
n_permutations = 1000,
pvalue = 0.01,
clusters = FALSE

)

Arguments

sequences_long A data frame containing the sequences, with columns for elements and contexts.

cutoff minimum number of occurrences for which element or covariate should be in-
cluded

element A string specifying the column name for elements in the sequences data frame.

covariate A string specifying the column name for contexts in the sequences data frame.

n_permutations An integer specifying the number of permutations for the bootstrapping process.

pvalue cutoff pvalue to include combination

clusters should clusters be calculated and added?

Value

plot of bimodal network containing the elements and covariates

element_duration 13

element_duration Calculate Individual Element Durations

Description

This function calculates the individual element durations and compares them to a shuffled distribu-
tion.

Usage

element_duration(sequences_long, n_permutations = 1000)

Arguments

sequences_long A data frame containing sequences with start and end times for each element.

n_permutations An integer specifying the number of permutations to perform. Default is 1000.

Value

A data frame with the median duration, standard deviation, expected duration, effect size, and p-
value for each element.

Examples

Example usage:
sequences_long <- data.frame(

element = c("A", "B", "C", "A", "B", "C"),
start_time = c(0, 5, 10, 15, 20, 25),
end_time = c(5, 10, 15, 20, 25, 30)

)
result <- element_duration(sequences_long, n_permutations = 100)
print(result)

element_position Calculate Median Position of Each Element in Sequences

Description

This function calculates the median position of each element across sequences, summarizes the
distribution, and compares it to a shuffled distribution.

Usage

element_position(sequences, n_permutations = 1000)

14 find_most_similar_columns

Arguments

sequences A character vector of sequences to analyze.

n_permutations The number of permutations to use for the null distribution.

Value

A data frame with the median position, standard deviation, expected position, effect size, and p-
value for each element.

Examples

Example usage:
sequences <- c("A B C", "A B", "A C", "B C", "A B C D")
result <- element_position(sequences)
print(result)

find_most_similar_columns

Find Most Similar Columns in a Distance Matrix

Description

This function identifies the most similar columns for each column in a distance matrix. For each
column, it finds the columns with the smallest distances (i.e., most similar) based on the given
number of similar columns to retrieve.

Usage

find_most_similar_columns(distance_matrix, n_similar = 3)

Arguments

distance_matrix

A numeric matrix where the distance between columns is represented. The rows
and columns should correspond to the same set of entities.

n_similar An integer specifying the number of most similar columns to find for each col-
umn. Default is 3.

Value

A list of character vectors. Each element of the list corresponds to a column in the distance matrix
and contains the column names of the most similar columns.

generate_sequence 15

Examples

Create a sample distance matrix
distance_matrix <- matrix(c(0, 1, 2, 1, 0, 3, 2, 3, 0),

nrow = 3,
dimnames = list(NULL, c("A", "B", "C")))

Find the 2 most similar columns for each column
find_most_similar_columns(distance_matrix, n_similar = 2)

generate_sequence Generate a Sequence of Elements

Description

This function generates a sequence of elements based on a given length function, a transition matrix,
and probabilities for the first element. The sequence is generated by sampling from the transition
matrix and then combining the sampled elements into a single sequence string.

Usage

generate_sequence(length_func, transition_matrix, first_element_probs)

Arguments

length_func A function that generates a numeric value representing the length of the se-
quence. It is typically a random function that defines the length distribution of
the sequence.

transition_matrix

A matrix representing the transition probabilities between elements. Each en-
try in the matrix indicates the probability of transitioning from one element to
another.

first_element_probs

A numeric vector of probabilities for selecting the first element in the sequence.
The length of the vector should match the number of possible elements.

Value

A character string representing the generated sequence. The sequence elements are prefixed with
"e" and separated by spaces.

Examples

Define parameters
num_elements <- 3
average_sequence_length <- 5
sequence_length_sd <- 1
length_func <- function() {

rnorm(1, mean = average_sequence_length, sd = sequence_length_sd)

16 long_to_sequences

}
transition_matrix <- matrix(c(0.1, 0.6, 0.3,

0.2, 0.5, 0.3,
0.3, 0.3, 0.4), nrow = 3, byrow = TRUE)

first_element_probs <- c(0.3, 0.4, 0.3)

Generate a sequence
generate_sequence(length_func, transition_matrix, first_element_probs)

long_to_sequences Convert Long Format to Sequences

Description

This function converts a data frame in long format into sequences by combining all rows with the
same sequence identifier. It also aggregates covariates if provided.

