Package ‘BAMBI’

January 20, 2025
Type Package

Title Bivariate Angular Mixture Models

Version 2.3.6

Date 2024-10-24

Maintainer Saptarshi Chakraborty <chakra.saptarshi@gmail.com>

Description Fit (using Bayesian methods) and simulate mixtures of univariate and bivariate angu-
lar distributions. Chakraborty and Wong (2021) <doi:10.18637/jss.v099.111>.

License GPL-3

LazyData TRUE

RoxygenNote 7.3.2.9000
LinkingTo Rcpp, ReppArmadillo

Imports stats, stats4, graphics, lattice, grDevices, Rcpp, tcltk,
qrng, mvtnorm, gtools, parallel, label.switching, methods,
coda, future.apply, loo (>= 2.4.1), RColorBrewer,
bridgesampling, scales, numDeriv

Suggests future, gridExtra
Depends R (>=3.2.0)

URL https://doi.org/10.18637/jss.v099.1i11

BugReports https://github.com/c7rishi/BAMBI/issues
Encoding UTF-8
NeedsCompilation yes

Author Saptarshi Chakraborty [aut, cre],
Samuel W.K. Wong [aut]

Repository CRAN
Date/Publication 2024-10-25 13:30:02 UTC

https://doi.org/10.18637/jss.v099.i11
https://doi.org/10.18637/jss.v099.i11
https://github.com/c7rishi/BAMBI/issues

2 Contents

Contents
add_burnin_thin e e 3
as.meme.list.angmeme e 3
BAMBI e e 4
bestmodel L 4
bridge_samplerangmeme L L L e e e 5
CITC_COT . v v v v e e e e e e e e e e e e 6
circ_varcor_model e e e e e 8
CONOUL.ANGIMCING . . .« . .« v v v v v v e e e e e e e e e e e e e e e 10
contour model L e 11
densityplot.angmeme L. e 12
DIC . . e 14
d_fitted e e e e 15
extractsamples L e e e e e e 17
fitLangmiX e e e e e 18
fit_incremental_angmix L. oL e e 23
it VINCOSIMIX o o o o e e e e e 27
At vMMIX L e e 28
At VIMSINMIX o o o e e e e e 28
At WNOrmM2miX o o e e e e e e e e e e 29
it WNOIMMIX o o e e e e e e e e e e 29
fix_label e e e e 30
ISANZMCIMC .« . . . o v v e e e e e e e e 31
latent_allocation e e e 32
loglik.aangmeme oLl e 33
l00.angmemC e 34
Ipdtrace e 34
PATAMLTACE o o v e e e e e e e e e e e e e e e e e e 35
Plot.ang@meme e e e e e e e e 36
POINESt e e e 37
quantileangmemc oL Lo L 38
0074 40 39
TVITICOS . & v v v v v v e e e e e e e e e e e e e e e e e 41
TVINCOSIIX & v & v v vt e e e e e e e e e e e e e e 44
TVINIMEX . o 0 v bt e e e e e e e e e e e e e e e 46
TVINSIN . . o v o e e e e e e e e e e e e e e e 47
TVINSINMIX v v e o e 49
00570 1 707 1 50
TWIHOIMNZ . . . o o v vt e 52
TWNOTM2MIX . . o . v v i e e e e e e e e e e e e e 54
TWINOTMIMIX . . & v b v v v e v e 55
select_chains e e e 57
SUMMATY.ANZMCIMC .« .« & v v o v v e 57
surface_model e e 58
M8 . . . e 59
vim2_mle . ..o e e 60

WAIC.ANZMCINC .« . . v v v e e vt e e e e e e e e e e e e e e 61

add_burnin_thin 3

wind . ..o 62
ZEIO_tO_2P1 . . o v i e e 63
Index 64
add_burnin_thin Add (extra) burnin and thin to angmcmc object after original run
Description

Add (extra) burnin and thin to angmcmc object after original run

Usage

add_burnin_thin(object, burnin.prop = @, thin = 1)

Arguments
object angmcmc object
burnin.prop proportion of iterations to used for burnin. Must be a be a number in [0, 1].
Default is 0.5.
thin thining size to be used. Must be a positive integer. If thin = n, then every nth
iteration is reatained in the final MCMC sample.
Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

lpdtrace(fit.vmsin.20)

Now add extra burn-in

fit.vmsin.20.burn <- add_burnin_thin(fit.vmsin.20, 0.3)

lpdtrace(fit.vmsin.20.burn)

as.mcmc.list.angmemc Create an memc.list object from an angmcmc object

Description

Create an mcmc.list object from an angmcme object

Usage

S3 method for class 'angmcmc'
as.mcmc.list(x, ...)

4 bestmodel

Arguments
X angmcemec object
unused
Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

now convert it to mcmc.list
library(coda)
fit.vmsin.20.mcmc <- as.mcmc.list(fit.vmsin.20)

BAMBI BAMBI: An R package for Bivariate Angular Mixture Models

Description

BAMBI is an R package that provides functions for fitting (using Bayesian methods) and simulating
mixtures of univariate and bivariate angular distributions. Please see the reference for a detailed
description of the functionalities of BAMBI.

References

Chakraborty, S., & Wong, S. W. (2021). BAMBI: An R package for fitting bivariate angular mixture
models. Journal of Statistical Software, 99 (11), 1-69. doi:10.18637/jss.v099.i11

bestmodel Convenience function for extracting angmcmc object, and the value of
the model selection criterion corresponding to the best fitted model in
stepwise fits
Description

Convenience function for extracting angmcmc object, and the value of the model selection criterion
corresponding to the best fitted model in stepwise fits

Usage

bestmodel (step_object)

bestcriterion(step_object)

https://doi.org/10.18637/jss.v099.i11

bridge_sampler.angmcmc 5

Arguments

step_object stepwise fitted object obtained from fit_incremental_angmix.

Details

These are convenience functions; the best fitted model and the corresponding value of model selec-

tion criterion can also be directly obtained by extracting the elements "fit.best"” and "crit.best”

from step_object respectively. Note that bestcriterion} returns: (a) a scalar number (class = nu-

meric) if critused in originalfit_incremental_angmixcall is’AIC’, 'BIC’or’DIC’, (b) an element of class bridg:
"loo")ifcrit="WAIC’, and (d) an element of class c("psis_loo", "loo")ifcrit="LOOIC"".

See documentations of these model selection criteria for more details.

Value

bestmodel returns an angmcmc object, and bestcriterion returns the corresponding value of
model selection criterion for the best fitted model in step_object.

Examples

illustration only - more iterations needed for convergence

set.seed(1)

fit.vmsin.step.15 <- fit_incremental_angmix("vmsin", tim8, start_ncomp = 1,
max_ncomp = 3, n.iter = 15,
n.chains = 1,
crit = "WAIC")

fit.vmsin.best.15 <- bestmodel(fit.vmsin.step.15)

fit.vmsin.best.15

crit.best <- bestcriterion(fit.vmsin.step.15)
crit.best

bridge_sampler.angmcmc
Log Marginal Likelihood via Bridge Sampling for angmcmc objects

Description

Log Marginal Likelihood via Bridge Sampling for angmcmc objects

Usage

S3 method for class 'angmcmc'
bridge_sampler(samples, ..., ave_over_chains = TRUE)

6 circ_cor

Arguments

samples angmcmc object

additional argument passed to bridge_sampler. Note that default for the argu-

ment method is "warp3”, (instead of "normal” as used in bridgesampling

package) to account for multi-modality of the posterior density.
ave_over_chains

logical. Separately call bridge_sampler on each chain in the angmecmc object

and then take the average? Defaults to TRUE. See details.

Details

Marginal likelihood is calculated by first converting the angmemc object samples to an memc. list
object, and then by passing the resulting mcmc. 1ist object to bridge_sampler. If variablity across
multiple chains (if any) are very different, then calling bridge_sampler separately for each chain
usually provides more stable results; the final log ML is computed by averaging over chain specific
MLs.

Examples

library(future)
library(parallel)
plan(multisession, gc = TRUE) # parallelize chains

set.seed(100)
MC.fit <- fit_angmix("vmsin”, tim8, ncomp=3, n.iter=5000,
n.chains = 3)

library(bridgesampling)
bridge_sampler(MC.fit)

circ_cor Sample circular correlation coefficients

Description

Sample circular correlation coefficients

Usage

circ_cor(
X!
type = "js",
alternative = "two.sided",
jackknife = FALSE,

circ_cor 7

bootse = FALSE,
n.boot = 100
)
Arguments
X two column matrix. NA values are not allowed.
type type of the circular correlation. Must be one of "fl", "js", "taul" and "tau2". See
details.
alternative one of "two.sided”, "less"” or "greater” (defaults to "two.sided"”). Hy-
pothesis test is performed only when type is either "f1” or " js", in which case
asymptotic standard error of the estimator is used to construct the test statistic.
jackknife logical. Compute jackknifed estimate and standard error? Defaults to FALSE.
bootse logical. Compute bootstrap standard error? Defaults to FALSE.
n.boot number of bootstrapped samples to compute bootstrap standard error. Defaults
to 100. Ignored if bootse if FALSE.
Details

circ_cor calculates the (sample) circular correlation between the columns of x. Two parametric
(the Jammalamadaka-Sarma (1988, equation 2.6) form "js", and the Fisher-Lee (1983, Section
3) form "f1") and two non-parametric (two versions of Kendall’s tau) correlation coefficients are
considered. The first version of Kendall’s tau (“tau1") is based on equation 2.1 in Fisher and Lee
(1982), whereas the second version ("tau2") is computed using equations 6.7-6.8 in Zhan et al
(2017).

The cost-complexity for ”js”, "f1”, "tau2” and "taul” are O(n),O(n?),0(n?) and O(n?) re-
spectively, where n denotes the number of rows in x. As such, for large n evaluation of "tau1" will
be slow.

References

Fisher, N. 1. and Lee, A. J. (1982). Nonparametric measures of angular-angular association. Biometrika,
69(2), 315-321.

Fisher, N. I. and Lee, A. J. (1983). A correlation coefficient for circular data. Biometrika, 70(2):327-
332.

Jammalamadaka, S. R. and Sarma, Y. (1988). A correlation coefficient for angular variables. Sta-
tistical theory and data analysis II, pages 349-364.

Zhan, X., Ma, T., Liu, S., & Shimizu, K. (2017). On circular correlation for data on the torus.
Statistical Papers, 1-21.

Examples

generate data from vmsin model
set.seed(1)
dat <- rvmsin(100, 2,3,-0.8,0,0)

now calculate circular correlation(s) between the 2 columns of dat

8 circ_varcor_model

circ_cor(dat, type="js")
circ_cor(dat, type="f1")
circ_cor(dat, type="taul")
circ_cor(dat, type="tau2")

circ_varcor_model Analytic circular variances and correlations for bivariate angular
models

Description

Analytic circular variances and correlations for bivariate angular models

Usage

circ_varcor_model(
model = "vmsin",
kappal = 1,
kappa2 =1,
kappa3 = 0,
mul = 0,
mu2 = 0,
nsim = 10000,

Arguments

n o n

model bivariate angular model. Must be one of "vmsin”, "vmcos”, or "wnorm2".
kappal, kappa2, kappa3
concentration and covariance parameters. Recycled to the same size. kappa3/2

must be < kappal*kappa2 in the wnorm2 model (see rwnorm2 for a detailed
parameterization of wnormz2).

mul, mu2 mean parameters. Ignored as they do not play any role in the analytical formulas.

nsim Monte Carlo sample size. Ignored if all of kappa1, kappa2 and abs(kappa3)
are < 150 or if model = "wnorm2".

additional model specific argment

Details

The function computes the analytic circular variances and correlations (both Jammalamadaka-
Sarma (JS) and Fisher-Lee (FL) forms) for von Mises sine, von Mises cosine and bivariate wrapped
normal distributions.

circ_varcor_model 9

For wnorm2, expressions for the circular variances, JS and FL correlation coefficients can be found in
Mardia and Jupp (2009), Jammalamadaka and Sarma (1988) and Fisher and Lee (1983) respectively.
For vmsin and vmcos these expressions are provided in Chakraborty and Wong (2018).

Because the analytic expressions in vmsin and vmcos models involve infinite sums of product of
Bessel functions, if any of kappa1l, kappa2 and abs(kappa3) is larger than or equal to 150, IID
Monte Carlo with sample size nsim is used to approximate rho_js for numerical stability. From
rho_js, rho_f1 is computed using Corollary 2.2 in Chakraborty and Wong (2018), which makes
cost-complexity for the rho_f1 evaluation to be of order O(nsim) for vmsin and vmcos models. (In
general, rho_f1 evaluation is of order O(nsim"2)).

