Package 'CurricularAnalytics'

January 20, 2025

Title Exploring and Analyzing Academic Curricula

Version 1.0.0

Description Provides an implementation of 'Curricular Analytics', a framework for analyzing and quantifying the complexity of academic curricula. Curricula are modelled as directed acyclic graphs and analytics are provided based on path lengths and edge density. This work directly comes from Heileman et al. (2018) <doi:10.48550/arXiv.1811.09676>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

URL https://github.com/Danyulll/CurricularAnalytics

BugReports https://github.com/Danyulll/CurricularAnalytics/issues

Imports dplyr (>= 1.1.4), igraph (>= 2.0.3), stats (>= 4.4.0), tools (>= 4.4.0), utils (>= 4.4.0), visNetwork (>= 2.1.2)

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Daniel Krasnov [aut, cre] (<https://orcid.org/0009-0003-4104-3162>), Dr. Irene Vrbik [aut, cph]

Maintainer Daniel Krasnov <danielkrasnovdk@hotmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-05-29 10:40:08 UTC

Contents

cking_factor
trality_factor
riculum_graph_from_csv
riculum_graph_from_list
ay_factor
t_curriculum_graph
ctural_complexity

Index

blocking_factor Calculate blocking factor

Description

A helper function for calculating the blocking factor for each node and the total blocking factor of a curriculum graph.

Usage

blocking_factor(node_list, edge_list)

Arguments

node_list	Dataframe with an 'id' column for each node and a 'term' column specifying which term the course is to be taken in.
edge_list	Dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes. Entries must use node ids from node_list.

Details

Blocking quantifies when a failing a course would result in being blocked from registering for future courses. More formally the blocking factor of a node v_i is defined as

$$b_c(v_i) = \sum_{v_j \in V} I(v_i, v_j)$$

where I is the indicator function:

$$= \begin{cases} 1, & \text{if } v_i \to v_j \\ 0, & \text{if } v_i \not\to v_j \end{cases}$$

The blocking factor for an entire curriculum graph G_c is defined as

$$b(G_c) = \sum_{v_i \in V} b_c(v_i)$$

Value

A list that contains the following:

bynode	A dataframe containing the blocking factor of each node
total	The total blocking factor of the curriculum graph

Author(s)

Daniel Krasnov

11

centrality_factor

References

Heileman, Gregory L, Chaouki T Abdallah, Ahmad Slim, and Michael Hickman. 2018. "Curricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and Pedagogical Innovations." arXiv Preprint arXiv:1811.09676.

Examples

```
edge_list <- data.frame(from = c(1, 3), to = c(3, 4))
node_list <-</pre>
data.frame(
id = 1:4,
label = c("MATH 100", "DATA 101", "MATH 101", "MATH 221"),
term = c(1, 1, 2, 2)
)
bf_list <- blocking_factor(node_list,edge_list)</pre>
print(bf_list)
# Output:
# $bynode
# id bf
# 2 1 2
# 3 2 0
# 4 3 1
#540
# $total
# [1] 3
```

centrality_factor Calculate centrality

Description

A helper function for calculating the centrality for each node.

Usage

```
centrality_factor(node_list, edge_list)
```

Arguments

node_list	Dataframe with an 'id' column for each node and a 'term' column specifying which term the course is to be taken in.
edge_list	Dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes. Entries must use node ids from node_list.

Details

A course is considered central if it has many requisite edges flowing in and out of the node. More formally it is the number of long paths that include the node. That is, consider a curriculum graph G_c and a vertex v_i . A long path is a path that satisfies the following conditions:

- v_i, v_j, v_k are distinct
- $v_j \to v_i \to v_k$
- v_j is a source node (in-degree zero)
- v_k is a sink node (out-degree zero)

Let $P_{v_i} = \{p_1, p_2, ...\}$ denote the set of all paths defined as above. Then the centrality of a node v_i is given by

$$q(v_i) = \sum_{l=1}^{|P_{v_i}|} \#(p_l)$$

More plainly this is the number of paths containing v_i of at least length 3 where v_i is neither a source nor sink node.

Value

A dataframe containing the centrality of each node

Author(s)

Daniel Krasnov

References

Heileman, Gregory L, Chaouki T Abdallah, Ahmad Slim, and Michael Hickman. 2018. "Curricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and Pedagogical Innovations." arXiv Preprint arXiv:1811.09676.

