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2 Causallmpact

as.Causallmpact Coercion to a CausalImpact object

Description

Method for coercing objects to class CausalImpact.

This function serves as a template to implement S3 methods for coercing other objects to CausalImpact
objects in other packages. The function itself just dispatches a call to the appropriate S3 method.

Usage
as.CausalImpact(x, ...)
Arguments
X Any R object that should be coerced to a CausalImpact object.
Optional additional arguments (not currently used).
Author(s)

Kay H. Brodersen <kbrodersen@google. com>

CausalImpact Inferring causal impact using structural time-series models

Description

CausalImpact() performs causal inference through counterfactual predictions using a Bayesian
structural time-series model.

See the package documentation (http://google.github.io/Causallmpact/) to understand the underly-
ing assumptions. In particular, the model assumes that the time series of the treated unit can be
explained in terms of a set of covariates which were themselves not affected by the intervention
whose causal effect we are interested in.

The easiest way of running a causal analysis is to call CausalImpact() with data, pre.period,
post.period, model.args (optional), and alpha (optional). In this case, a time-series model is
automatically constructed and estimated. The argument model .args offers some control over the
model. See Example 1 below.

An alternative is to supply a custom model. In this case, the function is called with bsts.model,
post.period.response, and alpha (optional). See Example 3 below.

Usage

CausalImpact(data = NULL, pre.period = NULL,
post.period = NULL, model.args = NULL,
bsts.model = NULL, post.period.response = NULL,
alpha = 0.05)
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Arguments

data

pre.period

post.period

model.args

bsts.model

Time series of response variable and any covariates. This can be a zoo object, a
vector, amatrix, or adata.frame. In any of these cases, the response variable
must be in the first column, and any covariates in subsequent columns. A zoo
object is recommended, as its time indices will be used to format the x-axis in
plot().

A vector specifying the first and the last time point of the pre-intervention period
in the response vector y. This period can be thought of as a training period, used
to determine the relationship between the response variable and the covariates. If
data is a zoo object with a time attribute, pre.period must be indicated using
the same time scale (i.e. using the same class as time(data), see Example 2
below). If data doesn’t have a time attribute, post.period is indicated with
indices.

A vector specifying the first and the last day of the post-intervention period we
wish to study. This is the period after the intervention has begun whose effect we
are interested in. The relationship between response variable and covariates, as
determined during the pre-period, will be used to predict how the response vari-
able should have evolved during the post-period had no intervention taken place.
If data is a zoo object with a time attribute, post.period must be indicated
using the same time scale. If data doesn’t have a time attribute, post.period
is indicated with indices.

Further arguments to adjust the default construction of the state-space model
used for inference. One particularly important parameter is prior.level.sd,
which specifies our a priori knowledge about the volatility of the data. For even
more control over the model, you can construct your own model using the bsts
package and feed the fitted model into CausalImpact(), as shown in Example
3.

Instead of passing in data and having CausalImpact() construct a model, it
is possible to create a custom model using the bsts package. In this case,
omit data, pre.period, and post.period. Instead only pass in bsts.model,
post.period. response, and alpha (optional). The model must have been fit-
ted on data where the response variable was set to NA during the post-treatment
period. The actual observed data during this period must then be passed to the
function in post.period. response.

post.period.response

alpha

Value

Actual observed data during the post-intervention period. This is required if and
only if a fitted bsts.model is provided instead of data.

Desired tail-area probability for posterior intervals. Defaults to 0.05, which will
produce central 95% intervals.

CausalImpact() returns a CausalImpact object containing the original observed response, its
counterfactual predictions, as well as pointwise and cumulative impact estimates along with poste-
rior credible intervals. Results can summarised using summary () and visualized using plot(). The
object is a list with the following fields:



4 Causallmpact

* series. Time-series object (zoo) containing the original response response as well as the
computed inferences. The added columns are listed in the table below.

* summary. Summary statistics for the post-intervention period. This includes the posterior ex-
pectation of the overall effect, the corresponding posterior credible interval, and the posterior
probability that the intervention had any effect, expressed in terms of a one-sided p-value.
Note that checking whether the posterior interval includes zero corresponds to a two-sided
hypothesis test. In contrast, checking whether the p-value is below alpha corresponds to a
one-sided hypothesis test.

* report. A suggested verbal interpretation of the results.

e model. A list with four elements pre.period, post.period, bsts.model and alpha. pre.period
and post.period indicate the first and last time point of the time series in the respective pe-
riod, bsts.model is the fitted model returned by bsts(), and alpha is the user-specified
tail-area probability.

The field series is a zoo time-series object with the following columns:

response Observed response as supplied to CausalImpact().
cum.response Cumulative response during the modeling period.
point.pred Posterior mean of counterfactual predictions.
point.pred.lower Lower limit of a (1 - alpha) posterior interval.
point.pred.upper Upper limit of a (1 - alpha) posterior interval.
cum.pred Posterior cumulative counterfactual predictions.
cum.pred. lower Lower limit of a (1 - alpha) posterior interval.
cum.pred.upper Upper limit of a (1 - alpha) posterior interval.
point.effect Point-wise posterior causal effect.

point.effect.lower Lower limit of the posterior interval (as above).
point.effect.lower Upper limit of the posterior interval (as above).

cum.effect Posterior cumulative effect.
cum.effect. lower Lower limit of the posterior interval (as above).
cum.effect.upper Upper limit of the posterior interval (as above).