In addition, for the vmcos model, when -150 < kappa3 < -1 or 50 < max (kappal, kappa2, abs(kappa3))
<= 150, the analytic formulas in Chakraborty and Wong (2018) are used; however, the reciprocal of

the normalizing constant and its partial derivatives are all calculated numerically via (quasi) Monte

carlo method for numerical stability. These (quasi) random numbers can be provided through the
argument qrnd, which must be a two column matrix, with each element being a (quasi) random
number between 0 and 1. Alternatively, if n_qrnd is provided (and qrnd is missing), a two dimen-
sional sobol sequence of size n_qrnd is generated via the function sobol from the R package qrng.

If none of qrnd or n_qgrnd is available, a two dimensional sobol sequence of size 1e4 is used.

Value

Returns a list with elements var1, var2 (circular variances for the first and second coordinates),
rho_f1 and rho_js (circular correlations). See details.

References

Fisher, N. I. and Lee, A. (1983). A correlation coefficient for circular data. Biometrika, 70(2):327-
332.

Jammalamadaka, S. R. and Sarma, Y. (1988). A correlation coefficient for angular variables. Sta-
tistical theory and data analysis II, pages 349-364.

Mardia, K. and Jupp, P. (2009). Directional Statistics. Wiley Series in Probability and Statistics.
Wiley.

Chakraborty, S. and Wong, S, W.K. (2018). On the circular correlation coefficients for bivariate von
Mises distributions on a torus. arXiv e-print.

Examples

circ_varcor_model("vmsin"”, kappal= 1, kappa2 = 2, kappa3 = 3)

Monte Carlo approximation
set.seed(1)
dat <- rvmsin(1000, 1, 2, 3)
sample circular variance
circ_var <- function(x)
1 - mean(cos(x - atan2(mean(sin(x)), mean(cos(x)))))
circ_var(dat[, 11)
circ_var(dat[, 21)
circ_cor(dat, "fl1")
circ_cor(dat, "js")

10

contour.angmcmc

contour.angmcmc

Contour plot for angmemc objects with bivariate data

Description

Contour plot for angmemc objects with bivariate data

Usage
S3 method for class 'angmcmc'
contour(
X ’
fn = "MAP",
type = "point-est”,
show.data = TRUE,
xpoints = seq(@, 2 * pi, length.out = 100),
ypoints = seq(@, 2 * pi, length.out = 100),
levels,
nlevels = 20,
cex =1,
col = "red",
alpha = 0.4,
pch = 19,
)
Arguments
X angular MCMC object (with bivariate data).
fn function, or a single character string specifying its name, to evaluate on MCMC
samples to estimate parameters. Defaults to mean, which computes the estimated
posterior mean. Note that if fn = "MODE" (warning: not "mode”) or fn = "MAP",
then the maximum aposteriori estimate (MAP) is calculated.
type Passed to d_fitted. Possible choices are "point-est" and "post-pred".
show.data logical. Should the data points be added to the contour plot? Ignored if object
is NOT supplied.
xpoints Points on the first (x-) coordinate where the density is to be evaluated. Default
to seq(0, 2*pi, length.out=100).
ypoints Points on the first (x-) coordinate where the density is to be evaluated. Default
to seq(0, 2*pi, length.out=100).
levels numeric vector of levels at which to draw contour lines; passed to the contour
function in graphics.
nlevels number of contour levels desired if levels is not supplied; passed to the contour

function in graphics.

contour_model 11

cex, col, pch graphical parameters passed to points from graphics for plotting the data points.
Ignored if show.data == FALSE.

alpha color transparency for the data points, implemented via alpha from package
scales. Ignored if show.data == FALSE.

additional arguments to be passed to the function contour.

Details

contour.angmcmc is an S3 function for angmcme objects that calls contour from graphics.

To estimate the mixture density required to construct the contour plot, first the parameter vector 7 is
estimated by applying fn on the MCMC samples, yielding the (consistent) Bayes estimate 7). Then
the mixture density f(z|n) at any point z is (consistently) estimated by f(z|7).

Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

now create a contour plot

contour(fit.vmsin.20)

contour_model Contourplot for bivariate angular mixture model densities

Description

Contourplot for bivariate angular mixture model densities

Usage

contour_model (
model = "vmsin",
kappal,
kappa2,
kappa3s,
mul,
mu2,
pmix = rep(1/length(kappal), length(kappal)),
xpoints = seq(@, 2 * pi, length.out = 100),
ypoints = seq(@, 2 * pi, length.out = 100),

levels,
nlevels = 20,
xlab = "x",
ylab = Ilyll’

col = "black”,

12 densityplot.angmcmc

1ty =1,
main,

Arguments

model bivariate angular model whose mixture is of interest. Must be one of "vmsin",
"vmcos" and "wnorm?2".

kappal, kappa2, kappa3, mul, mu2, pmix
model parameters and mixing proportions. See the respective mixture model
densities (dvmsinmix, dvmcosmix, dwnorm2mix) for more details.

xpoints Points on the first (x-) coordinate where the density is to be evaluated. Default
to seq(0, 2*pi, length.out=100).

ypoints Points on the first (x-) coordinate where the density is to be evaluated. Default
to seq(0, 2*pi, length.out=100).

levels numeric vector of levels at which to draw contour lines; passed to the contour
function in graphics.

nlevels number of contour levels desired if levels is not supplied; passed to the contour
function in graphics.

xlab, ylab, col, 1ty, main
graphical parameters passed to contour.

additional model specific argment

Examples

contour_model('vmsin', 1, 1, 1.5, pi, pi)
contour_model('vmcos', 1, 1, 1.5, pi, pi)

densityplot.angmcmc Density plots for angmcmc objects

Description

Plot fitted angular mixture model density surfaces or curves.

Usage

S3 method for class 'angmcmc'
densityplot(

X,

data = NULL,

fn = mean,

type = "point-est”,

densityplot.angmcmc

log.density =

13

FALSE,
xpoints = seq(@, 2 * pi, length.out = 35),
ypoints = seq(@, 2 * pi, length.out = 35),

plot = TRUE,

show.hist = ifelse(log.density, FALSE, TRUE),

xlab,
ylab,

zlab = ifelse(log.density, "Log Density”, "Density"),

main,

Arguments

X

data

fn

type
log.density

xpoints, ypoints

plot

show.hist

angmcmc object.

unused. The parameter is already filled with results from fitted angular model.
It is kept to ensure compatibility with the lattice S3 generic densityplot.

function, or a single character string specifying its name, to evaluate on MCMC
samples to estimate parameters. Defaults to mean, which computes the estimated
posterior mean. Note that if fn = "MODE" (warning: not "mode”) or fn = "MAP",
then the maximum aposteriori estimate (MAP) is calculated.

Passed to d_fitted. Possible choices are "point-est" and "post-pred".

logical. Should log density be used for the plot?

Points on the x and y coordinates (if bivariate) or only x coordinate (if uni-
variate) where the density is to be evaluated. Each defaults to seq(0, 2*pi,
length.out=100).

logical. Should the density surface (if the fitted data is bivariate) or the density
curve (if univariate) be plotted?

logical. Should a histogram for the data points be added to the plot, if the fitted
data is univariate? Ignored if data is bivariate.

xlab, ylab, z1ab, main

Details

graphical parameters passed to lattice: :wireframe (if bivariate) or plot (if
univariate). If the data is univariate, z1ab and ylab can be used interchangeably
(both correspond to the density).

additional arguments passed to lattice: :wireframe if fitted data is bivariate,
or to hist (if (show.hist == TRUE)), if the fitted data is univariate

When plot==TRUE, densityplot.angmcmc calls lattice: :wireframe or plot from graphics to
draw the surface or curve.

To estimate the mixture density, first the parameter vector 7 is estimated by applying fn on the
MCMC samples, yielding the (consistent) Bayes estimate 7. Then the mixture density f(z|n) at
any point z is (consistently) estimated by f(z|7).

14 DIC

Note that densityplot.angmcmc does not plot the kernel densitie estimates of the MCMC param-
eters. (These plots can be obtained by first converting an angmcmc object to an memc object via
as.mcmc.list, and then by using densplot from package coda on the resulting mcmc.list object.
Instead, densityplot.angmcmc returns the surface (if 2-D) or the curve (if 1-D) of the fitted model
density evaluated at the estimated parameter vector (obtain through pointest).

Examples

first fit a vmsin mixture model
illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1)
now create density surface with the default first 1/3 as burn-in and thin =1
library(lattice)
densityplot(fit.vmsin.20)
the viewing angles can be changed through the argument 'screen'
(passed to lattice::wireframe)
densityplot(fit.vmsin.20, screen = list(z=-30, x=-60))
densityplot(fit.vmsin.20, screen = list(z=30, x=-60))
the colors can be changed through 'col.regions'
cols <- grDevices::colorRampPalette(c("blue”, "green",

"yellow"”, "orange"”, "red"))(100)

densityplot(fit.vmsin.20, col.regions = cols)

Now fit a vm mixture model

illustration only - more iterations needed for convergence

fit.vm.20 <- fit_vmmix(wind$angle, ncomp = 3, n.iter = 20,
n.chains = 1)

densityplot(fit.vm.20)

DIC Deviance Information Criterion (DIC) for angmcmc objects

Description

Deviance Information Criterion (DIC) for angmcmc objects

Usage
DIC(object, form = 2, ...)

Arguments
object angular MCMC object.
form form of DIC to use. Available choices are 1 and 2 (default). See details.

additional model specific arguments to be passed to DIC. For example, int.displ
specifies integer dispacement in wnorm and wnorm2 models. See fit_wnormmix
and fit_wnorm2mix for more details.

d_fitted 15

Details

Given a deviance function D(6) = —2log(p(y|@)), and an estimate 0% = (3 6;) /N of the posterior
mean E(6|y), where y denote the data, 6 are the unknown parameters of the model, 61, ..., 0 are
MCMC samples from the posterior distribution of 6 given y and p(y|0) is the likelihood function,
the (form 1 of) Deviance Infomation Criterion (DIC) is defined as

N
DIC =2((Y_ D(6,))/N — D(6+))

s=1

The second form for DIC is given by
DIC = D(0«) — 4varlogp(y|0s)

where for ¢ = 1, ..., n, var log p(y|@) denotes the estimated variance of the log likelihood based on
the realizations 61, ..., 0.

Like AIC and BIC, DIC is an asymptotic approximation for large samples, and is only valid when
the posterior distribution is approximately normal.

Value

Computes the DIC for a given angmcmc object

Examples

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

DIC(fit.vmsin.20)

d_fitted Density and random deviates from an angmcmc object

Description

Density and random deviates from an angmcmc object

Usage

d_fitted(x, object, type = "point-est”, fn = mean, log = FALSE, chain.no, ...)

r_fitted(n = 1, object, type = "point-est”, fn = mean, chain.no, ...)

16 d_fitted

Arguments
X vector, if univariate or a two column matrix, if bivariate, with each row a 2-D
vector, (can also be a data frame of similar dimensions) of points where the
densities are to be computed.
object angular MCMC object. The dimension of the model must match with x.
type Method of estimating density/generating random deviates. Possible choices are
"post-pred” and "point-est"”. See details. Defaults to "point-est”.
fn function, or a single character string specifying its name, to evaluate on MCMC
samples to estimate parameters. Defaults to mean, which computes the estimated
posterior mean. Note that if fn = "MODE" (warning: not "mode”) or fn = "MAP",
then the maximum aposteriori estimate (MAP) is calculated.
log logical. Should the log density be returned instead?
chain.no vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.
additional arguments to be passed to the function.
n number of observations to be generated.
Details

If type = 'point-est', density is evaluated/random samples are generated at a point estimate of
the parameter values. To estimate the mixture density, first the parameter vector n is estimated by
applying fn on the MCMC samples (using the function pointest), yielding the (consistent) Bayes
estimate 7). Then the mixture density f(x|n) at any point x is (consistently) estimated by f(z|7).
The random deviates are generated from the estimated mixture density f(z|7).

If type == 'post-pred', posterior predictive samples and densities are returned. That is, the av-
erage density S—1 Zle f(z|ns) is returned in d_fitted, where 71,...,ng is the set posterior
MCMC samples obtained from object. In r_fitted, first a random sub-sample 71), . .., 7(,) of
size n from the set of posterior samples 7y, . ..,ng is drawn (with replacement if n > S). Then the
i-th posterior predictive data point is generated from the mixture density f(xz|n) fori=1,...,n.

Value

d_fitted gives a vector the densities computed at the given points and r_fitted creates a vector
(if univariate) or a matrix (if bivariate) with each row being a 2-D point, of random deviates.