Usage

long_to_sequences(
sequences_long,
elements = "element",
sequence_identifier = "sequence_identifier",
start_time = "start_time",
end_time = "end_time",
covariates = NULL

)

Arguments

sequences_long A data frame in long format containing the sequences.

elements Column name for elements that should be combined into sequences.

sequence_identifier

Column name with the sequence identifier.

start_time Column name with the start time.

end_time Column name with the end time.

covariates A vector with column names of the covariates. Defaults to NULL.

Value

A data frame with sequences, start time, end time, and aggregated covariates.

median_seq_length 17

Examples

sequences_long <- data.frame(sequence_identifier = c(1, 1, 2, 2, 2),
element = c('A', 'B', 'A', 'B', 'C'),
start_time = c(1, 2, 1, 2, 3),
end_time = c(2, 3, 2, 3, 4),
covariate1 = c('X', 'Y', 'X', 'Y', 'Z'),
covariate2 = c('M', 'N', 'M', 'N', 'O'))

long_to_sequences(sequences_long,
elements = 'element',
sequence_identifier = 'sequence_identifier',
start_time = 'start_time',
covariates = c('covariate1', 'covariate2'))

median_seq_length Calculate the Median Length of Sequences

Description

This function calculates the median length of a sequence of elements, where each sequence is split
by spaces.

Usage

median_seq_length(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A numeric value representing the median length of the sequences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
median_seq_length(sequences)

18 menzerath_plot

menzerath_plot Create a Menzerath-Altmann Plot

Description

This function generates a Menzerath-Altmann plot from a data frame in long format. The plot
visualizes the relationship between the number of elements in sequences and the mean duration of
these sequences.

Usage

menzerath_plot(sequences_long)

Arguments

sequences_long A data frame in long format. It should include columns for ‘sequence_nr‘,
‘start_time‘, and ‘end_time‘. Each row represents an element in the sequence
with its start and end times.

Details

The function calculates the duration of each element as the difference between ‘end_time‘ and
‘start_time‘. It then groups the data by ‘sequence_nr‘ to compute the number of elements and
the mean duration of each sequence. The resulting plot helps in understanding the relationship
described by the Menzerath-Altmann law, which postulates that larger linguistic units tend to have
shorter mean durations.

Value

A ‘ggplot‘ object. The plot shows the number of elements (x-axis) against the mean duration of
sequences (y-axis) with a linear regression line.

Examples

Sample data frame
sequences_long <- data.frame(

sequence_nr = rep(1:5, each = 3),
start_time = rep(1:3, times = 5),
end_time = rep(2:4, times = 5)

)
menzerath_plot(sequences_long)

min_max_seq_length 19

min_max_seq_length Calculate the Minimum and Maximum Length of Sequences

Description

This function calculates the minimum and maximum length of sequences of elements, where each
sequence is split by spaces.

Usage

min_max_seq_length(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A numeric vector of length 2, with the minimum and maximum lengths of the sequences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
min_max_seq_length(sequences)

perform_clustering Perform Various Clustering Methods

Description

This function performs multiple clustering methods on the input data and returns the results. The
methods include K-means, hierarchical clustering, DBSCAN, Gaussian Mixture Model (GMM),
spectral clustering, and affinity propagation.

Usage

perform_clustering(data, n_clusters = 3)

Arguments

data A numeric matrix or data frame where rows represent observations and columns
represent features.

n_clusters An integer specifying the number of clusters for methods that require it (e.g.,
K-means, hierarchical clustering). Default is 3.

20 plot_seq_length_distribution

Details

- **K-means**: Performs K-means clustering with the specified number of clusters. - **Hierarchi-
cal clustering**: Performs hierarchical clustering and cuts the dendrogram to create the specified
number of clusters. - **DBSCAN**: Applies DBSCAN clustering with predefined parameters.
- **Gaussian Mixture Model (GMM)**: Uses the Mclust package to perform GMM clustering.
- **Spectral clustering**: Uses the kernlab package to perform spectral clustering with a kernel
matrix. - **Affinity propagation**: Uses the apcluster package to perform affinity propagation
clustering.

