
Package ‘GHRmodel’
October 21, 2025

Title Bayesian Hierarchical Modelling of Spatio-Temporal Health Data

Version 0.1.0

Description Supports modeling health outcomes using Bayesian hierarchical
spatio-temporal models with complex covariate effects (e.g., linear,
non-linear, interactions, distributed lag linear and non-linear
models) in the 'INLA' framework. It is designed to help users identify key
drivers and predictors of disease risk by enabling streamlined model
exploration, comparison, and visualization of complex covariate effects.
See an application of the modelling framework in Lowe, Lee, O'Reilly et al. (2021)
<doi:10.1016/S2542-5196(20)30292-8>.

License GPL (>= 2)

URL https://gitlab.earth.bsc.es/ghr/ghrmodel,

https://bsc-es.github.io/GHRtools/docs/GHRmodel/GHRmodel

BugReports https://gitlab.earth.bsc.es/ghr/ghrmodel/-/issues

Depends R (>= 4.1.0)

Imports cowplot, dlnm, dplyr, ggplot2 (>= 3.5.0), GHRexplore, rlang,
scales, tidyr, tidyselect

Suggests INLA, sf, sn, RColorBrewer, colorspace, testthat (>= 3.0.0),
spdep, knitr, rmarkdown

Additional_repositories https://inla.r-inla-download.org/R/stable

Config/testthat/edition 3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.3

NeedsCompilation no

Author Carles Milà [aut, cre] (ORCID: <https://orcid.org/0000-0003-0470-0760>),
Giovenale Moirano [aut] (ORCID:

<https://orcid.org/0000-0001-8748-3321>),
Anna B. Kawiecki [aut] (ORCID: <https://orcid.org/0000-0002-0499-2612>),
Rachel Lowe [aut] (ORCID: <https://orcid.org/0000-0003-3939-7343>)

1

https://doi.org/10.1016/S2542-5196(20)30292-8
https://gitlab.earth.bsc.es/ghr/ghrmodel
https://bsc-es.github.io/GHRtools/docs/GHRmodel/GHRmodel
https://gitlab.earth.bsc.es/ghr/ghrmodel/-/issues
https://inla.r-inla-download.org/R/stable
https://orcid.org/0000-0003-0470-0760
https://orcid.org/0000-0001-8748-3321
https://orcid.org/0000-0002-0499-2612
https://orcid.org/0000-0003-3939-7343

2 Contents

Maintainer Carles Milà <carles.milagarcia@bsc.es>

Repository CRAN

Date/Publication 2025-10-21 18:10:02 UTC

Contents

as_GHRformulas . 3
cov_add . 4
cov_interact . 5
cov_multi . 6
cov_nl . 7
cov_uni . 8
cov_varying . 9
crossbasis_inla . 10
crosspred_inla . 12
dengue_MS . 14
dengue_SP . 15
extract_names . 16
fit_models . 17
get_covariates . 21
lag_cov . 22
map_MS . 23
onebasis_inla . 23
plot_coef_crosspred . 24
plot_coef_lin . 26
plot_coef_nl . 28
plot_coef_varying . 31
plot_fit . 32
plot_gof . 34
plot_ppd . 36
plot_re . 38
rank_models . 40
sample_ppd . 41
stack_models . 42
subset_models . 43
write_inla_formulas . 45

Index 48

as_GHRformulas 3

as_GHRformulas Convert R-INLA Model Formulas into a GHRformulas Object

Description

This function converts a character vector of suitable R-INLA formulas into a structured GHRformulas
object. The GHRformulas object contains the standardized information about the fixed effects, the
random effects, and the outcome variable, ensuring consistency across multiple models to be fitted
using the fit_models function.

Usage

as_GHRformulas(formulas)

Arguments

formulas A character vector of model formulas formatted for R-INLA. Each formula must
contain a single ~ separating the outcome variable from the predictors. Formulas
generated with write_inla_formulas are compatible with this function.