Examples

set.seed(1)

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

d_fitted(c(0,0), fit.vmsin.20, type = "post-pred"”)

d_fitted(c(0,0), fit.vmsin.20, type = "point-est"”)

r_fitted(10, fit.vmsin.20, type = "post-pred")
r_fitted(10, fit.vmsin.20, type = "point-est”)

extractsamples 17

extractsamples Extract MCMC samples for parameters from an angmcmec object

Description

Extract MCMC samples for parameters from an angmemc object

Usage
extractsamples(object, par.name, comp.label, chain.no, drop = TRUE, ...)
Arguments
object angular MCMC object
par.name vector of names of parameters for which point estimates are to be computed. If
NULL, results for all parameters are provided.
comp. label vector of component labels (positive integers, e.g., 1, 2, ...) for which point
estimates are to be computed. If NULL, results for all components are provided.
chain.no vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.
drop logical. Should the dimension of the output be dropped, if par . name, comp. label
or chain.no has a single level?
additional arguments to be passed to the function.
Details

The default for both par.name and comp.label are the all possible choices available in object.

Value

Returns a four dimensional array with

dimension 1 - model parameters and mixing proportions dimention 2 - components dimension 3 -
MCMC iterations dimension 4 - chain number

Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

extract Markov chain realizations for kappal from component 1

extr_kappal_1 <- extractsamples(fit.vmsin.20, "kappal”, 1)

for kappal from component from all components

extr_kappal <- extractsamples(fit.vmsin.20, "kappal")

for all parameters in component 1

extr_1 <- extractsamples(fit.vmsin.20, comp.label = 1)

18 fit_angmix

fit_angmix Fitting Bivariate and univariate angular mixture models

Description

Fitting Bivariate and univariate angular mixture models

Usage

fit_angmix(
model = "vmsin”,
data,
ncomp,
cov.restrict = "NONE",
unimodal.component = FALSE,
start_par = NULL,
rand_start = rep(FALSE, n.chains),
method = "hmc",
perm_sampling = FALSE,
n.chains = 3,
chains_parallel = TRUE,
return_llik_contri = FALSE,
int.displ = 3,
epsilon = 0.1,
L =10,
epsilon.random = TRUE,
L.random = FALSE,
burnin.prop = 0.5,
tune.prop = 1,
thin = 1,
propscale = 0.05,
n.iter = 500,
pmix.alpha = NULL,
norm.var = 1000,
autotune = TRUE,
show.progress = TRUE,
accpt.prob.upper,
accpt.prob.lower,
epsilon.incr = 0.05,
L.incr = 0.075,
tune.incr = 0.05,
tune_ave_size = 100,
kappa_upper = 150,
kappa_lower = 1e-04,
return_tune_param = FALSE,
grnd = NULL,
n_qgrnd = NULL,

fit_angmix

Arguments

model

data

ncomp

cov.restrict

19

angular model whose mixtures are to be fitted. Available choices are "vmsin”,
"vmcos" and "wnorm2” for bivariate data, and "vm" and "wnorm” for univariate
data.

data matrix (if bivarate, in which case it must have two columns) or vector.
If outside, the values are transformed into the scale [0,27). *Note:* BAMBI
cannot handle missing data. Missing values must either be removed or properly
imputed.

number of components in the mixture model. Must be a positive integer. vector
values are not allowed. If comp == 1, a single component model is fitted.

Should there be any restriction on the covariance parameter for a bivariate model.
Available choices are "POSITIVE"”, "NEGATIVE", "ZERO" and "NONE". Note
that "ZERO" fits a mixture with product components. Defaults to "NONE".

unimodal.component

start_par

rand_start

method

perm_sampling

logical. Should each component in the mixture model be unimodal? Only used
if model is either "vmsin” or "vmcos". Defaults to FALSE.

list with elements pmix (ignored if comp == 1), together with kappal, kappa2,
mul and mu2, for bivariate models, and kappa and mu for univariate models, all
being vectors of length same as ncomp. These provides the starting values for
the Markov chain; with j-th component of each vector corresponding to the j-th
component of the mixture distribution. If missing, the data is first clustered into
ncomp groups either via k-means (after projecting onto a unit sphere), or ran-
domly, depending on rand_start, and then moment estimators for components
are used as the starting points. Note that a very wrong starting point can poten-
tially lead the chain to get stuck at a wrong solution for thousands of iterations.
As such, we recommend using the default option, which is k-means followed by
moment estimation.

logical. Should a random starting clustering be used? Must be either a scalar, or
a vector of length ncomp, one for each chain. Ignored if start_par is supplied.
See start_par for more details. Defaults to FALSE.

MCMC strategy to be used for the model paramters: "hmc" or "rwmh".

logical. Should the permutation sampling algorithm of Fruhwirth-Schnatter
(2001) be used? If TRUE, at every iteration after burnin, once model parame-
ters and mixing proportions are sampled, a random permutation of 1, ..., ncomp
is considered, and components are relabelled according to this random permu-
tation. This forced random label switchings may imporve the mixing rate of
the chage. However, (automated) tuning is very difficult with such a scheme,
as there is no simple way of keeping track of the "original" component la-
bels. This creates problem with computing standard deviations of the generated
model parameters, thus making the scaling step used in tuning for epsilon or
paramscale problematic as well. As such, perm_sampling is always turned off
during burn-in (even if autotune = FALSE), and turned on thereafter, if TRUE.
Defaults to and is set to FALSE.

20

fit_angmix

n.chains number of chains to run. Must be a positive integer.

chains_parallel
logical. Should the chains be run in parallel? Defaluts to TRUE, and ignored if
n.chains = 1. Note that parallelization is implemented via future_lapply from
package future.apply which uses futures for this purpose, and thus provides
a convenient way of parallelization across various OSs and computing environ-
ments. However, a proper plan must be set for the parallization before running
the chain. Otherwise the chains will run sequentially.

return_llik_contri
logical. Should the log likelihood contribution of each data point for each
MCMC iteration in each chain be returned? This makes computation of waic.angmcmc
and loo.angmcmc much faster. *Warning*: Depending on the length of data and
n.iter, this can be very memory intensive. We suggest setting return_l11ik_contri
= TRUE only if waic.angmcme and loo.angmemc are aimed for. Defaults to

FALSE.

int.displ absolute integer displacement for each coordinate for wnorm and wnorm2 models
(ignored otherwise). Default is 3. Allowed minimum and maximum are 1 and 5
respectively.

epsilon, L tuning parameters for HMC; ignored if method = "rwmh”. epsilon (step-size) is

a single number, or a vector of size 2xncomp for univariate models and 5*ncomp
for bivariate models. Note that the "mass matrix" in HMC is assumed to be iden-
tity. As such, epsilon’s corresponding to different model parameters need to
be in proper scale for optimal acceptance rate. Can be autotuned during burnin.
See autotune. L (leapfrog steps) is a positive integer or a vector of positive
integers of length n.chains. If multiple chains are used, we suggest same L
values acorss different chains to make the chains as homogenous as possible.

epsilon.random logical. Should epsilon*delta, where delta is a random number between
(1-epsilon.incr, 1+epsilon.incr) be used instead of epsilon at each iter-
ation? Ignored if method = "rwmh".

L.random logical. Should a random integer between L.orig/exp(L.incr) andL.origxexp(L.incr)be
used instead as L at each iteration? Ignored if method = "rwmh”. Defaults to
TRUE.

burnin.prop proportion of iterations to used for burnin. Must be a be a number in [0, 1].
Default is 0.5.

tune.prop proportion of *burnin* used to tune the parameters (epsilon in HMC and

propscale in RWMH). Must be a number between 0 and 1; defaults to 1. Ig-
nored if autotune == FALSE.

thin thining size to be used. Must be a positive integer. If thin = n, then every nth
iteration is reatained in the final MCMC sample.

propscale tuning parameters for RWMH; a vector of size 5 (for bivariate models) or 2 (for
univariate models) representing the variances for the proposal normal densities
for the model parameters. Ignored if method = "hmc”. Can be autotuned during
burnin. See autotune.

n.iter number of iterations for the Markov Chain.

fit_angmix 21

pmix.alpha concentration parameter(s) for the Dirichlet prior for pmix. Must either be a pos-
itive real number, or a vector with positive entries and of length ncomp. The de-
faultis (r+r(r+1)/2)/243, where r is 1 or 2 according as whether the model is
univariate or bivariate. Note that it is recommended to use larger alpha values to
ensure the a good posterior behavior, especially when fit_incremental_angmix
is used for model selection, which handles overfitting in "let two component-
specific parameters be size, and then penalizes for model complexity. See Fruhwirth-
Schnatter (2011) for more details on this.

norm.var variance (hyper-) parameters in the normal prior for log(kappa), log(kappal),
log(kappa?2) and kappa3. (Prior mean is zero). Can be a vector. Default is 1000
that makes the prior non-informative.

autotune logical. Should the Markov chain auto-tune the parameter epsilon (in HMC)
or propscale (in RWMH) during burn-in? Set to TRUE by default. An adap-
tive tuning strategy is implemented. Here, at every 10th iteration during in
burn-in, the acceptance ratio in the last tune_ave_size iterations is calculated.
Then the tuning parameter is decreased (increased) by a factor of 1-tune.incr
(1+tune. incr) if the calculated acceptance rate falls below (above) accpt.prob. lower
(accpt.prob.upper). In addditon, when iter is a multiple of tune_ave_size,
epsilon for each model parameter is rescaled via the standard deviation of the
corresponding parameter over the past tune_ave_size iterations.

show.progress logical. Should a progress bar be displayed?

accpt.prob.lower, accpt.prob.upper
lower and upper limits of acceptance ratio to be maintained while tuning dur-
ing burn-in. Must be numbers between 0 and 1, which accpt.prob.lower <
accpt.prob.upper. See autotune. Default to (0.6, 0,9) for HMC and (0.3,
0.5) for RWMH. Ignored if autotune = FALSE.

epsilon.incr amount of randomness incorporated in epsilon if epsilon.random = TRUE.
L.incr amount of randomness incorporated in L if L. random = TRUE.

tune.incr how much should the tuning parameter be increased or decreased at each step
while tuning during burn-in? Must be a number between 0 and 1. See autotune.
Defaults to 0.05. Ignored if autotune = FALSE.

tune_ave_size number previous iterations used to compute the acceptance rate while tuning in
burn-in. Must be a positive integer. Defaults to 100.

kappa_upper, kappa_lower
upper and lower bounds for the concentration and (absolute) association param-
eters. Must be a positive integers. Defaults to 150 and 1e-4, and parameter with
value above or below these limits rarely make sense in practice. Warning: values
much larger or smaller than the default are not recommended as they can cause
numerical instability.

return_tune_param

logical. Should the values of the tuning parameters used at each iteration in each
chain be returned? Defaults to FALSE.

grnd, n_grnd Used only if method="vmcos". See dvmcos for details.

Unused.

22 fit_angmix

Note

Sampling is done in log scale for the concentration parameters (kappa, kappal and kappa?2).

Parallelization is done by default when more than one chain is used, but the chains can be run
sequentially as well by setting chains_parallel = FALSE. To retain reproducibility while running
multiple chains in parallel, the same RNG state is passed at the beginning of each chain. This
is done by specifying future.seed = TRUE in future.apply: :future_lapply call. Then at the
beginning of the i-th chain, before drawing any parameters, i-many Uniform(0, 1) random numbers
are generated using runif (i) (and then thrown away). This ensures that the RNG states across
chains prior to random generation of the parameters are different, and hence, no two chains can
become identical, even if they have the same starting and tuning parameters. This, however creates
a difference between a fit_angmix call with multiple chains which is run sequentially by setting
chains_parallel = FALSE, and another which is run sequentially because of a sequential plan()
(or no plan()), with chains_parallel = TRUE. In the former, different RNG states are passed at
the initiation of each chain.

References

Fruhwirth-Schnatter, S. (2011). Label switching under model uncertainty. Mixtures: Estimation
and Application, 213-239.

Fruhwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of classical and dynamic
switching and mixture models. Journal of the American Statistical Association, 96(453), 194-209.

Examples

illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_angmix("vmsin”, tim8,

ncomp = 3, n.iter = 20,

n.chains =1

)

fit.vmsin.20

Parallelization is implemented via future_lapply from the

package future.apply. To parallelize, first provide a parallel

plan(); otherwise the chains will run sequentially.