Value

A list with clustering results for each method:

kmeans A list containing the results of K-means clustering, including cluster assign-
ments.

hierarchical A vector of cluster assignments from hierarchical clustering.

dbscan A vector of cluster assignments from DBSCAN.

gmm A vector of cluster assignments from Gaussian Mixture Model (GMM).

spectral A vector of cluster assignments from spectral clustering.
affinity_propagation

A list of clusters from affinity propagation.

Examples

Generate sample data
data <- matrix(rnorm(100), nrow = 10)

Perform clustering
clustering_results <- perform_clustering(data, n_clusters = 3)

Access the results
clustering_results$kmeans
clustering_results$hierarchical
clustering_results$dbscan
clustering_results$gmm
clustering_results$spectral
clustering_results$affinity_propagation

plot_seq_length_distribution

Plot the Distribution of Sequence Lengths

Description

This function plots the distribution of the lengths of sequences of elements, where each sequence is
split by spaces. The plot includes a histogram and a vertical line indicating the mean length.

redundancy 21

Usage

plot_seq_length_distribution(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A ‘ggplot‘ object showing the distribution of sequence lengths.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
plot_seq_length_distribution(sequences)

redundancy Calculate Observed and Expected Redundancy of Sequences

Description

This function calculates the observed redundancy of sequences and compares it to expected redun-
dancy values obtained from shuffled sequences. The redundancy is defined as the proportion of
consecutive identical elements in the sequences.

Usage

redundancy(sequences)

Arguments

sequences A vector of character strings, where each string represents a sequence of ele-
ments separated by spaces.

Details

The function calculates redundancy as the proportion of consecutive identical elements within each
sequence. It then compares this observed redundancy to expected values derived from sequences
where elements are shuffled either across sequences or within each sequence. The function relies
on auxiliary functions ‘shuffle_sequences_across‘ and ‘shuffle_sequences_within‘ for generating
the shuffled sequences.

22 sd_seq_length

Value

A data frame with the following columns:

redundancy The observed redundancy in the original sequences. This is the mean proportion
of consecutive identical elements across all sequences.

redundancy_expected_across

The expected redundancy obtained from sequences where elements have been
shuffled across the sequences.

redundancy_expected_within

The expected redundancy obtained from sequences where elements have been
shuffled within each sequence.

Examples

Example sequences
sequences <- c("A A B C C", "B A A C C", "A B C C C")
Compute redundancy
redundancy(sequences)

sd_seq_length Calculate the Standard Deviation of Sequence Lengths

Description

This function calculates the standard deviation of the lengths of sequences of elements, where each
sequence is split by spaces.

Usage

sd_seq_length(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A numeric value representing the standard deviation of the lengths of the sequences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
sd_seq_length(sequences)

sequences_to_long 23

sequences_to_long Convert Sequences to Long Format

Description

This function converts a data frame with sequences into long format. It expands each sequence into
individual rows, optionally including start and end times and covariates.

Usage

sequences_to_long(
sequences,
sequence = "sequence",
start_time = NULL,
end_time = NULL,
covariates = NULL

)

Arguments

sequences A data frame containing sequences.

sequence Column name with the sequences.

start_time Column name with the start time. Defaults to NULL.

end_time Column name with the end time. Defaults to NULL.

covariates A vector with column names of the covariates. Defaults to NULL.

Value

A data frame in long format with sequences, start time, end time, duration, and covariates.

Examples

sequences <- data.frame(sequence = c('A B C', 'A B', 'A C', 'B C'),
covariate1 = c('X', 'Y', 'X', 'Y'),
covariate2 = c('M', 'N', 'M', 'N'))

sequences_to_long(sequences,
sequence = 'sequence',
covariates = c('covariate1', 'covariate2'))

24 sequence_duration_summary

sequence_duration_summary

Summarize Sequence Durations

Description

This function calculates summary statistics for the durations of sequences, where the duration is
defined as the difference between ‘end_time‘ and ‘start_time‘. If ‘duration‘ is provided, it will be
used directly.

Usage

sequence_duration_summary(sequences, start_time, end_time, duration = NULL)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

start_time A numeric vector representing the start times of the sequences.

end_time A numeric vector representing the end times of the sequences.

duration (Optional) A numeric vector representing the durations of the sequences. If
‘NULL‘, it will be calculated as ‘end_time - start_time‘.