Details

The as_GHRformulas() function parses each input formula to extract the outcome variable, fixed
effects (covariates), and random effects. The resulting GHRformulas object is designed to be used
with the fit_models function for model fitting with R-INLA.

Value

A structured list of class GHRformulas with the following components:

formulas A character vector of the original INLA-compatible model formulas.

vars A data frame where each row corresponds to a formula and each column to a covariate.
Entries indicate whether a covariate is included in the formula.

re A character vector listing the random effects specified across all formulas.

outcome A character string indicating the outcome variable (must be consistent across formulas).

See Also

write_inla_formulas to generate R-INLA compatible input formulas

Examples

Define formulas
formulas <- c(
"dengue_cases ~ 1 + f(month_id, model = 'rw1')",
"dengue_cases ~ 1 + f(month_id, model = 'rw1') + tmin.l1")

Convert the formulas into a GHRformulas object

4 cov_add

formulas <- as_GHRformulas(formulas)

Inspect the structured GHRformulas object
print(formulas)
Visualize output: GHRformulas object
class(formulas)

cov_add Add Covariates to All Combinations

Description

This function appends one or more covariate names to all elements (i.e., covariate sets) in a list of
character vectors. This is useful when a covariate (like a confounder or control variable) needs to
be included in every model. It also works with a single character vector input. The resulting list can
be input into the covariates argument in write_inla_formulas.

Usage

cov_add(covariates, name, add = FALSE)

Arguments

covariates A character vector or a list of character vectors, where each vector represents a
set of covariates (e.g., from cov_multi).

name A character vector of covariate names to be added to each set.

add Boolean that indicates if the original combinations in the covariates argument
must be kept. Defaults to FALSE.

Value

A list of character vectors, with each vector containing the original covariates plus the additional
ones specified in the name argument.

Examples

Multiple combinations
cov_sets <- list(

c("tmin", "pdsi"),
c("tmin.l1", "pdsi"),
c("tmin.l2", "pdsi")

)
cov_add(cov_sets, name = "urban")

cov_interact 5

cov_interact Generate Interaction Terms Between Covariates

Description

This function generates interaction terms between covariates specified in the pattern or name ar-
guments. It requires a list of character vectors and appends interaction terms to each vector based
on pairwise or three-way interactions. The resulting list can be input into the covariates argument
in write_inla_formulas.

Usage

cov_interact(covariates = NULL, pattern = NULL, name = NULL, add = FALSE)

Arguments

covariates A list of character vectors, each vector containing variable names. Typically an
output of cov_multi or cov_uni.

pattern A character vector of length 2 or 3 specifying prefixes of variables to interact
(e.g., "tmin" matches "tmin", "tmin.l1", etc.).

name A character vector specifying the exact variable names to be included in the
interactions.

add Logical; if TRUE, appends the newly created formulas to the original list. Default
is FALSE.

Details

• If two variables are matched, their pairwise interaction is added (var1:var2).

• If three variables are matched, two-way and three-way interactions are generated.

• Only variables that are expressed as linear terms can be used in interactions.

• Use either pattern, name, or both to identify variables for interaction.

Value

A list of character vectors, where each vector includes covariates and their corresponding interaction
terms. This object can be passed to the covariates argument in write_inla_formulas.

Examples

Example dataset
data <- data.frame(tmin.l1 = rnorm(10), pdsi.l1 = rnorm(10), urban = rnorm(10))

Extract names
covs <- extract_names(data, pattern = c("tmin", "pdsi", "urban"))

Create combinations

6 cov_multi

combos <- cov_multi(covariates = covs, pattern = c("tmin", "pdsi"))

Add interaction terms
cov_interact(covariates = combos, pattern = c("tmin", "pdsi"))

Output can be passed to write_inla_formulas()
new_covs <- cov_interact(combos, pattern = c("tmin", "pdsi"))
formulas <- write_inla_formulas(outcome = "cases", covariates = new_covs)

cov_multi Create Covariate Combinations Across Groups

Description

This function generates all possible combinations of covariates by selecting one variable from each
user-defined group. Groups can be defined either by a regular expression pattern (pattern) or
by exact variable names (name). The resulting list can be input into the covariates argument in
write_inla_formulas to generate multivariable model formulas where all combinations of co-
variates are needed.

