Package 'FastBandChol'

January 20, 2025

Type Package
Title Fast Estimation of a Covariance Matrix by Banding the Cholesky Factor
Version 0.1.1
Author Aaron Molstad <molst029@umn.edu></molst029@umn.edu>
Maintainer Aaron Molstad <molst029@umn.edu></molst029@umn.edu>
Description Fast and numerically stable estimation of a covariance matrix by band- ing the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppAr- madilo. See <http: stat.umn.edu="" ~molst029=""> for details on the algorithm.</http:>
License GPL-2
LazyData TRUE
Imports Rcpp
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-08-26 16:44:04

Contents

Index

FastBandChol-package	2
banded.chol	3
banded.chol.cv	4
banded.sample	5
banded.sample.cv	6
	8

FastBandChol-package Fast estimation of covariance matrix by banded Cholesky factor

Description

Fast and numerically stable estimation of covariance matrix by banding the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppArmadilo. See https://stat.umn.edu/~molst029> for details on the algorithm.

Details

Package:	FastBandChol
Type:	Package
Version:	0.1.0
Date:	2015-08-22
License:	GPL-2

Author(s)

Aaron Molstad

References

Rothman, A.J., Levina, E., and Zhu, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika, 97(3):539-550.

Examples

```
## set sample size and dimension
n = 20
p = 100
## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[1,m] = .5^(abs(1-m))
    }
}
## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))
```

```
## compute estimates
est.sample = banded.sample(X, bandwidth=4)$est
est.chol = banded.chol(X, bandwidth=4)$est
```

banded.chol	Computes estimate of covariance matrix by banding the Cholesky fac-
	tor

Description

Computes estimate of covariance matrix by banding the Cholesky factor using a modified Gram Schmidt algorithm implemented in RcppArmadillo.

Usage

banded.chol(X, bandwidth, centered = FALSE)

Arguments

Х	A data matrix with n rows and p columns. Rows are assumed to be independent realizations from a p -variate distribution with covariance Σ .
bandwidth	A positive integer. Must be less than $n-1$ and $p-1$.
centered	Logical. Is data matrix centered? Default is centered = FALSE

Value

A list with

est The estimated covariance matrix.

Examples

```
## set sample size and dimension
n=20
p=100
## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[1,m] = .5^(abs(1-m))
    }
}
## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec)
```

banded.chol.cv

```
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))
## compute estimate
out1 = banded.chol(X, bandwidth=4)
```

banded.chol.cv Selects bandwidth for Cholesky factorization by cross validation

Description

Selects bandwidth for Cholesky factorization by k-fold cross validation

Usage

```
banded.chol.cv(X, bandwidth, folds = 3, est.eval = TRUE, Frob = TRUE)
```

Arguments

Х	A data matrix with n rows and p columns. Rows are assumed to be independent realizations from a p -variate distribution with covariance Σ .
bandwidth	A vector of candidate bandwidths. Candidate bandwidths can only positive integers such that the maximum is less than the sample size outside of the k th fold.
folds	The number of folds used for cross validation. Default is folds =3.
est.eval	Logical: est.eval = TRUE returns a list with both the selected bandwidth and the estimated covariance matrix. est.eval=FALSE returns a list with only the selected bandwidth. The default is est.eval = TRUE.
Frob	Logical: Frob = TRUE uses squared Frobenius norm loss for cross-validation. Frob = FALSE uses operator norm loss. Default is Frob = TRUE.

Value

a list with

bandwidth.min	The bandwidth minimizing cross-validation error.
est	The estimated covariance matrix computed with bandwidth=bandwidth.min.

Examples

```
## set sample size and dimension
n=20
p=100
## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
```

4

banded.sample

```
Sigma[1,m] = .5^(abs(1-m))
}
## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$va1^.5)%*%t(eo1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))
## perform cross validation
k = 4:7
out1.cv = banded.chol.cv(X, bandwidth=k, folds = 5)
```

banded.sample Computes banded sample covariance matrix

Description

Estimates a covariance matrix by banding the sample covariance matrix

Usage

banded.sample(X, bandwidth, centered = FALSE)

Arguments

Х	A data matrix with n rows and p columns. Rows are assumed to be independent realizations from a p -variate distribution with covariance Σ .
bandwidth	A positive integer. Must be less than $p - 1$.
centered	Logical. Is data matrix centered? Default is centered = FALSE

Value

A list with

est The estimated covariance matrix.

Examples

set sample size and dimension $n\!=\!20$ $p\!=\!100$

```
## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
```

```
for(m in 1:p){
   Sigma[1,m] = .5^(abs(1-m))
  }
## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$va1^.5)%*%t(eo1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, nco1=n))
## compute estimate
out2 = banded.sample(X, bandwidth=4)
```

banded.sample.cv Selects bandwidth for sample covariance matrix by cross validation

Description

Selects bandwidth for sample covariance matrix by k-fold cross validation

Usage

```
banded.sample.cv(X, bandwidth, folds = 3, est.eval = TRUE, Frob = TRUE)
```

Arguments

Х	A data matrix with n rows and p columns. Rows are assumed to be independent realizations from a p -variate distribution with covariance Σ .
bandwidth	A vector of candidate bandwidths. Candidate bandwidths can only positive integers such that the maximum is less than $p-1$
folds	The number of folds used for cross validation. Default is folds =3.
est.eval	Logical: est.eval = TRUE returns a list with both the selected bandwidth and the estimated covariance matrix. est.eval=FALSE returns a list with only the selected bandwidth. The default is est.eval = TRUE.
Frob	Logical: Frob = TRUE uses squared Frobenius norm loss for cross-validation. Frob = FALSE uses operator norm loss. Default is Frob = TRUE.

Value

A list with

bandwidth.min	the bandwidth minimizing cv error
est	the sample covariance matrix at bandwidth.min

6

banded.sample.cv

Examples

```
## set sample size and dimension
n=20
p=100
## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[1,m] = .5^(abs(1-m))
  }
}
## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))
## perform cross validation
k = 4:7
out2.cv = banded.sample.cv(X, bandwidth=k, folds=5)
```

Index

banded.chol, 3
banded.chol.cv, 4
banded.sample, 5
banded.sample.cv, 6

FastBandChol (FastBandChol-package), 2
FastBandChol-package, 2