Value

A data frame with the following columns:

mean_seq_duration

The mean duration of the sequences.
sd_seq_duration

The standard deviation of the sequence durations.
median_seq_duration

The median duration of the sequences.
min_seq_duration

The minimum duration of the sequences.
max_seq_duration

The maximum duration of the sequences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
start_time <- c(1, 2, 3)
end_time <- c(2, 4, 7)
sequence_duration_summary(sequences, start_time, end_time)

sequence_length_summary 25

sequence_length_summary

Summarize Sequence Lengths

Description

This function calculates summary statistics for the lengths of sequences of elements, including
mean, standard deviation, median, minimum, and maximum lengths. It also counts the number of
distinct elements and compares this to shuffled sequences.

Usage

sequence_length_summary(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A data frame with the following columns:

mean_seq_elements

The mean length of the sequences.
sd_seq_elements

The standard deviation of the sequence lengths.
median_seq_elements

The median length of the sequences.
min_seq_elements

The minimum length of the sequences.
max_seq_elements

The maximum length of the sequences.
distinct_elements

The number of distinct elements across all sequences.
pvalue_distinct_elements

The p-value comparing the true number of distinct elements to shuffled se-
quences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
sequence_length_summary(sequences)

26 sequence_length_summary_covariate

sequence_length_summary_covariate

Summarize Sequence Lengths by Covariate

Description

This function calculates summary statistics for the lengths of sequences of elements, grouped by a
specified covariate. It includes mean, standard deviation, median, minimum, and maximum lengths,
along with the number of distinct elements and the p-value comparing to shuffled sequences.

Usage

sequence_length_summary_covariate(sequences, covariate)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

covariate A vector of covariates with the same length as ‘sequences‘, used to group the
sequences.

Value

A data frame with the following columns:

covariate The value of the covariate.
mean_seq_elements

The mean length of sequences for this covariate value.
sd_seq_elements

The standard deviation of the sequence lengths for this covariate value.
median_seq_elements

The median length of sequences for this covariate value.
min_seq_elements

The minimum length of sequences for this covariate value.
max_seq_elements

The maximum length of sequences for this covariate value.
distinct_elements

The number of distinct elements for this covariate value.
pvalue_distinct_elements

The p-value comparing the number of distinct elements to shuffled sequences
for this covariate value.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
covariate <- c('A', 'B', 'A')
sequence_length_summary_covariate(sequences, covariate)

sequence_length_summary_element 27

sequence_length_summary_element

Summarize Sequence Lengths by Element

Description

This function calculates summary statistics for the lengths of sequences containing specific distinct
elements. It performs the summary for each distinct element found across the sequences.

Usage

sequence_length_summary_element(sequences)

Arguments

sequences A character vector where each element is a sequence of elements separated by
spaces.

Value

A data frame with the following columns:

element The distinct element.
mean_seq_elements

The mean length of sequences containing the element.
sd_seq_elements

The standard deviation of the lengths of sequences containing the element.
median_seq_elements

The median length of sequences containing the element.
min_seq_elements

The minimum length of sequences containing the element.
max_seq_elements

The maximum length of sequences containing the element.
distinct_elements

The number of distinct elements in sequences containing the element.
pvalue_distinct_elements

The p-value comparing the true number of distinct elements to shuffled se-
quences.

Examples

sequences <- c('hello world', 'hello world hello', 'hello world hello world')
sequence_length_summary_element(sequences)

28 shuffle_sequences_within

shuffle_sequences_across

Shuffle Elements Across All Sequences

Description

This function shuffles elements across all sequences, preserving the lengths of the original se-
quences.

Usage

shuffle_sequences_across(sequences)

Arguments

sequences A character vector of sequences to shuffle.

Value

A character vector of sequences with elements shuffled across all sequences.

Examples

Example usage:
sequences <- c("A B C", "D E F", "G H I")
result <- shuffle_sequences_across(sequences)
print(result)

shuffle_sequences_within

Shuffle Elements Within Each Sequence

Description

This function shuffles the elements within each sequence independently.

Usage

shuffle_sequences_within(sequences)

Arguments

sequences A character vector of sequences to shuffle.

Value

A character vector of sequences with elements shuffled within each sequence.

temporal_overlap 29

Examples

Example usage:
sequences <- c("A B C", "D E F", "G H I")
result <- shuffle_sequences_within(sequences)
print(result)

temporal_overlap Temporal Overlap

Description

This function calculates the temporal overlap of elements in sequences. It determines how much
each element overlaps with other elements in the same sequence.