Note that not all plan() might work on every 0S, as they execute
functions defined internally in fit_mixmodel. We suggest

plan(multisession) which works on every 0S.

library(future)
library(parallel)
plan(multisession, gc = TRUE) # parallelize chains

set.seed(1)

MC.fit <- fit_angmix("vmsin”, tim8,
ncomp = 3, n.iter = 5000,
n.chains = 3

fit_incremental_angmix 23

pointest(MC.fit)
MC.fix <- fix_label(MC.fit)
contour(MC.fit)

contour(MC.fix)
lpdtrace(MC.fit)

fit_incremental_angmix
Stepwise fitting of angular mixture models with incremental compo-
nent sizes and optimum model selection

Description

Stepwise fitting of angular mixture models with incremental component sizes and optimum model

selection
Usage
fit_incremental_angmix(
model,
data,
crit = "LOOIC",

start_ncomp = 1,

max_ncomp = 10,

L = NULL,

fn = mean,

fix_label = NULL,

form = 2,

start_par = NULL,

prev_par = TRUE,

logml_maxiter = 10000,

return_all = FALSE,

save_fits = FALSE,

save_file = NULL,

save_dir = "",

silent = FALSE,

return_llik_contri = (crit %in% c("LOOIC", "WAIC")),
use_best_chain = TRUE,

alpha = 0.05,

bonferroni_alpha = TRUE,
bonferroni_adj_type = "decreasing”,

24

Arguments

model

data

crit

start_ncomp

max_ncomp
L

fn
fix_label
form
start_par
prev_par

logml_maxiter

fit_incremental_angmix

angular model whose mixtures are to be fitted. Available choices are "vmsin”,
"vmcos" and "wnorm2” for bivariate data, and "vm" and "wnorm” for univariate
data.

data matrix (if bivarate, in which case it must have two columns) or vector.
If outside, the values are transformed into the scale [0, 27). *Note:* BAMBI
cannot handle missing data. Missing values must either be removed or properly
imputed.

model selection criteria, one of "LOOIC”, "WAIC", "AIC"”, "BIC", "DIC" or
"LOGML". Default is "LOOIC".

starting component size. A single component model is fitted if start_ncomp is
equal to one.

maximum number of components allowed in the mixture model.

HMC tuning parameter (trajectory length) passed to fit_angmix. Can be a nu-
meric vetor (or scalar), in which case the same L is passed to all fit_angmix calls,
or can be a list of length max_ncomp-start_ncomp+1, so that L_list[[i]] is
passed as the argument L to fit_angmix call with ncomp = max_ncomp+i-1. See
fit_angmix for more details on L including its default values. Ignored if method
= "rwmh".

function to evaluate on MCMC samples to estimate parameters. Defaults to
mean, which computes the estimated posterior means. If fn =max, then MAP
estimate is calculated from the MCMC run. Used only if crit = "DIC", and
ignored otherwise.

logical. Should the label switchings on the current fit (only the corresponding
"best chain" if use_best_chain = TRUE) be fixed before computing parameter
estimates and model selection criterion? Defaults to TRUE if perm_sampling is
true in the fit_angmix call, or if crit = "DIC” and form = 1.

form of crit to be used. Available choices are 1 and 2. Used only if crit is
"DIC" and ignored otherwise.

list with elements pmix (ignored if comp == 1), together with kappal, kappa2,
mul and mu2, for bivariate models, and kappa and mu for univariate models, all
being vectors of length same as ncomp. These provides the starting values for
the Markov chain; with j-th component of each vector corresponding to the j-th
component of the mixture distribution. If missing, the data is first clustered into
ncomp groups either via k-means (after projecting onto a unit sphere), or ran-
domly, depending on rand_start, and then moment estimators for components
are used as the starting points. Note that a very wrong starting point can poten-
tially lead the chain to get stuck at a wrong solution for thousands of iterations.
As such, we recommend using the default option, which is k-means followed by
moment estimation.

logical. Should the MAP estimated parameters from the model with ncomp =
K be used in the model with ncomp = K+1 as the starting parameters, with the
component with largest mixing proportion appearing twice in the bigger model?

maximum number of iterations (maxiter) passed to bridge_sampler for calcu-
lating LOGML. Ignored if crit is not LOGML.

fit_incremental_angmix 25

return_all logical. Should all angmcmc objects obtained during step-wise run be returned?
Warning: depending on the sizes of n.iter, start_ncomp, max_ncomp and
n.chains, this can be very memory intesive. In such cases, it is recommended
that return_all be set to FALSE, and, if required, the intermediate fitted objects
be saved to file by setting save_fits = TRUE.

save_fits logical. Should the intermediate angmcmc objects obtained during step-wise run
be saved to file using save? Defaults to TRUE. See save_file and save_dir.

save_file, save_dir
save_file is a list of size max_ncomp-start_ncomp+1, with k-th entry provid-
ing the file argument used to save the intermediate angmcmc object with ncomp
=k (titled "fit_angmcmc”). If not provided, then k-th element of save_file[[k]]
is taken to be paste(save_dir, "comp_k", sep="/"). Both are ignored if
save_fits = FALSE.

silent logical. Should the current status (such as what is the current component labels,
which job is being done etc.) be printed? Defaults to TRUE.
return_llik_contri
passed to fit_angmix. By default, set to TRUE if crit is either "LOOIC" or
"WAIC"”, and to FALSE otherwise.

use_best_chain logical. Should only the "best" chain obtained during each intermediate fit be
used during computation of model selection criterion? Here "best" means the
chain with largest (mean over iterations) log-posterior density. This can be help-
ful if one of the chains gets stuck at local optima. Defaults to TRUE.

alpha significance level used in the test Hyx: expected log predictive density (elpd)
for the fitted model with K components >= elpd for the fitted model with K + 1
components if crit is "LOOIC" or "WAIC". Must be a scalar between O and 1.
Defaults to 0.05. See Details. Ignored for any other crit.

bonferroni_alpha
logical. Should a Bonferroni correction be made on the test size alpha to adjust
for multiplicity due to (max_ncomp - start_ncomp) possible hypothesis tests?
Defaults to TRUE. Relevant only if crit is in c("LOOIC"”, "WAIC"), and ig-
nored otherwise. See Details.

bonferroni_adj_type
character string. Denoting type of Bonferroni adjustment to make. Possible
choices are "decreasing” (default) and "equal”. Ignored if either bonferroni_alpha
is FALSE, or crit is outside c("LOOIC", "WAIC"). See Details.

additional arguments passed to fit_angmix.

Details

The goal is to fit an angular mixture model with an optimally chosen component size K. To ob-
tain an optimum K, mixture models with incremental component sizes between start_ncomp and
max_ncomp are fitted incrementally using fit_angmix, starting from K = 1. If the model selection
criterion crit is "LOOIC" or "WAIC", then a test of hypothesis Hyx: expected log predictive density
(elpd) for the fitted model with K components >= elpd for the fitted model with K + 1 components,
is performed at every K >= 1. The test-statistic used for the test is an approximate z-score based on
the normalized estimated elpd difference between the two models obtained from compare, which
provides estimated elpd difference along with its standard error estimate. Because the computed

26 fit_incremental_angmix

standard error of elpd difference can be overly optimistic when the elpd difference is small (in par-

ticular < 4), a conservative worst-case estimate (equal to twice of the computed standard error) is

used in such cases. To account for multiplicity among the M = (max_ncomp - start_ncomp) possible

sequential tests performed, by default a Bonferroni adjustment to the test level alpha is made. Set

bonferroni_alpha = FALSE} to remove the adjustment. To encourage parsimony in the final model, by defaul
= "decreasing") a decreasing sequence of adjusted alphas of the form alpha * (0.5)"(1:M)

/sum((0.5)"(1:M))is used. Setbonferroni_adj_type = "equal"to use equal sequence of adjusted alphas (i.e.,alph:
instead.

The incremental fitting stops if Hyx cannot be rejected (at level alpha) for some K >= 1; this K
is then regarded as the optimum number of components. If crit is not "LOOIC" or "WAIC" then
mixture model with the first minimum value of the model selection criterion crit is taken as the
best model.

Note that in each intermediate fitted model, the total number of components (instead of the number
of "non-empty components") in the model is used to estimate of the true component size, and then
the fitted model is penalized for model complexity (via the model selection criterion used). This
approach of selecting an optimal K follows the perspective "let two component specific parameters
be identical" for overfitting mixtures, and as such the Dirichlet prior hyper-parameters pmix.alpha
(passed to fit_angmix) should be large. See Fruhwirth-Schnatter (2011) for more deltails.

Note that the stability of bridge_sampler used in marginal likelihood estimation heavily depends on
stationarity of the chains. As such, while using this criterion, we recommending running the chain
long enough, and setting fix_label = TRUE for optimal performance.

Value

Returns a named list (with class = stepfit) with the following seven elements:

fit.all (if return_all = TRUE) - a list all angmcmc objects created at each component size;
fit.best - angmcme object corresponding to the optimum component size;

ncomp.best - optimum component size (integer);

crit - which model comparison criterion used (one of "LO0OIC"”, "WAIC", "AIC", "BIC", "DIC"
or "LOGML");

crit.all - all crit values calculated (for all component sizes);

crit.best - crit value for the optimum component size; and

max1lik.all - maximum (obtained from MCMC iterations) log likelihood for all fitted models
max1lik.best - maximum log likelihodd for the optimal model; and

check_min - logical; is the optimum component size less than max_ncomp?

References

Fruhwirth-Schnatter, S.: Label switching under model uncertainty. In: Mengerson, K., Robert,
C., Titterington, D. (eds.) Mixtures: Estimation and Application, pp. 213-239. Wiley, New York
(2011).

fit_vmcosmix 27

Examples

illustration only - more iterations needed for convergence
set.seed(1)
fit.vmsin.step.15 <- fit_incremental_angmix("vmsin", tim8, "BIC", start_ncomp =1,
max_ncomp = 3, n.iter = 15,
n.chains = 1, save_fits=FALSE)
(fit.vmsin.best.15 <- bestmodel(fit.vmsin.step.15))
lattice::densityplot(fit.vmsin.best.15)

fit_vmcosmix Fitting bivariate von Mises cosine model mixtures using MCMC

Description

Fitting bivariate von Mises cosine model mixtures using MCMC

Usage

fit_vmcosmix(...)

Arguments

arguments (other than model) passed to fit_angmix

Details

Wrapper for fit_angmix with model = "vmcos".

Examples

illustration only - more iterations needed for convergence

fit.vmcos.10 <- fit_vmcosmix(tim8, ncomp = 3, n.iter = 10,
n.chains = 1)

fit.vmcos.10

28 fit_vmsinmix

fit_vmmix Fitting univariate von Mises mixtures using MCMC

Description

Fitting univariate von Mises mixtures using MCMC

Usage

fit_vmmix(...)

Arguments

arguments (other than model) passed to fit_angmix

Details

Wrapper for fit_angmix with model = "vm".

Examples

illustration only - more iterations needed for convergence
fit.vm.20 <- fit_vmmix(wind$angle, ncomp = 3, n.iter = 20,
n.chains = 1)

fit.vm.20

fit_vmsinmix Fitting bivariate von Mises sine model mixtures using MCMC

Description

Fitting bivariate von Mises sine model mixtures using MCMC

Usage

fit_vmsinmix(...)

Arguments

arguments (other than model) passed to fit_angmix

Details

Wrapper for fit_angmix with model = "vmsin"

fit_ wnorm2mix 29

Examples

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

fit.vmsin.20

fit_wnorm2mix Fitting bivariate wrapped normal model mixtures using MCMC

Description

Fitting bivariate wrapped normal model mixtures using MCMC

Usage

fit_wnorm2mix(...)

Arguments

arguments (other than model) passed to fit_angmix

Details

Wrapper for fit_angmix with model = "wnorm2".

Examples

illustration only - more iterations needed for convergence

fit.wnorm2.10 <- fit_wnorm2mix(tim8, ncomp = 3, n.iter = 10,
n.chains = 1)

fit.wnorm2.10

fit_wnormmix Fitting univariate wrapped normal mixtures using MCMC

Description

Fitting univariate wrapped normal mixtures using MCMC

Usage

fit_wnormmix(...)

30 fix_label

Arguments

arguments (other than model) passed to fit_angmix

Details

Wrapper for fit_angmix with model = "wnorm”.

Examples

illustration only - more iterations needed for convergence

fit.wnorm.20 <- fit_wnormmix(wind$angle, ncomp = 3, n.iter = 20,
n.chains = 1)

fit.wnorm.20

fix_label Fix label switching in angmcmc objects

Description

Fix label switching in angmcmc objects

Usage

fix_label(object, ...)

Arguments
object angular MCMC object.
arguments other than z, K, complete, mcmc, p and data passed to label.switching.
See details.
Details

fix_label is a wrapper for label.switching from package label.switching for angmcmc ob-
jects. The arguments z, K, complete, mcmc, p and data are appropriately filled in from object.
The label.switching argument method can be a scalar or vector; for this wrapper it defaults to
"STEPHENS" if the angmcmc was created with permutation sampling (by setting perm_sampling =
TRUE in fit_angmix), and to "DATA-BASED" otherwise.

Value

Returns a single angmcme object or a list of angmeme objects (according as whether the argument
method is a scalar or vector) with label switchings corrected (after burn-in and thin) according to
the resulting permutation from label.switching.

is.angmecmc 31

Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

now apply fix_label

fit.vmsin.20.fix <- fix_label(fit.vmsin.20)

is.angmcmc Angular MCMC (angmemc) Object

Description

Checking for and creating an angmcmc object

Usage

is.angmcmc(object)

angmeme (.. .)