Usage

cov_multi(covariates, pattern = NULL, name = NULL, add = FALSE)

Arguments

covariates A character vector or a list of single-element character vectors. Typically ob-
tained from extract_names or cov_uni or cov_nl.

pattern A character vector of regular expression patterns (e.g., "tmin" matches "tmin",
"tmin.l1", etc.). Each pattern defines a group to draw covariates from.

name A character vector of exact variable names to include as an additional group.

add Logical; if TRUE, appends the generated combinations to the original covariates
object. Default is FALSE.

Value

A list of character vectors. Each element is a unique combination of covariates, where one vari-
able is drawn from each specified group. The resulting list is suitable as input in the covariates
argument in write_inla_formulas.

Examples

data <- data.frame(tmin = rnorm(10), tmin.l1 = rnorm(10),
pdsi = rnorm(10), urban = rnorm(10))

Extract covariate names
covs <- extract_names(data, pattern = c("tmin", "pdsi", "urban"))

cov_nl 7

Combine "tmin" and "pdsi" into all possible pairings
cov_multi(covariates = covs, pattern = c("tmin", "pdsi"))

Combine "tmin" and "urban", treating "urban" as an exact match
cov_multi(covariates = covs, pattern = "tmin", name = "urban")

Use output as input to write_inla_formulas()
combined_covs <- cov_multi(covariates = covs, pattern = c("tmin", "pdsi"))
formulas <- write_inla_formulas(outcome = "cases", covariates = combined_covs)

cov_nl Create Non-Linear Effects for INLA

Description

This function transforms selected covariates identified by pattern or name into non-linear terms
using INLA’s f() syntax. It supports random walk models (rw1, rw2) and allows discretization by
quantiles or equal intervals. Transformed covariates are returned as character vectors inside a list
ready to be passed to the write_inla_formulas function.

Usage

cov_nl(
covariates,
pattern = NULL,
name = NULL,
model = "rw2",
method = "quantile",
n = 10,
replicate = NULL,
add = FALSE

)

Arguments

covariates A character vector or list of character vectors. Usually from cov_multi or
cov_uni.

pattern Character vector of patterns to match covariates for transformation (e.g., "tmin"
matches "tmin", "tmin.l1", etc.).

name Character vector of exact covariate names to transform.

model Character; either "rw1" or "rw2" to specify the non-linear INLA model.

method Character; either "cut" or "quantile" for discretization. Default is "quantile".

n Integer; number of intervals or quantile bins. Must be >= 2. Default is 10.

replicate Optional character string indicating a replicate structure for non-linear effects.

add Logical; if TRUE, adds the transformed covariates to the original ones. Default is
FALSE.

8 cov_uni

Details

• Use pattern or name (or both) to specify which variables to transform.

• The method and n arguments discretize the covariate into evenly populated bins.

• The function supports discretization with either equal-width (cut) or quantile-based (quantile)
bins.

• The model argument imposes smoothness on the grouped effect, capturing non-linear trends.

• Non-linear effects are created using .single_non_linear_eff_inla() (internal helper).

Value

A list of character vectors. This object can be passed to the covariates argument in write_inla_formulas.

See Also

See Bayesian inference with INLA: Smoothing for more information on smoothing and non-linear
effects in R-INLA models.