Usage

temporal_overlap(sequences_long)

Arguments

sequences_long A data frame containing sequences with columns: sequence_nr, element, start_time,
and end_time.

Value

A data frame summarizing the mean overlap elements and mean overlap proportion for each ele-
ment.

Examples

sequences_long <- data.frame(
sequence_nr = c(1, 1, 1, 2, 2),
element = c("A", "B", "C", "A", "B"),
start_time = c(0, 5, 10, 0, 5),
end_time = c(5, 10, 15, 5, 10)

)
result <- temporal_overlap(sequences_long)
print(result)

30 transition_chisq

transition_chisq Perform a Chi-Squared Test for Transition Counts

Description

This function performs a chi-squared test to determine if there are significant differences between
observed and expected transition counts in sequences. It calculates the chi-squared statistic and
tests the null hypothesis that transitions occur according to the expected frequencies.

Usage

transition_chisq(sequences, alpha = 0.05)

Arguments

sequences A vector of sequences, where each sequence is a character string with elements
separated by spaces.

alpha A numeric value representing the significance level for the chi-squared test. De-
fault is 0.05.

Details

The function calculates observed transition counts from the input sequences, computes expected
transition counts based on row and column sums, and performs a chi-squared test to compare ob-
served and expected counts. The test determines if the transitions in the sequences differ signifi-
cantly from what would be expected by chance.

Value

A list with two elements:

significant A logical value indicating whether the chi-squared test result is significant at the
given significance level.

p_value A numeric value representing the p-value of the chi-squared test.

Examples

Define sequences
sequences <- c('e1 e2 e3', 'e2 e1 e3', 'e3 e2 e1')

Perform chi-squared test
transition_chisq(sequences, alpha = 0.05)

transition_entropy 31

transition_entropy Calculate Transition Entropy for Sequences

Description

This function calculates the transition entropy for sequences using n-grams. It performs bootstrap-
ping to compute entropy and expected entropy over multiple iterations.

Usage

transition_entropy(sequences, ngram = 2, iterations = 20)

Arguments

sequences A list of sequences (character vectors) to analyze.
ngram The size of the n-gram (default is 2).
iterations The number of bootstrap iterations (default is 20).

Value

A data frame with calculated entropies, expected entropies, and entropy ratios for each iteration.

Examples

sequences <- unlist(list("A B C", "B C A", "C A B"))
transition_entropy(sequences, ngram = 2, iterations = 20)

transition_predictions

Transition Predictions

Description

This function takes sequences of elements and uses a machine learning classifier to predict the next
elements in the sequence. It supports n-gram tokenization and k-fold cross-validation. Optionally,
it can upsample the training data.

Usage

transition_predictions(
sequences,
classifier = "nb",
ngram = 2,
upsample = TRUE,
k = 10

)

32 transition_test

Arguments

sequences A list of character strings representing sequences of elements.

classifier A character string specifying the classifier to use. Options are ’nb’ for Naive
Bayes and ’forest’ for random forest.

ngram An integer specifying the number of elements to consider in the n-gram tok-
enization. Default is 2.

upsample A logical value indicating whether to upsample the training data to balance class
distribution. Default is TRUE.

k An integer specifying the number of folds for k-fold cross-validation. Default is
10.

Value

A list containing the mean accuracy, mean null accuracy, and a data frame of prediction errors.

Examples

sequences <- list("a b c", "b c d", "c d e")
result <- transition_predictions(sequences, classifier = 'nb', ngram = 2, upsample = TRUE, k = 5)
print(result)

transition_test Perform a Statistical Test for Transition Probabilities

Description

This function performs a permutation test to evaluate the significance of observed transition prob-
abilities in sequences. It compares the observed transition probabilities to those obtained from
permuted sequences to determine if the observed probabilities are significantly different from what
would be expected by chance.

Usage

transition_test(sequences, observed_probs, n_permutations = 1000)

Arguments

sequences A character vector of sequences where each sequence is represented as a string
of elements separated by spaces.

observed_probs A data frame containing observed transition probabilities with columns previous_element,
element, and probability.

n_permutations An integer specifying the number of permutations to perform. Default is 1000.

zipf_plot 33

Details

- **Observed Transition Probabilities**: Calculated from the input sequences. - **Permutations**:
The sequences are permuted n_permutations times, and transition probabilities are computed for
each permutation. - **P-Values**: Calculated as the proportion of permuted transition probabilities
that are greater than or equal to the observed transition probabilities.