Arguments
object any R object
arguments required to make an angmcmc object. See details
Details

angmemc objects are classified lists that are created when any of the five mixture model fitting
functions, viz., fit_vmmix, fit_wnormmix, fit_vmsinmix, fit_vmcosmix and fit_wnorm2mix
is used. An angmcmc object contains a number of elements, including the dataset, the model being
fitted on the dataset and dimension of the model (univariate or bivariate), the tuning parameters used,
MCMC samples for the mixture model parameters, the (hidden) component or cluster indicators for
data points in each iteration and the (iteration-wise) log likelihood and log posterior density values
(both calculated upto some normalizing constants). When printed, an angmcmc object returns a
brief summary of the function arguments used to produce the object and the average acceptance
rate of the proposals (in HMC and RWMH) used over iterations. An angmemc object can be used as
an argument for the diagnostic and post-processing functions available in BAMBI for making further
inferences.

Value

logical. Is the input an angmcmec object?

32 latent_allocation

Examples

illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1)
is.angmemc(fit.vmsin.20)

latent_allocation Finding latent allocation (component indicators) from an angmcmc
object

Description

Finding latent allocation (component indicators) from an angmcmc object

Usage
latent_allocation(object, ...)
Arguments
object angular MCMC object.
passed to pointest to estimate parameters.
Details

In order to find the latent component indicators, estimates of mixing proportions and model param-
eters are first computed via pointest. Then, a data point is assigned label j, if the j-th component
gives highest density for that point.

Value

Returns a vector of length n, where n is the length (if univariate) or number of rows (if bivariate)
of the data used in original fit. i-th entry of the output vector provides component label for the i-th
data point.

Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

now find latent allocation

latent_allocation(fit.vmsin.20)

logLik.angmcmc

33

loglLik.angmcmc

Extract Log-Likelihood from angmcmc objects

Description

Extract Log-Likelihood from angmcmc objects

Usage
S3 method for class 'angmcmc'
logLik(object, method = 1, fn, ...)
Arguments
object angular MCMC object.
method interger specifying method of estimating the log likelihood. Must be 1 or 2.
Defaults to 1. See details.
fn function to evaluate on the iteration-wise log-likelihood values obtained during
MCMC run if method = 1; or, if method = 2, function to evaluate on the MCMC
samples for parameter estimation (passed to pointest). Defaults to max if method
=1 and mean if method = 2.
additional arguments to be passed to the function.
Details

There are two ways to estimate the log likelihood from the model. If method = 1, then log likelihood
is estimated by applying fn (defaults to max, if method = 1) direclty on the log likelihood values
from observed during the MCMC run. On the other hand, if method == 2, then parameter estimates
are first computed using pointest with fn (defaults to "MODE", if method == 2) applied on the
MCMC samples, and then then log likelihood is evaluated at the parameter estimates.

The degrees of the likelihood function is the total number of free parameters estimated in the mixture
models, which is equal to 6 K — 1 for bivariate models (vmsin, vmcos and wnorm2), or 3K — 1
for univariate models (vm and wnorm), where K denotes the number of components in the mixture

model.

Value

Returns an object of class logLik. This is a number (the estimated log likelihood) with attributes
"df" (degrees of freedom) and "nobs" (number of observations).

Examples

illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1)

loglLik(fit.vmsin.20)

34 Ipdtrace

loo.angmemc Leave-one-out cross-validation (LOO) for angmcmc objects

Description

Leave-one-out cross-validation (LOO) for angmcmc objects

Usage
S3 method for class 'angmcmc'
loo(x, ...)
Arguments
X angmcemc object.
additional model specific arguments to be passed to waic from loo. For example,
int.displ specifies integer displacement in wnorm and wnorm2 models. See
fit_wnormmix and fit_wnorm2mix for more details.
Details

Note that loo.angmcmc calls loo for computation. If the likelihood contribution of each data point
for each MCMC iteration is available in object (can be returned by setting return_1lik_contri
= TRUE) during fit_angmix call), 1oo.array is used; otherwise loo.function is called. Compu-
tation is much faster if the likelihood contributions are available - however, they are very memory
intensive, and by default not returned in fit_angmix.

Examples

illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1, return_llik_contri = TRUE)
library(loo)
loo(fit.vmsin.20)

lpdtrace Trace and autocorrelation plots of log posterior density or log likeli-
hood from an angmcmc object

Description

Trace and autocorrelation plots of log posterior density or log likelihood from an angmemc object

paramtrace

Usage

lpdtrace(
object,
chain.no,

35

use.llik = FALSE,
plot.autocor = FALSE,

lag.max =

Arguments

object

chain.no

use.llik

plot.autocor

lag.max

Examples

NULL,

angular MCMC object.

vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.

logical. Should log likelihood be plotted instead of log posterior? Set to FALSE
by default.

logical. Should the autocorrelations be plotted as well?

maximum lag for autocorrelation. Passed to acf. Ignored if plot.autocor =
FALSE.

unused

first fit a vmsin mixture model
illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1)

log posterior density trace
lpdtrace(fit.vmsin.20)

log likelihood trace
lpdtrace(fit.vmsin.20, use.llik = TRUE)

paramtrace

Trace plot for parameters from an angmcmc object

Description

Trace plot for parameters from an angmcmc object

Usage

paramtrace(object, par.name, comp.label, chain.no, ...)

36

Arguments

object

par.name

comp. label

chain.no

par

Value

plot.angmcmc

angular MCMC object.

vector of names of parameters for which point estimates are to be computed. If
NULL, results for all parameters are provided.

vector of component labels (positive integers, e.g., 1, 2, ...) for which point
estimates are to be computed. If NULL, results for all components are provided.

vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.

unused

parameter for which trace plot is to be created.

Returns a single plot if a single par and a single comp.label is supplied. Otherwise, a series of

plots is produced.

Examples

first fit a vmsin mixture model
illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1)

trace plot for kappal in component 1
paramtrace(fit.vmsin.20, "kappal”, 1)

for kappal in all components
paramtrace(fit.vmsin.20, "kappal”)

for all parameters in component 1
paramtrace(fit.vmsin.20, comp.label = 1)

plot.angmcmc

Summary plots for angmcmc objects

Description

Summary plots for angmcmc objects

Usage

S3 method for class 'angmcmc'

plot(
X,
par.name,
comp.label,
chain.no,
do.paramtrace

= TRUE,

pointest 37

do.lpdtrace = TRUE,
use.llik = FALSE,

)
Arguments

X angmcemec object

par.name vector of names of parameters for which point estimates are to be computed. If
NULL, results for all parameters are provided.

comp. label vector of component labels (positive integers, e.g., 1, 2, ...) for which point
estimates are to be computed. If NULL, results for all components are provided.

chain.no vector of chain numbers whose samples are to be be used. in the estimation. By

default all chains are used.
do.paramtrace logical. Should the trace(s) for the parameter(s) be plotted?

do.1lpdtrace logical. Should the log posterior trace be plotted?

use.llik logical. Should the log likelihood be plotted instead? Ignored if do.lpdtrace
== FALSE.
unused
Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

plot(fit.vmsin.20)

pointest Point estimates for parameters from an angmcmc object

Description

Point estimates for parameters from an angmcmc object

Usage
pointest(object, fn = mean, par.name, comp.label, chain.no, ...)
Arguments
object angular MCMC object.
fn function, or a single character string specifying its name, to evaluate on MCMC

samples to estimate parameters. Defaults to mean, which computes the estimated
posterior mean. Note that if fn = "MODE" (warning: not "mode”) or fn = "MAP",
then the maximum aposteriori estimate (MAP) is calculated.

38 quantile.angmcmc

par.name vector of names of parameters for which point estimates are to be computed. If
NULL, results for all parameters are provided.

comp. label vector of component labels (positive integers, e.g., 1, 2, ...) for which point
estimates are to be computed. If NULL, results for all components are provided.

chain.no vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.

additional arguments to be passed to the function.

Value

Returns a matrix of point estimates, or vector of point estimates if length(par.name)==1 or
length(comp.label)==1.

Examples

first fit a vmsin mixture model

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

estimate parameters by sample mean

(est_mean <- pointest(fit.vmsin.20))

estimate parameters by sample median

(est_median <- pointest(fit.vmsin.20, fn = median))

estimate parameters by MAP

(est_median <- pointest(fit.vmsin.20, fn

”MODE"))

quantile.angmcmc Quantile estimates for parameters from an angmcmc object

Description

Quantile estimates for parameters from an angmcmc object

Usage

S3 method for class 'angmcmc'

quantile(x, par.name, comp.label, chain.no, probs = seq(0, 1, 0.25), ...)
Arguments

X angmcmc object

par.name vector of names of parameters for which point estimates are to be computed. If

NULL, results for all parameters are provided.

comp.label vector of component labels (positive integers, e.g., 1, 2, ...) for which point
estimates are to be computed. If NULL, results for all components are provided.

chain.no vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.

rvim

probs

Value

39

numeric vector of probabilities with values in [0, 1]. (Values up to ‘2e-14" out-
side that range are accepted and moved to the nearby endpoint.)

further arguments to pass to quantile. In particular, probs = seq(@, 1, 0.25)
is the default vector of quantiles computed for each parameter.

Returns a three dimensional array of quantiles, or a matrix (vector) of quantiles if one (or two)
among par.name, comp. label, probs has length 1.

Examples

first fit a vmsin mixture model
illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1)

0.025th quantiles

(quant_025 <- quantile(fit.vmsin.20, prob = 0.025))
0.975th quantiles

(quant_975 <- quantile(fit.vmsin.20, prob = 0.975))
default quantiles

(quant_def <- quantile(fit.vmsin.20))

rvm

The univariate von Mises distribution

Description

The univariate von Mises distribution

Usage

rvm(n, kappa
dvm(x, kappa
Arguments

n

kappa

mu

log

1, mu = Q)

-
3
C

|

= 0, log = FALSE)

number of observations. Ignored if at least one of the other parameters have
length k > 1, in which case, all the parameters are recycled to length k to produce
k random variates.

vector of concentration (inverse-variance) parameters; kappa > 0.
vector of means.
vector of angles (in radians) where the densities are to be evaluated.

logical. Should the log density be returned instead?

40 rvm

Details

If mu and kappa are not specified they assume the default values of @ and 1 respectively.

The univariate von Mises distribution has density
flx) =1/(2nIy(k)) exp(k cos(z — mu))

where Iy(x) denotes the modified Bessel function of the first kind with order 0 evaluated at the
point k.

Value

dvm gives the density and rvm generates random deviates.

Examples

kappa <- 1:3
mu <- 0:2

X <= 1:10
n<-10

when x and both parameters are scalars, dvm returns a single density
dvm(x[1], kappal[1], mu[1]1)

when x is a vector but both the parameters are scalars, dmv returns a vector of
densities calculated at each entry of x with the same parameters
dvm(x, kappal1], mu[1]1)

if x is scalar and at least one of the two paraemters is a vector, both parameters are
recycled to the same length, and dvm returns a vector of with ith element being the

density evaluated at x with parameter values kappalil and mu[i]

dvm(x[1], kappa, mu)

if x and at least one of the two paraemters is a vector, x and the two parameters are
recycled to the same length, and dvm returns a vector of with ith element being the
density at ith element of the (recycled) x with parameter values kappal[i] and mu[i]
dvm(x, kappa, mu)

when parameters are all scalars, number of observations generated by rvm is n
rvm(n, kappal1], mu[1])

when at least one of the two parameters is a vector, both are recycled to the same length,
n is ignored, and the number of observations generated by rvm is the same as the length of
the recycled vectors

rvm(n, kappa, mu)

vmcos 41

rvmcos The bivariate von Mises cosine model

Description

The bivariate von Mises cosine model

Usage

rvmcos (
n,
kappal = 1,
kappa2
kappa3 =
mul = @
mu2 = @
method
)

[
S =

’

"naive"”

dvmcos (

X,

kappal = 1,
kappa2 = 1,
kappa3 = 0,
mul = 0,
mu2 = 0,
log

1]
-n
>
=
[%2]
m

Arguments

n number of observations. Ignored if at least one of the other parameters have
length k > 1, in which case, all the parameters are recycled to length k to produce
k random variates.

kappal, kappa2, kappa3
vectors of concentration parameters; kappal, kappa2 > 0.

mul, mu2 vectors of mean parameters.

method Rejection sampling method to be used. Available choices are "naive” (default)
or "vmprop”. See details.

X bivariate vector or a two-column matrix with each row being a bivariate vector
of angles (in radians) where the densities are to be evaluated.

log logical. Should the log density be returned instead?

additional arguments to be passed to dvmcos. See details.

42 rvmcos

Details

The bivariate von Mises cosine model density at the point x = (1, z2) is given by
f(z) = Co(k, ko, k3) exp(k1 cos(T1) + ko cos(Ta) + k3 cos(T1 — T2))

where
Ty =21 —p;To =29 — o

and C.(k1, k2, k3) denotes the normalizing constant for the cosine model.