Examples

data <- data.frame(tmin.l1 = rnorm(10), pdsi.l1 = rnorm(10))

covs <- extract_names(data, pattern = c("tmin", "pdsi"))
covlist <- cov_multi(covs, pattern = c("tmin", "pdsi"))

Apply non-linear transformation to tmin variables
cov_nl(covlist, pattern = "tmin", model = "rw2")

Include original variables along with transformed ones
cov_nl(covlist, pattern = "tmin", model = "rw2", add = TRUE)

cov_uni Build Univariable Covariate Sets

Description

This function returns a list where each element contains a single covariate, based on covariates
specified in the pattern or name arguments. This structure is suitable for generating separate
univariable model formulas using write_inla_formulas.

Usage

cov_uni(covariates = NULL, pattern = NULL, name = NULL)

https://becarioprecario.bitbucket.io/inla-gitbook/ch-smoothing.html

cov_varying 9

Arguments

covariates A character vector of covariate names. Typically the output from extract_names.

pattern A character vector specifying the prefix pattern(s) to match (e.g., "tmin" matches
"tmin", "tmin.l1", etc.).

name A character vector specifying exact variable name(s) to extract.

Value

A list of character vectors, each of length 1, containing the matched covariate name. The resulting
list is suitable for use as the covariates argument in write_inla_formulas.

Examples

data <- data.frame(tmin = rnorm(10), tmin.l1 = rnorm(10), urban = rnorm(10))
covs <- extract_names(data, pattern = "tmin", name = "urban")
cov_uni(covs, pattern = "tmin")
cov_uni(covs, name = "urban")

cov_varying Create Spatially or Temporally Varying Effects for INLA

Description

This function transforms covariates identified by pattern or name into varying effect terms of
the form:f(unit, covariate, model = 'iid'), which allows covariates to have varying slopes
across spatial or temporal units. The output can be used directly in the covariates argument of
write_inla_formulas.

Usage

cov_varying(
covariates,
unit,
pattern = NULL,
name = NULL,
model = "iid",
constr = FALSE,
add = FALSE

)

Arguments

covariates A character vector or a list of character vectors of covariate names. Typically
output from cov_multi, cov_uni, or extract_names.

unit Character string specifying the unit of variation (e.g., "spat_id", "year").

10 crossbasis_inla

pattern A character vector specifying the prefix pattern(s) to match (e.g., "tmin" matches
"tmin", "tmin.l1", etc.) for transformation.

name Character vector of exact variable names to be transformed.

model Character string specifying the INLA model for the varying effect. Currently,
only "iid" is supported.

constr Logical. If TRUE it will impose a sum-to-zero constraint to the random effect.
Default is FALSE.

add Logical; if TRUE, appends the transformed covariates to the original ones. De-
fault is FALSE.

Details

• Use pattern or name (or both) to specify which covariates to transform.

• The resulting terms use INLA’s f() syntax: f(unit, covariate, model = "iid").

• Currently only supports "iid" models for varying effects.

Value

A list of character vectors, each including covariates with varying effects. The output is suitable as
input for write_inla_formulas.

Examples

data <- data.frame(tmin.l1 = rnorm(10), pdsi.l1 = rnorm(10))

covs <- extract_names(data, pattern = c("tmin", "pdsi"))
covlist <- cov_multi(covs, pattern = c("tmin", "pdsi"))

Apply varying effect to tmin
cov_varying(covlist, pattern = "tmin", unit = "spat_id")

Keep original and add varying effect terms
cov_varying(covlist, pattern = "tmin", unit = "spat_id", add = TRUE)

crossbasis_inla Create a Two-Dimensional INLA-compatible Cross-basis Matrix

Description

This function is a wrapper around dlnm::crossbasis to generate cross-basis matrices that capture
nonlinear effects of a predictor across both exposure and lag dimensions. The input covariate
is passed as a numeric matrix of lagged values, and the resulting columns can be renamed via
basis_name for easier reference in model formulas.

crossbasis_inla 11

Usage

crossbasis_inla(
covariate,
basis_name,
lag,
argvar = list(),
arglag = list(),
...