Value

A data frame with the observed transition probabilities, expected probabilities from permutations,
and p-values for each transition. The data frame contains the following columns:

previous_element

The element preceding the transition.

element The element following the transition.

probability The observed probability of the transition.
expected_probability

The mean probability of the transition obtained from permuted sequences.

p_value The p-value indicating the significance of the observed probability compared to
the permuted probabilities.

Examples

Example sequences
sequences <- c('e1 e2 e3', 'e2 e3 e4', 'e3 e4 e1')

Calculate observed transition probabilities
observed_probs <- calculate_transition_probs(sequences)

Perform the transition test
test_results <- transition_test(sequences, observed_probs, n_permutations = 50)

View results
head(test_results)

zipf_plot Create a Zipf’s Law Plot

Description

This function creates a log-log plot to visualize Zipf’s law, which states that the frequency of a
word is inversely proportional to its rank in the frequency table. The plot compares the observed
frequency distribution of elements with the expected distribution if Zipf’s law were true.

Usage

zipf_plot(sequences_long)

34 zipf_plot

Arguments

sequences_long A data frame containing at least one column named ‘element‘ which represents
the elements of sequences. Each element’s frequency is used to create the plot.

Details

- **Observed Frequencies**: Calculated from the provided ‘sequences_long‘ data frame. - **Ex-
pected Frequencies**: Calculated using Zipf’s law formula, where the frequency of the element
is inversely proportional to its rank. - **Plotting**: Both observed and expected frequencies are
plotted on a log-log scale to compare against Zipf’s law.

Value

A ‘ggplot‘ object that visualizes the observed and expected frequencies of elements according to
Zipf’s law. The plot includes:

Rank The rank of each element based on its frequency, plotted on a log scale.

Count The observed frequency of each element, plotted on a log scale.

Expected The expected frequency of each element if Zipf’s law were true, shown as a grey
dashed line.

Examples

Example data frame
sequences_long <- data.frame(element = c('a', 'b', 'a', 'c', 'b', 'a', 'd', 'c', 'b', 'a'))

Generate the Zipf's law plot
zipf_plot(sequences_long)

Index

association_metrics, 2
average_seq_length, 3

calculate_conditional_entropy, 4
calculate_distance_matrix, 4
calculate_transition_counts, 5
calculate_transition_probs, 6
cluster_elements, 7
compare_distinct_elements_per_list_item,

8
cooccurrence_matrix, 8
count_distinct_elements, 9
count_distinct_elements_per_list_item,

10
count_distinct_elements_per_list_item_shuffled,

10

element_covariate, 11
element_covariate_network, 12
element_duration, 13
element_position, 13

find_most_similar_columns, 14

generate_sequence, 15

long_to_sequences, 16

median_seq_length, 17
menzerath_plot, 18
min_max_seq_length, 19

perform_clustering, 19
plot_seq_length_distribution, 20

redundancy, 21

sd_seq_length, 22
sequence_duration_summary, 24
sequence_length_summary, 25
sequence_length_summary_covariate, 26

sequence_length_summary_element, 27
sequences_to_long, 23
shuffle_sequences_across, 28
shuffle_sequences_within, 28

temporal_overlap, 29
transition_chisq, 30
transition_entropy, 31
transition_predictions, 31
transition_test, 32

zipf_plot, 33

35

	association_metrics
	average_seq_length
	calculate_conditional_entropy
	calculate_distance_matrix
	calculate_transition_counts
	calculate_transition_probs
	cluster_elements
	compare_distinct_elements_per_list_item
	cooccurrence_matrix
	count_distinct_elements
	count_distinct_elements_per_list_item
	count_distinct_elements_per_list_item_shuffled
	element_covariate
	element_covariate_network
	element_duration
	element_position
	find_most_similar_columns
	generate_sequence
	long_to_sequences
	median_seq_length
	menzerath_plot
	min_max_seq_length
	perform_clustering
	plot_seq_length_distribution
	redundancy
	sd_seq_length
	sequences_to_long
	sequence_duration_summary
	sequence_length_summary
	sequence_length_summary_covariate
	sequence_length_summary_element
	shuffle_sequences_across
	shuffle_sequences_within
	temporal_overlap
	transition_chisq
	transition_entropy
	transition_predictions
	transition_test
	zipf_plot
	Index