Because C.. involves an infinite alternating series with product of Bessel functions, if kappa3 < -5
or max (kappal, kappa2, abs(kappa3)) > 50, C. is evaluated numerically via (quasi) Monte carlo
method for numerical stability. These (quasi) random numbers can be provided through the argu-
ment qrnd, which must be a two column matrix, with each element being a (quasi) random number
between 0 and 1. Alternatively, if n_grnd is provided (and grnd is missing), a two dimensional
sobol sequence of size n_qrnd is generated via the function sobol from the R package qrng. If none
of grnd or n_qgrnd is available, a two dimensional sobol sequence of size le4 is used. By default
Monte Carlo approximation is used only if kappa3 < -5 or max(kappal, kappa2, abs(kappa3))
> 50. However, a forced Monte Carlo approximation can be made (irrespective of the choice of
kappal, kappa2 and kappa3) by setting force_approx_const = TRUE. See examples.

Value

dvmcos gives the density and rvmcos generates random deviates.

Examples

kappal <- c(1, 2, 3)
kappa2 <- c(1, 6, 5)
kappa3 <- c(o, 1, 2)
mul <- c(1, 2, 5)
mu2 <- c(0, 1, 3)

x <- diag(2, 2)
n<-10

when x is a bivariate vector and parameters are all scalars,
dvmcos returns single density
dvmcos(x[1, 1, kappall[1], kappa2[1], kappa3[1], mul[1], mu2[1])

when x is a two column matrix and parameters are all scalars,
dmvsin returns a vector of densities calculated at the rows of
x with the same parameters

dvmcos(x, kappall[1], kappa2[1], kappa3[1], mul[1], mu2[1])

if x is a bivariate vector and at least one of the parameters is
a vector, all parameters are recycled to the same length, and

dvmcos returns a vector with ith element being the density

evaluated at x with parameter values kappallil, kappa2[il],

kappa3[il, mul[i] and mu2[i]

dvmcos(x[1,], kappal, kappa2, kappa3, mul, mu2)

if x is a two column matrix and at least one of the parameters is

rvimcos

a vector, rows of x and the parameters are recycled to the same

length, and dvmcos returns a vector with ith element being the

density evaluated at ith row of x with parameter values kappallil,
kappa2[i], # kappa3[i], mul[i] and mu2[i]

dvmcos(x, kappal, kappa2, kappa3, mul, mu2)

when parameters are all scalars, number of observations generated
by rvmcos is n
rvmcos(n, kappal[1], kappa2[1], kappa3[1], mul[1], mu2[1])

when at least one of the parameters is a vector, all parameters are
recycled to the same length, n is ignored, and the number of

observations generated by rvmcos is the same as the length of the
recycled vectors

rvmcos(n, kappal, kappa2, kappa3, mul, mu2)

Visualizing (quasi) Monte Carlo based approximations of
the normalizing constant through density evaluations.

"good" setup, where the analytic formula for C_c can be
calculated without numerical issues
kappal = 1, kappa2 = 1, kappa3 = -2, mul = pi, mu2 = pi

n_grnd <- (1:500)*20
analytic
good.a <- dvmcos(c(3,3), 1, 1, -2, pi, pi, log=TRUE)
using quasi Monte Carlo
good.q <- sapply(n_qgrnd,
function(j)
dvmcos(c(3,3), 1, 1, -2, pi, pi,
log=TRUE, n_grnd = j,
force_approx_const = TRUE))
using ordinary Monte Carlo
set.seed(1)
good.r <- sapply(n_grnd,
function(j)
dvmcos(c(3,3), 1, 1, -2, pi, pi,
log=TRUE,
grnd = matrix(runif(2*j), ncol = 2),
force_approx_const = TRUE))

plot(n_grnd, good.q, ylim = range(good.a, good.q, good.r),
col = "orange”, type = "1",
ylab = "",
main = "dvmcos(c(3,3), 1, 1, -2, pi, pi, log = TRUE)")
points(n_grnd, good.r, col = "skyblue", type = "1")
abline(h = good.a, 1ty = 2, col = "grey")
legend("topright”,
legend = c("Sobol”, "Random”, "Analytic"),
col = c("orange”, "skyblue", "grey"),

43

44 rvmcosmix

Ity = c(1, 1, 2))

"bad" setup, where the calculating C_c
numerically using the analytic formula is problematic
kappal = 100, kappa2 = 100, kappa3 = -200, mul = pi, mu2 = pi

n_grnd <- (1:500)*20

using quasi Monte Carlo
bad.q <- sapply(n_grnd,
function(j)
dvmcos(c(3,3), 100, 100, -200, pi, pi,
log=TRUE, n_grnd = j,
force_approx_const = TRUE))
using ordinary Monte Carlo
set.seed(1)
bad.r <- sapply(n_grnd,

function(j)
dvmcos(c(3,3), 100, 100, -200, pi, pi,
log=TRUE,
grnd = matrix(runif(2xj), ncol = 2),
force_approx_const = TRUE))
plot(n_grnd, bad.q, ylim = range(bad.q, bad.r),
col = "orange”, type = "1",
ylab = nn ,
main = "dvmcos(c(3,3), 100, 100, -200, pi, pi, log = TRUE)")
points(n_grnd, bad.r, col = "skyblue”, type = "1")
legend("topright”,
legend = c("Sobol”, "Random"),
col = c("orange”, "skyblue"), 1lty = 1)
rvmcosmix The bivariate von Mises cosine model mixtures
Description
The bivariate von Mises cosine model mixtures
Usage
rvmcosmix(n, kappal, kappa2, kappa3, mul, mu2, pmix, method = "naive”, ...)

dvmcosmix(x, kappal, kappa2, kappa3, mul, mu2, pmix, log = FALSE, ...)

rvimcosmix 45

Arguments

n number of observations.
kappal, kappa2, kappa3

vectors of concentration parameters; kappal, kappa2 > @ for each component.

mul, mu2 vectors of mean parameters.
pmix vector of mixture proportions.
method Rejection sampling method to be used. Available choices are "naive” (default)

or "vmprop”. See details.
additional arguments to be passed to dvmcos. See details.

X matrix of angles (in radians) where the density is to be evaluated, with each row
being a single bivariate vector of angles.
log logical. Should the log density be returned instead?
Details

All the argument vectors pmix, kappal, kappa2, kappa3, mul and mu2 must be of the same length
(= component size of the mixture model), with j-th element corresponding to the j-th component
of the mixture distribution.

The bivariate von Mises cosine model mixture distribution with component size K = length(pmix)
has density

g(@) =Y pljl * f(@; malj], walil, wal], paldl, i)

where the sum extends over j; p[j]; k1[J], #2[J], ©3[j]; and p1[4], pe[j] respectively denote the mix-
ing proportion, the three concentration parameters and the two mean parameter for the j-th cluster,
j=1,..,K,and f(.; k1, k2, k3, 111, 142) denotes the density function of the von Mises cosine model
with concentration parameters k1, K2, k3 and mean parameters i1, fio.

Value

dvmcosmix computes the density and rvmcosmix generates random deviates from the mixture den-
sity.

Examples

kappal <- c(1, 2, 3)
kappa2 <- c(1, 6, 5)
kappa3 <- c(o, 1, 2)

mul <- c(1, 2, 5)

mu2 <- c(@, 1, 3)

pmix <- c(0.3, 0.4, 0.3)
x <- diag(2, 2)

n<-10

mixture densities calculated at the rows of x
dvmcosmix(x, kappal, kappa2, kappa3, mul, mu2, pmix)

number of observations generated from the mixture distribution is n
rvmcosmix(n, kappal, kappa2, kappa3, mul, mu2, pmix)

46

rvimmix

rvmmix

The univariate von Mises mixtures

Description

The univariate von Mises mixtures

Usage

rvmmix(n, kappa, mu, pmix)

dvmmix(x, kappa, mu, pmix, log = FALSE)

Arguments

n

kappa
mu
pmix
X

log

Details

number of observations. Ignored if at least one of the other parameters have
length k > 1, in which case, all the parameters are recycled to length k to produce
k random variates.

vector of component concentration (inverse-variance) parameters, kappa > 0.
vector of component means.

vector of mixing proportions.

vector of angles (in radians) where the densities are to be evaluated.

logical. Should the log density be returned instead?

pmix, mu and kappa must be of the same length, with j-th element corresponding to the j-th com-
ponent of the mixture distribution.

The univariate von Mises mixture distribution with component size K = length(pmix) has density

g(x) = p[1] * f(x; k1], p[1]) + ... + p[K] * f(z; k[K], p[K])

where p[j], x[4], p[j] respectively denote the mixing proportion, concentration parameter and the
mean parameter for the j-th component and f(.; , i) denotes the density function of the (univari-
ate) von Mises distribution with mean parameter p and concentration parameter «.

Value

dvmmix computes the density and rvmmix generates random deviates from the mixture density.

rvmsin 47

Examples

kappa <- 1:3

mu <- 0:2

pmix <- c(0.3, 0.3, 0.4)
x <- 1:10

n<-10

mixture densities calculated at each point in x
dvmmix(x, kappa, mu, pmix)

number of observations generated from the mixture distribution is n
rvmmix(n, kappa, mu, pmix)

rvmsin The bivariate von Mises sine model

Description

The bivariate von Mises sine model

Usage

rvmsin(
n,
kappal = 1,
kappa2
kappa3 = 0,
mul = 0,
mu2 = 0,
method = "naive”

1]
-

dvmsin(x, kappal = 1, kappa2 = 1, kappa3 = @, mul = @, mu2 = @, log = FALSE)

Arguments

n number of observations. Ignored if at least one of the other parameters have
length k > 1, in which case, all the parameters are recycled to length k to produce
k random variates.

kappal, kappa2, kappa3
vectors of concentration parameters; kappal, kappa2 > 0.

mul, mu2 vectors of mean parameters.

method Rejection sampling method to be used. Available choices are "naive” (default)
or "vmprop”. See details.

X bivariate vector or a two-column matrix with each row being a bivariate vector
of angles (in radians) where the densities are to be evaluated.

log logical. Should the log density be returned instead?

48 rvmsin

Details

The bivariate von Mises sine model density at the point z = (z1, x2) is given by
f(z) = Cs(k1, ka, k3) exp(ky cos(T1) + kg cos(Ta) + kg sin(Ty) sin(Tr))

where
Ty =21 —p1;To =29 — 2

and C; (K1, ko, k3) denotes the normalizing constant for the sine model.

Two different rejection sampling methods are implemented for random generation. If method =
"vmprop”, then first the y-marginal is drawn from the associated marginal density, and then x is
generated from the conditional distributio of x given y. The marginal generation of y is implemented
in a rejection sampling scheme with proposal being either von Mises (if the target marginal density
is unimodal), or a mixture of von Mises (if bimodal), with optimally chosen concentration. This the
method suggested in Mardia et al. (2007). On the other hand, when method = "naive” (default) a
(naive) bivariate rejection sampling scheme with (bivariate) uniform propsoal is used.

Note that although method = "vmprop” may provide better efficiency when the density is highly
concentrated, it does have an (often substantial) overhead due to the optimziation step required to
find a reasonable proposal concentration parameter. This can compensate the efficiency gains of
this method, especially when n is not large.

Value

dvmsin gives the density and rvmsin generates random deviates.

Examples

kappal <- c(1, 2, 3)
kappa2 <- c(1, 6, 5)
kappa3 <- c(0, 1, 2)
mul <- c(1, 2, 5)
mu2 <- c(@, 1, 3)

x <- diag(2, 2)
n<-10

when x is a bivariate vector and parameters are all scalars,
dvmsin returns single density
dvmsin(x[1, 1, kappall[1], kappa2[1], kappa3[1], mul[1], mu2[1])

when x is a two column matrix and parameters are all scalars,
dmvsin returns a vector of densities calculated at the rows of
x with the same parameters

dvmsin(x, kappall[1], kappa2[1], kappa3[1], mul[1], mu2[1])

if x is a bivariate vector and at least one of the parameters is
a vector, all parameters are recycled to the same length, and

dvmsin returns a vector of with ith element being the density

evaluated at x with parameter values kappall[il, kappa2[il],

kappa3[i], mul[i] and mu2[i]

dvmsin(x[1, 1, kappal, kappa2, kappa3, mul, mu2)

rvmsinmix 49

if x is a two column matrix and at least one of the parameters is
a vector, rows of x and the parameters are recycled to the same

length, and dvmsin returns a vector of with ith element being the
density evaluated at ith row of x with parameter values kappallil],
kappa2[il, # kappa3[il, mul[i] and mu2[i]

dvmsin(x[1, 1, kappal, kappa2, kappa3, mul, mu2)

when parameters are all scalars, number of observations generated
by rvmsin is n
rvmsin(n, kappal[1], kappa2[1], kappa3[1], mul[1], mu2[1])

when at least one of the parameters is a vector, all parameters are
recycled to the same length, n is ignored, and the number of

observations generated by rvmsin is the same as the length of the
recycled vectors

rvmsin(n, kappal, kappa2, kappa3, mul, mu2)

rvmsinmix The bivariate von Mises sine model mixtures

Description

The bivariate von Mises sine model mixtures

Usage

rvmsinmix(n, kappal, kappa2, kappa3, mul, mu2, pmix, method = "naive")

dvmsinmix(x, kappal, kappa2, kappa3, mul, mu2, pmix, log = FALSE)

Arguments

n number of observations.
kappal, kappa2, kappa3
vectors of concentration parameters; kappal, kappa2 > @ for each component.

mul, mu2 vectors of mean parameters.
pmix vector of mixture proportions.
method Rejection sampling method to be used. Available choices are "naive” (default)

or "vmprop”. See details.