Note

Optional arguments can be passed as a list in model . args, providing additional control over model
construction:

* niter. Number of MCMC samples to draw. Higher numbers yield more accurate inferences.
Defaults to 1000.

* standardize.data. Whether to standardize all columns of the data using moments estimated
from the pre-intervention period before fitting the model. This is equivalent to an empirical
Bayes approach to setting the priors. It ensures that results are invariant to linear transforma-
tions of the data. Defaults to TRUE.

e prior.level.sd. Prior standard deviation of the Gaussian random walk of the local level,
expressed in terms of data standard deviations. Defaults to 0.01, a typical choice for well-
behaved and stable datasets with low residual volatility after regressing out known predictors
(e.g., web searches or sales in high quantities). When in doubt, a safer option is to use 0.1,
as validated on synthetic data, although this may sometimes give rise to unrealistically wide
prediction intervals.
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* nseasons. Period of the seasonal components. In order to include a seasonal component,
set this to a whole number greater than 1. For example, if the data represent daily observa-
tions, use 7 for a day-of-week component. This interface currently only supports up to one
seasonal component. To specify multiple seasonal components, use bsts to specify the model
directly, then pass the fitted model in as bsts.model. Defaults to 1, which means no seasonal
component is used.

* season.duration. Duration of each season, i.e., number of data points each season spans.
For example, to add a day-of-week component to data with daily granularity, supply the argu-
ments model.args = list(nseasons =7, season.duration = 1). Alternatively, use model.args
= list(nseasons =7, season.duration = 24) to add a day-of-week component to data with
hourly granularity. Defaults to 1.

* dynamic.regression. Whether to include time-varying regression coefficients. In combi-
nation with a time-varying local trend or even a time-varying local level, this often leads to
overspecification, in which case a static regression is safer. Defaults to FALSE.

* max.flips. By default, each iteration tries to flip each predictor in or out of the model. Setting
max.flips tells the algorithm to randomly choose that many variables to explore flipping.
Useful to set (e.g. 100) when you have a large number of controls (e.g. 10000); in such cases,
a lower max. flips can speed up computation. Defaults to -1.

Author(s)

Kay H. Brodersen <kbrodersen@google. com>

Examples

# Example 1

#

# Example analysis on a simple artificial dataset

# consisting of a response variable y and a

# single covariate x1.

set.seed(1)

x1 <- 100 + arima.sim(model = list(ar = ©0.999), n = 52)
y <= 1.2 * x1 + rnorm(52)

y[41:52] <- y[41:52] + 10

data <- cbind(y, x1)

pre.period <- c(1, 40)

post.period <- c(41, 52)

impact <- Causallmpact(data, pre.period, post.period)

# Print and plot results

summary (impact)

summary (impact, "report")

plot(impact)

plot(impact, "original"”)
plot(impact$model$bsts.model, "coefficients")

# For further output, type:
names(impact)

## Not run:



6 CausallmpactMethods

# Example 2

#

# Weekly time series: same data as in example 1, annotated

# with dates.

times <- seq.Date(as.Date("2016-01-03"), by = 7, length.out = 52)
data <- zoo(cbind(y, x1), times)

impact <- Causallmpact(data, times[pre.period], times[post.period])

summary(impact) # Same as in example 1.
plot(impact) # The plot now shows dates on the x-axis.

# Example 3

#

# For full flexibility, specify a custom model and pass the

# fitted model to Causallmpact(). To run this example, run

# the code for Example 1 first.

post.period.response <- y[post.period[1] : post.period[2]]

y[post.period[1] : post.period[2]] <- NA

ss <- AddLocallLevel(list(), y)

bsts.model <- bsts(y ~ x1, ss, niter = 1000)

impact <- CausalImpact(bsts.model = bsts.model,
post.period.response = post.period.response)

plot(impact)

## End(Not run)

CausalImpactMethods Printing and plotting a CausalImpact object

Description

Methods for printing and plotting the results of an analysis results object returned by CausalImpact().

Usage
## S3 method for class 'Causallmpact'
summary(object, ...)
## S3 method for class 'Causallmpact'
print(x, ...)
## S3 method for class 'CausallImpact'
plot(x, ...)
Arguments
object A CausalImpact results object, as returned by CausalImpact().

X A CausalImpact results object, as returned by CausalImpact().
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Author(s)

Optional additional arguments. For summary () and print(), the first optional
argument is output, which can be "summary” (default) or "report”. Partial
matches are allowed. Furthermore, digits can be used to customize the preci-
sion of the output, e.g.: summary(..., "summary"”, digits =3)

For plot(), the additional argument metrics can be used to specify which pan-
els to include in the plot. The argument can be any combination of "original”,

n on

"pointwise”, "cumulative". Partial matches are allowed.

Kay H. Brodersen <kbrodersen@google. com>

Examples

## Not run:

impact <- Causallmpact(...)

# Print a summary table

print(impact)
summary (impact)

# Print a verbal analysis description
print(impact, "report")

summary (impact, '

# Create a plot
plot(impact)

"report”)

plot(impact, "original")

plot(impact, "pointwise")

plot(impact, "cumulative")

plot(impact, c("original”, "pointwise"))

# Customize a plot
impact.plot <- plot(impact)
impact.plot <- impact.plot + theme_bw(base_size = 20)

## End(Not run)
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