Examples

```
edge_list <- data.frame(from = c(1, 3), to = c(3, 4))
node_list <-</pre>
data.frame(
 id = 1:4,
 label = c("MATH 100", "DATA 101", "MATH 101", "MATH 221"),
 term = c(1, 1, 2, 2)
)
cf_df <- centrality_factor(node_list,edge_list)</pre>
print(cf_df)
# Output:
#
  id cf
#1 1 0
#2 2 0
#3 3 3
#4 4 0
```

curriculum_graph_from_csv

Description

Generates a curriculum graph from a csv file.

Usage

curriculum_graph_from_csv(filepath)

Arguments

filepath	A csv file path with a table where each row is a course and the columns are as follows:
	• id: an integer id for the course
	• label: a string with the name of the course
	• term: an integer specifying what term the course is to be taken
	• requisites: a list of all pre- and co-requisite course ids of the form 1;2;3;

Value

A list that contains the following:

node_list	A dataframe of course nodes containing their id, term, blocking factor (bf), delay factor (df), centrality (cf), and cruciality (sc)
edge_list	A dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes.
network	Igraph network object representing the curriculum graph
sc_total	Total structural complexity of the curriculum graph
bf_total	Total blocking factor of the curriculum graph
df_total	Total delay factor of the curriculum graph

Examples

```
# Have filepath point to a csv of the following form
#id label term requisites
#1 MATH 100 1
#2 DATA 101 1
#3 MATH 101 2 1
#4 MATH 221 2 3
#5 STAT 230 3 3;2
filepath <-
system.file("extdata", "Example-Curriculum.csv", package = "CurricularAnalytics")
C <- curriculum_graph_from_csv(filepath)
plot_curriculum_graph(C)</pre>
```

curriculum_graph_from_list

Create Curriculum Graph Object

Description

Generates a curriculum graph from a node and edge list.

Usage

curriculum_graph_from_list(node_list, edge_list)

Arguments

node_list	Dataframe with an 'id' column for each node and a 'term' column specifying which term the course is to be taken in.
edge_list	Dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes. Entries must use node ids from node_list.

Value

A list that contains the following:

node_list	A dataframe of course nodes containing their id, term, blocking factor (bf), delay factor (df), centrality (cf), and cruciality (sc)
edge_list	A dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes.
network	Igraph network object representing the curriculum graph
sc_total	Total structural complexity of the curriculum graph
bf_total	Total blocking factor of the curriculum graph
df_total	Total delay factor of the curriculum graph

Author(s)

Daniel Krasnov

References

Heileman, Gregory L, Chaouki T Abdallah, Ahmad Slim, and Michael Hickman. 2018. "Curricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and Pedagogical Innovations." arXiv Preprint arXiv:1811.09676.

delay_factor

Examples

```
edge_list <- data.frame(from = c(1, 3), to = c(3, 4))
# courses in node list must be placed sequentially in term order to be properly displayed
node_list <-
data.frame(
    id = 1:4,
    label = c("MATH 100", "DATA 101", "MATH 101", "MATH 221"),
    term = c(1, 1, 2, 2)
)
C <- curriculum_graph_from_list(node_list,edge_list)
plot_curriculum_graph(C)</pre>
```

delay_factor Calculate delay factor

Description

A helper function for calculating the delay factor for each node and the total delay factor of a curriculum graph.

Usage

delay_factor(node_list, edge_list)

Arguments

node_list	Dataframe with an 'id' column for each node and a 'term' column specifying which term the course is to be taken in.
edge_list	Dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes. Entries must use node ids from node_list.

Details

The delay factor of a course is the longest path the nodes finds itself on. More formally the delay factor of a node v_k is given by

$$d_c(v_k) = \max_{i,j,l,m} \left\{ \# \left(v_i \stackrel{p_l}{\to} v_k \stackrel{p_m}{\to} v_j \right) \right\}$$

The delay factor of an entire curriculum graph G_c is defined as

$$d(G_c) = \sum_{v_k \in V} d_c(v_k)$$

Value

A list that contains the following:

bynode	A dataframe containing the delay factor of each node
total	The total delay factor of the curriculum graph

Author(s)

Daniel Krasnov

References

Heileman, Gregory L, Chaouki T Abdallah, Ahmad Slim, and Michael Hickman. 2018. "Curricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and Pedagogical Innovations." arXiv Preprint arXiv:1811.09676.