X matrix of angles (in radians) where the density is to be evaluated, with each row
being a single bivariate vector of angles.

log logical. Should the log density be returned instead?

50 rwnorm

Details

All the argument vectors pmix, kappal, kappa2, kappa3, mul and mu2 must be of the same length
(= component size of the mixture model), with j-th element corresponding to the j-th component
of the mixture distribution.

The bivariate von Mises sine model mixture distribution with component size K = length(p.mix)
has density

g(@) =Y pljl * f(@; malj], walils wal], pald], i)

where the sum extends over j; p[j]; k1[J], #2[J], ©3[7]; and p1[4], pe[j] respectively denote the mix-
ing proportion, the three concentration parameters and the two mean parameter for the j-th compo-
nent, j = 1,..., K, and f(.; k1, k2, K3, 141, tt2) denotes the density function of the von Mises sine
model with concentration parameters k1, k2, k3 and mean parameters i1, fio.

Value

dvmsinmix computes the density (vector if x is a two column matrix with more than one row) and
rvmsinmix generates random deviates from the mixture density.

Examples

kappal <- c(1, 2, 3)
kappa2 <- c(1, 6, 5)
kappa3 <- c(0, 1, 2)

mul <- c(1, 2, 5)

mu2 <- c(@, 1, 3)

pmix <- c(0.3, 0.4, 0.3)
x <- diag(2, 2)

n<-10

mixture densities calculated at the rows of x
dvmsinmix(x, kappal, kappa2, kappa3, mul, mu2, pmix)

number of observations generated from the mixture distribution is n
rvmsinmix(n, kappal, kappa2, kappa3, mul, mu2, pmix)

rwnorm The univariate Wrapped Normal distribution

Description

The univariate Wrapped Normal distribution

Usage

rwnorm(n = 1, kappa = 1, mu = 0)

dwnorm(x, kappa = 1, mu = @, int.displ, log = FALSE)

rwnorm

Arguments

n

kappa
mu
X

int.displ

log

Details

51

number of observations. Ignored if at least one of the other parameters have
length k > 1, in which case, all the parameters are recycled to length k to produce
k random variates.

vector of concentration (inverse-variance) parameters; kappa > 0.
vector of means.
vector of angles (in radians) where the densities are to be evaluated.

integer displacement. If int.displ = M, then the infinite sum in the density
is approximated by a sum over 2*M + 1 elements. (See Details.) The allowed
values are 1, 2, 3, 4 and 5. Default is 3.

logical. Should the log density be returned instead?

If mu and kappa are not specified they assume the default values of @ and 1 respectively.

The univariate wrapped normal distribution has density

F() = Vlw/(2m) 3 exp(—r/2(x — p(2mw))?)

where the sum extends over all integers w, and is approximated by a sum over w in {—M,—M +
1,...,M —1,M}if int.displ = M.

Value

dwnorm gives the density and rwnorm generates random deviates.

Examples

kappa <- 1:3
mu <- 0:2

x <= 1:10
n<-10

when x and both parameters are scalars, dwnorm returns a single density
dwnorm(x[1], kappal1], mul[1])

when x is a vector but both the parameters are scalars, dmv returns a vector of
densities calculated at each entry of x with the same parameters
dwnorm(x, kappal11, mu[1])

if x is scalar and at least one of the two paraemters is a vector, both parameters are
recycled to the same length, and dwnorm returns a vector of with ith element being the
density evaluated at x with parameter values kappalil and mu[i]

dwnorm(x[1], kappa, mu)

if x and at least one of the two paraemters is a vector, x and the two parameters are
recycled to the same length, and dwnorm returns a vector of with ith element being the
density at ith element of the (recycled) x with parameter values kappali] and mu[i]

52 rwnorm?2

dwnorm(x, kappa, mu)

when parameters are all scalars, number of observations generated by rwnorm is n
rwnorm(n, kappal1], mu[1])

when at least one of the two parameters is a vector, both are recycled to the same length,
n is ignored, and the number of observations generated by rwnorm is the same as the length
of the recycled vectors

rwnorm(n, kappa, mu)

rwnormz2 The bivariate Wrapped Normal distribution

Description

The bivariate Wrapped Normal distribution

Usage
rwnorm2(n, kappal = 1, kappa2 = 1, kappa3 = @, mul = @, mu2 =0, ...)

dwnorm2(
X,
kappal
kappa2
kappa3
mul = 0,
mu2 = 0,
int.displ,
log = FALSE

I u
S = -

Arguments

n number of observations. Ignored if at least one of the other parameters have

length k > 1, in which case, all the parameters are recycled to length k to produce

k random variates.
kappal, kappa2, kappa3

vectors of concentration parameters; kappa1l, kappa2 > 0, and kappa3*2 < kappalxkappa2.
mul, mu2 vectors of mean parameters.

additional arguments passed to rmvnorm from package mvtnorm

X bivariate vector or a two-column matrix with each row being a bivariate vector
of angles (in radians) where the densities are to be evaluated.

int.displ integer displacement. If int.displ = M, then each infinite sum in the density
is approximated by a finite sum over 2*M + 1 elements. (See Details.) The
allowed values are 1, 2, 3, 4 and 5. Default is 3.

log logical. Should the log density be returned instead?

rwnorm?2 53

Details

The bivariate wrapped normal density at the point = (x1, z2) is given by,

f@) = V((r1r2 — (r3)%))/(21) Y exp(—1/2 % (k1 (T1)* + ka(T2)? + 2k3(T1)(T2)))

T =Ti(2, p,w) = (1 — p1(27w1))
Ty = To(z, p,w) = (v2 — p1(27w2))

the sum extends over all pairs of integers w = (w1, w2), and is approximated by a sum over (w1, w2)
in{-M,-M +1,...M —1,M}?if int.displ = M.

Note that above density is essentially the "wrapped" version of a bivariate normal density with mean

p= (g1, p2)

and dispersion matrix ¥ = A~!, with A being a 2 x 2 symmetric, positive definite matrix with
diagonal entries x1 and x5 and the off-diagonal entries k3.

Value

dwnorm2 gives the density and runorm2 generates random deviates.

Examples

kappal <- c(1, 2, 3)
kappa2 <- c(1, 6, 5)
kappa3 <- c(0, 1, 2)
mul <- c(1, 2, 5)
mu2 <- c(9, 1, 3)

x <- diag(2, 2)
n<-10

when x is a bivariate vector and parameters are all scalars,
dwnorm2 returns single density
dwnorm2(x[1, 1, kappall1], kappa2[1], kappa3[1], mul[1], mu2[1])

when x is a two column matrix and parameters are all scalars,
dmvsin returns a vector of densities calculated at the rows of
x with the same parameters

dwnorm2(x, kappal[1], kappa2[1], kappa3[1], mul[1], mu2[1])

if x is a bivariate vector and at least one of the parameters is
a vector, all parameters are recycled to the same length, and

dwnorm2 returns a vector of with ith element being the density
evaluated at x with parameter values kappallil, kappa2[il],

kappa3[i], mul[i] and mu2[i]

dwnorm2(x[1, 1, kappal, kappa2, kappa3, mul, mu2)

if x is a two column matrix and at least one of the parameters is
a vector, rows of x and the parameters are recycled to the same
length, and dwnorm2 returns a vector of with ith element being the

54

rwnorm2mix

density evaluated at ith row of x with parameter values kappallil],
kappa2[il, # kappa3[il, mul[i] and mu2[i]
dwnorm2(x, kappal, kappa2, kappa3, mul, mu2)

when parameters are all scalars, number of observations generated
by rwnorm2 is n
rwnorm2(n, kappall[1], kappa2[1], kappa3[1], mul[1], mu2[1])

when at least one of the parameters is a vector, all parameters are
recycled to the same length, n is ignored, and the number of

observations generated by rwnorm2 is the same as the length of the
recycled vectors

rwnorm2(n, kappal, kappa2, kappa3, mul, mu2)

rwnorm2mix The bivariate Wrapped Normal mixtures

Description

The bivariate Wrapped Normal mixtures

Usage

rwnorm2mix(n, kappal, kappa2, kappa3, mul, mu2, pmix, ...)

dwnorm2mix(x, kappal, kappa2, kappa3, mul, mu2, pmix, int.displ, log = FALSE)

Arguments

n number of observations.
kappal, kappa2, kappa3

vectors of concentration parameters; kappal, kappa2 > @, kappa3*2 < kappal*kappa2

for each component.
mul, mu2 vectors of mean parameters.
pmix vector of mixture proportions.
additional arguments passed to rmvnorm from package mvtnorm

X matrix of angles (in radians) where the density is to be evaluated, with each row
being a single bivariate vector of angles.

int.displ integer displacement. If int.displ = M, then each infinite sum in the density
is approximated by a finite sum over 2*M + 1 elements. (See Details.) The
allowed values are 1, 2, 3, 4 and 5. Default is 3.

log logical. Should the log density be returned instead?

rwnormmix 55

Details

All the argument vectors pmix, kappal, kappa2, kappa3, mul and mu2 must be of the same length,
with j-th element corresponding to the j-th component of the mixture distribution.

The bivariate wrapped normal mixture distribution with component size K = length(pmix) has
density

g(a) =Y pljl * f(@; mlj], w2lils wal], pald], i)

where the sum extends over j; p[j]; k1[j], k2[J], ks[j]; and w1 [j], palj] respectively denote the mix-
ing proportion, the three concentration parameters and the two mean parameter for the j-th compo-
nent, j = 1,..., K, and f(.; k1, K2, K3, j41, o) denotes the density function of the wrapped normal
distribution with concentration parameters k1, ko, k3 and mean parameters (i1, jio.

Value

dwnorm2mix computes the density and rwnorm2mix generates random deviates from the mixture
density.

Examples

kappal <- c(1, 2, 3)
kappa2 <- c(1, 6, 5)
kappa3 <- c(0, 1, 2)

mul <- c(1, 2, 5)

mu2 <- c(@, 1, 3)

pmix <- c(0.3, 0.4, 0.3)
x <- diag(2, 2)

n<-10

mixture densities calculated at the rows of x
dwnorm2mix(x, kappal, kappa2, kappa3, mul, mu2, pmix)

number of observations generated from the mixture distribution is n
rwnorm2mix(n, kappal, kappa2, kappa3, mul, mu2, pmix)

rwnormmix The univariate Wrapped Normal mixtures

Description

The univariate Wrapped Normal mixtures

Usage

rwnormmix(n = 1, kappa, mu, pmix)

dwnormmix (x, kappa, mu, pmix, int.displ = 3, log = FALSE)

56 rwnormmix

Arguments
n number of observations. Ignored if at least one of the other parameters have
length k > 1, in which case, all the parameters are recycled to length k to produce
k random variates.
kappa vector of component concentration (inverse-variance) parameters, kappa > 0.
mu vector of component means.
pmix vector of mixing proportions.
X vector of angles (in radians) where the densities are to be evaluated.
int.displ integer displacement. If int.displ = M, then the infinite sum in the density
is approximated by a sum over 2*M + 1 elements. (See Details.) The allowed
values are 1, 2, 3, 4 and 5. Default is 3.
log logical. Should the log density be returned instead?
Details

pmix, mu and kappa must be of the same length, with j-th element corresponding to the j-th com-
ponent of the mixture distribution.

The univariate wrapped normal mixture distribution with component size K = length(pmix) has
density

9(x) = p[1] = f(a; £[1], p1]) + ... + p[K] * f(z; 5[K], u[K])

where pl[j], k[j], 1[j] respectively denote the mixing proportion, concentration parameter and the
mean parameter for the j-th component and f(.; k,) denotes the density function of the (univari-
ate) wrapped normal distribution with mean parameter p and concentration parameter «.

Value

dwnormmix computes the density and rwnormmix generates random deviates from the mixture den-
sity.

Examples

kappa <- 1:3

mu <- 0:2

pmix <- c(0.3, 0.3, 0.4)
x <- 1:10

n <- 10

mixture densities calculated at each point in x
dwnormmix(x, kappa, mu, pmix)

number of observations generated from the mixture distribution is n
rwnormmix(n, kappa, mu, pmix)

select_chains 57

select_chains Select chains from angmcmc objects

Description

Select chains from angmcmc objects

Usage
select_chains(object, chain.no, ...)
Arguments
object angular MCMC object.
chain.no labels of chains to be retained in the final sample. If missing, all chains are used.
unused
Value

Returns another angmcmece object with only selected chains passed through chain.no

Examples

illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
L = c(10, 12), chains_parallel = FALSE,
n.chains = 2)
fit.vmsin.20
fit.vmsin.20.1 <- select_chains(fit.vmsin.20, 1)
fit.vmsin.20.1

summary . angmemc Summary statistics for parameters from an angmcmc object

Description

Summary statistics for parameters from an angmcmc object

Usage

S3 method for class 'angmcmc'
summary(object, par.name, comp.label, chain.no, ...)

58 surface_model

Arguments
object angular MCMC object.
par.name vector of names of parameters for which point estimates are to be computed. If
NULL, results for all parameters are provided.
comp.label vector of component labels (positive integers, e.g., 1, 2, ...) for which point
estimates are to be computed. If NULL, results for all components are provided.
chain.no vector of chain numbers whose samples are to be be used. in the estimation. By
default all chains are used.
additional arguments affecting the summary produced.
Details

Computes (after thinning and discarding burn-in) point estimates with 95% posterior credible sets
for all components and all parameters, together with the sample averages of log likelihood and log
posterior density.

Value

Returns a list with elements estimate, lower, upper, 1lik and 1pd. estimate isitself a list with
three elements: mean, median and mode providing the sample mean, sample median and (sample)
MAP estimates.

Note that summary.angmecmc has its own print method, providing a table the estimated mean and
95% credible intervals for each parameter

Examples

illustration only - more iterations needed for convergence

fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,
n.chains = 1)

summary (fit.vmsin.20)

surface_model Surface for bivariate angular mixture model densities

Description

Surface for bivariate angular mixture model densities

Usage
surface_model (
model = "vmsin”,
kappal,
kappa2,

kappa3s,

tim8 59

mul,

mu2,

pmix = rep(1/length(kappal), length(kappal)),
xpoints = seq(@, 2 * pi, length.out = 30),

ypoints = seq(@, 2 * pi, length.out = 30),
log.density = FALSE,
xlab = "x",
ylab = Ilyll,
zlab = ifelse(log.density, "Log Density”, "Density"),
main,

)

Arguments
model bivariate angular model whose mixture is of interest. Must be one of "vmsin",

"vmcos" and "wnorm2".

kappal, kappa2, kappa3, mul, mu2, pmix
model parameters and mixing proportions. See the respective mixture model
densities (dvmsinmix, dvmcosmix, dwnorm2mix) for more details.

xpoints Points on the first (x-) coordinate where the density is to be evaluated. Default
to seq(0, 2*pi, length.out=100).

ypoints Points on the first (x-) coordinate where the density is to be evaluated. Default
to seq(0, 2*pi, length.out=100).

log.density logical. Should log density be used for the plot?

xlab, ylab, z1ab, main
graphical parameters passed to lattice: :wireframe

additional arguments passed to lattice: :wireframe

Examples

surface_model('vmsin', 1, 1, 1.5, pi, pi)
surface_model('vmcos', 1, 1, 1.5, pi, pi)

tim8 Backbone Dihedral Angles of Triose Phosphate Isomerase (8TIM)

Description

A dataset consisting of 490 pairs of backbone dihedral angles (in radian scale [0, 27)) (¢,) for
the protein Triose Phosphate Isomerase (8TIM). The angles were obtained first by using the DSSP
software on the PDB file for 8TIM to get the backbone angles (in degrees), and then by convert-
ing all angles into radians. Due to the presence of different secondary structures (helices, sheets
and loops) in the protein, the angular data show considerable variability, and is multimodal with
noticeably distinct clusters.

60 vm2_mle

Usage

data(tim8)

Format

A data frame with 490 rows and 2 variables (backbone dihedral angles) phi and psi.

Source

8TIM PDB file: http://www.rcsb.org/pdb/explore.do?structureId=8tim.
DSSP software: https://swift.cmbi.umcn.nl/gv/dssp/.

vm2_mle Maximum likelihood estimation of bivariate von Mises parameters

Description

Maximum likelihood estimation of bivariate von Mises parameters

Usage
vm2_mle(data, model = c("vmsin”, "vmcos"), ...)
Arguments
data data matrix (if bivarate, in which case it must have two columns) or vector.
If outside, the values are transformed into the scale [0,27). *Note:* BAMBI
cannot handle missing data. Missing values must either be removed or properly
imputed.
model Bivariate von Mises model. One of "vmsin", "vmcos" or "indep".
Additional arguments. See details.
Details

The parameters kappal and kappa2 are optimized in log scales. The method of optimization used
(passed to optim) can be specified through method in ... (defaults to "L-BFGS-B"). Note, how-
ever, that lower (0) and upper (2*pi) bounds for mul and mu2 are specified; so not all methods
implemented in optim will work.

Value

An object of class mle-class.

http://www.rcsb.org/pdb/explore.do?structureId=8tim
https://swift.cmbi.umcn.nl/gv/dssp/

waic.angmemc 61

Examples

pars <- list(kappal = 3, kappa2 = 2, kappa3 = 1.5, mul = 0.5, mu2 = 1.5)
nsamp <- 2000

model <- "vmsin"

set.seed(100)

dat_gen <- do.call(paste@("r"”, model), c(list(n = nsamp), pars))

est <- vm2_mle(dat_gen, model = model)
library(stats4)

coef(est)

vcov (est)

waic.angmemc Watanabe-Akaike Information Criterion (WAIC) for angmcmc objects

Description

Watanabe-Akaike Information Criterion (WAIC) for angmemc objects

Usage
S3 method for class 'angmcmc'
waic(x, ...)
Arguments
X angmcmc object.
additional model specific arguments to be passed to waic from loo. For example,
int.displ specifies integer displacement in wnorm and wnorm?2 models. See
fit_wnormmix and fit_wnorm2mix for more details.
Details

Given a deviance function D(7n) = —21log(p(y|n)), and an estimate n+ = (>_ ;) /n of the posterior
mean E(n|y), where y = (y1, ..., yn) denote the data, 7 is the unknown parameter vector of the
model, 71, ..., ny are MCMC samples from the posterior distribution of 7 given y and p(y|n) is the
likelihood function, the Watanabe-Akaike Information Criterion (WAIC) is defined as

WAIC = LPPD — pw

where
N

LPPD =" log(N"' > p(yilns))

i=1 s=1
and (form 1 of)

N

pw =2 [log(N""Y " p(yilns)) = N~ log p(yilns))-
i=1 s=1

s=1

62

wind

An alternative form (form 2) for pyy is given by

pw =y _ varlogp(y|n)
=1

where for ¢ = 1,...,n, varlogp(y;|n) denotes the estimated variance of log p(y;|n) based on the
realizations 71, ..., Q.

Note that waic.angmcme calls waic for computation. If the likelihood contribution of each data
point for each MCMC iteration is available in object (can be returned by setting return_l11lik_contri
= TRUE) during fit_angmix call), waic.array is used; otherwise waic. function is called. Compu-
tation is much faster if the likelihood contributions are available - however, they are very memory
intensive, and by default not returned in fit_angmix.

Value

Computes the WAIC for a given angmcmc object.

Examples

illustration only - more iterations needed for convergence
fit.vmsin.20 <- fit_vmsinmix(tim8, ncomp = 3, n.iter = 20,

n.chains = 1, return_llik_contri = TRUE)
library(loo)
waic(fit.vmsin.20)

wind Saturna Island wind directions

Description

A dataset consisting of 239 observations on wind direction in radians (original measurements were
in 10s of degrees), measured at Saturna Island, British Columbia, Canada during October 1-10,
2016 (obtained from Environment Canada website). There was a severe storm during October 4-7,
which caused significant fluctuations among the wind directions. As a result the angular data show
a clear multimodality.

Usage

data(wind)

Format

A data frame with 239 rows and 2 columns; the column "angle" provides the angular direction
(in radian) and the column day provides the days on which the data points were collected (ranges
between 1-10, corresponding to October 1-10, 2016).

zero_to_2pi 63

Source

Environment Canada: https://climate.weather.gc.ca/climate_data/data_quality_e.html.

CBC news on the storm: https://www.cbc.ca/news/canada/british-columbia/storm-bc-1.
3795204.

zero_to_2pi Wrap angles into [-pi, pi]l or [0, 2*pi]

Description

Wrap angles into [-pi, pi] or [0, 2xpi]

Usage

zero_to_2pi(x)
minuspi_to_pi(x)

Arguments

X numeric vector or matrix or data.frame.

Details

minuspi_to_pi wraps x into [-pi, pil, while zero_to_pi wraps x into [@, 2*pi].

Examples

dat <- matrix(runif(100, -pi, pi), ncol=2)
dat1 <- zero_to_2pi(dat)

dat2 <- minuspi_to_pi(dat1)

all.equal(dat, dat2)

https://climate.weather.gc.ca/climate_data/data_quality_e.html
https://www.cbc.ca/news/canada/british-columbia/storm-bc-1.3795204
https://www.cbc.ca/news/canada/british-columbia/storm-bc-1.3795204

Index

+ datasets dwnormmix (rwnormmix), 55
tim8, 59
wind, 62 extractsamples, 17

acf, 35 fit_angmix, 18, 24-30, 34, 62

add_burnin_thin, 3 f%t_incremgntal_angmix,5,2],23
alpha, 11 f%t_vmc?smlx,27

fit_vmmix, 28

fit_vmsinmix, 28
fit_wnorm2mix, /4, 29, 34, 61
fit_wnormmix, /4, 29, 34, 61
BAMBI, 4 fix_label, 30

future_lapply, 20

angmemc (is.angmemc), 31
as.mcmc.list, 14
as.mcmc.list.angmemc, 3

bestcriterion (bestmodel), 4
bestmodel, 4

bridge_sampler, 6, 24, 26 hist, I3
bridge_sampler.angmemc, 5 is.angmeme, 31
circ_cor, 6 label.switching, 30
circ_varcor_model, 8 latent_allocation, 32
compare, 25 length, 45, 46, 50, 55, 56
contour, 10-12 loglik, 33
contour.angmcme, 10 loglLik.angmcmc, 33
contour_model, 11 loo, 34

loo. angmemc, 20, 34
d_fitted, 10, 13,15 lpdtrace, 34
densityplot.angmcmc, 12
DIC, 14 minuspi_to_pi (zero_to_2pi), 63
dvm (rvm), 39 mle-class, 60
dvmcos, 21

optim, 60

dvmcos (rvmcos), 41
dvmcosmix, 12, 59
dvmcosmix (rvmcosmix), 44
dvmmix (rvmmix), 46
dvmsin (rvmsin), 47
dvmsinmix, /2, 59
dvmsinmix (rvmsinmix), 49

paramtrace, 35

plan, 20

plot, /3

plot.angmcme, 36
pointest, 14, 16, 32, 33, 37

ints, 11/
dwnorm (rwnorm), 50 points
dwnorm2 (rwnorm2), 52 quantile.angmeme, 38
dwnorm2mix, /2, 59
dwnorm2mix (rwnorm2mix), 54 r_fitted(d_fitted), 15

64

INDEX

rmvnorm, 52, 54
rvm, 39
rvmcos, 41
rvmcosmix, 44
rvmmix, 46
rvmsin, 47
rvmsinmix, 49
rwnorm, 50
rwnorm2, 8, 52
rwnorm2mix, 54
rwnormmix, 55

save, 25
select_chains, 57
sobol, 9, 42
summary . angmcmc, 57
surface_model, 58

tim8, 59
vm2_mle, 60
waic, 34, 61, 62
waic.angmemc, 20, 61

wind, 62

zero_to_2pi, 63

65

	add_burnin_thin
	as.mcmc.list.angmcmc
	BAMBI
	bestmodel
	bridge_sampler.angmcmc
	circ_cor
	circ_varcor_model
	contour.angmcmc
	contour_model
	densityplot.angmcmc
	DIC
	d_fitted
	extractsamples
	fit_angmix
	fit_incremental_angmix
	fit_vmcosmix
	fit_vmmix
	fit_vmsinmix
	fit_wnorm2mix
	fit_wnormmix
	fix_label
	is.angmcmc
	latent_allocation
	logLik.angmcmc
	loo.angmcmc
	lpdtrace
	paramtrace
	plot.angmcmc
	pointest
	quantile.angmcmc
	rvm
	rvmcos
	rvmcosmix
	rvmmix
	rvmsin
	rvmsinmix
	rwnorm
	rwnorm2
	rwnorm2mix
	rwnormmix
	select_chains
	summary.angmcmc
	surface_model
	tim8
	vm2_mle
	waic.angmcmc
	wind
	zero_to_2pi
	Index