Examples

```
edge_list <- data.frame(from = c(1, 3), to = c(3, 4))
node_list <-</pre>
data.frame(
 id = 1:4,
 label = c("MATH 100", "DATA 101", "MATH 101", "MATH 221"),
 term = c(1, 1, 2, 2)
)
df_list <- delay_factor(node_list,edge_list)</pre>
print(df_list)
# Output:
# $bynode
    id df
#
# 2 1 3
# 3 2 1
# 4 3 3
# 5 4 3
# $total
# [1] 10
```

plot_curriculum_graph Plot a curriculum graph

Description

Plots an interactable vizNetwork visualization of the Igraph network object representing the curriculum graph.

Usage

```
plot_curriculum_graph(curriculum_graph, width = "100%", height = 500)
```

Arguments

curriculum_graph		
	A curriculum_graph object created with either curriculum_graph_from_list()	
	or curriculum_graph_from_csv()	
width	A string percentage for the width of the plot, default is "100%".	
height	An integer representing the number of pixels for the height, default is 500.	

Value

No object is returned. Rather the graph is plotted according to the specified term order in node_list. Clicking on a node will reveal its label, structural complexity (sc), centrality (cf), blocking factor (bf), and delay factor (df)

Author(s)

Daniel Krasnov

References

Heileman, Gregory L, Chaouki T Abdallah, Ahmad Slim, and Michael Hickman. 2018. "Curricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and Pedagogical Innovations." arXiv Preprint arXiv:1811.09676.

Examples

```
edge_list <- data.frame(from = c(1, 3), to = c(3, 4))
node_list <-
data.frame(
    id = 1:4,
    label = c("MATH 100", "DATA 101", "MATH 101", "MATH 221"),
    term = c(1, 1, 2, 2)
)
C <- curriculum_graph_from_list(node_list,edge_list)
plot_curriculum_graph(C)</pre>
```

structural_complexity Calculate structural complexity

Description

A helper function for calculating the structural complexity for each node and the total structural complexity of a curriculum graph.

Usage

```
structural_complexity(node_list, edge_list)
```

Arguments

node_list	Dataframe with an 'id' column for each node and a 'term' column specifying which term the course is to be taken in.
edge_list	Dataframe with two columns 'from' and 'to' specifying directed edges starting at 'from' nodes directed towards 'to' nodes. Entries must use node ids from node_list.

Details

The structural complexity of a node v_k is defined as a linear combination of the node's delay and blocking factors. More formally

$$h(v_k) = d(v_k) + b(v_k)$$

. The structural complexity of an entire curriculum graph G_c is defined as

$$h(G_c) = d(G_c) + b(G_c) = \sum_{v_k \in V} (d_c(v_k) + b_c(v_k))$$

Value

A list that contains the following:

bynode	A dataframe containing the structural complexity of each node
total	The total structural complexity of the curriculum graph

Author(s)

Daniel Krasnov

References

Heileman, Gregory L, Chaouki T Abdallah, Ahmad Slim, and Michael Hickman. 2018. "Curricular Analytics: A Framework for Quantifying the Impact of Curricular Reforms and Pedagogical Innovations." arXiv Preprint arXiv:1811.09676.

Examples

```
edge_list <- data.frame(from = c(1, 3), to = c(3, 4))
node_list <-</pre>
data.frame(
id = 1:4,
label = c("MATH 100", "DATA 101", "MATH 101", "MATH 221"),
 term = c(1, 1, 2, 2)
)
sc_list <- structural_complexity(node_list,edge_list)</pre>
print(sc_list)
# Output:
# $bynode
   id sc
#
#1 1 5
# 2 2 1
# 3 3 4
# 4 4 3
# $total
# [1] 13
```

Index

 $blocking_factor, 2$

centrality_factor, 3
curriculum_graph_from_csv, 5
curriculum_graph_from_csv(), 8
curriculum_graph_from_list, 6
curriculum_graph_from_list(), 8

delay_factor,7

plot_curriculum_graph, 8

structural_complexity,9