)

Arguments

covariate A numeric matrix of covariate values. Typically this will be a matrix of lagged
covariate values (which can be generated using lag_cov).

basis_name A character string specifying the prefix for the spline columns in the resulting
basis matrix (replacing the default "v").

lag A numeric vector with min and max lag of the matrix (as in crossbasis).

argvar A list specifying the shape of the exposure-response function (as in crossbasis).

arglag A list specifying the shape of the lag-response function (as in crossbasis).

... Additional arguments passed to dlnm::crossbasis, such as df, degree, knots,
etc.

Value

An object of class "crossbasis_inla" (also inheriting class "crossbasis"), as returned by dlnm:crossbasis()
but with customized column names.

Examples

Build cross-basis with a custom prefix for columns

Import example data set
data("dengue_MS")

lag_mat <- lag_cov(data = dengue_MS,
name = c("tmin"),
time = "date",
lag = c(1:6),
group = "micro_code",
add = FALSE) # add = FALSE return only the lagged matrix

cb_inla <- crossbasis_inla(
covariate = lag_mat,
basis_name = "tempLag",
lag = c(1,6),
argvar = list(fun = "bs", df = 3),
arglag = list(fun = "poly", degree = 2)

)

12 crosspred_inla

Check class of the cross-basis object
class(cb_inla)

View resulting cross-basis matrix
head(colnames(cb_inla))

crosspred_inla Generate DLNM Predictions from GHRmodels Objects

Description

This function takes an object of class GHRmodels, extracts the relevant coefficients and variance-
covariance matrix, and then calls dlnm::crosspred to compute predictions over a range of covariate
values (or at specified points).

Usage

crosspred_inla(
models,
basis,
mod_id,
at = NULL,
from = NULL,
to = NULL,
by = NULL,
lag,
bylag = 1,
cen = NULL,
ci.level = 0.95,
cumul = FALSE,
...

)

Arguments

models An object of class GHRmodels, containing fitted model output (e.g., $fixed and
$vcov lists).

basis A cross-basis or one-basis object, typically created by crossbasis_inla or
onebasis_inla.

mod_id An integer or character string specifying which model within the input GHRmodels
object to use (e.g., if model$fixed and model$vcov both have multiple entries).

at A numeric vector of values at which to compute predictions (e.g.,seq(10,25,
by=0.2))

from, to Numeric values specifying the range of the prediction sequence if at is not spec-
ified (e.g., from = 10 and to = 25).

crosspred_inla 13

by Numeric increment for the sequence if at is not specified (e.g., by = 0.2).

lag A vector of two elements with min and max lag as declared in the crossbasis_inla
function.

bylag Numeric increment for lag steps (default is 1).

cen A centering value (e.g., a reference exposure level).

ci.level The credible interval level (default 0.95).

cumul Logical; if TRUE, cumulative predictions are computed (default FALSE).

... Additional arguments passed on to crosspred, such as bound, ci.arg, etc.

Details

The function identifies which coefficients in model$fixed[mod_id] and which rows/columns in
model$vcov[mod_id] correspond to the one-basis or cross-basis terms (i.e., matching the column
names in basis). Then it passes these slices to dlnm::crosspred to generate predictions. The cen-
tering value (cen), if specified, indicates the reference exposure (e.g., a mean temperature) at which
to center the effect estimates (e.g., the effect a given temperature value on the outcome will be
compared to the effect of the centering value on the outcome, in this case the mean temperature).

Value

An object of class "GHRcrosspred", inheriting from "crosspred", with fields for the predicted
values, credible intervals, and optionally cumulative predictions, as determined by crosspred.

See Also

dlnm::crosspred for details on how predictions are computed.

Examples

Load example GHRmodels object from the package
model_dlnm_file <- system.file("examples", "model_dlnm.rds", package = "GHRmodel")
model_dlnm <- readRDS(model_dlnm_file)

Load example cross-basis matrix from the package: 2-dimensional cross-basis matrix of the
non-linear effect of dengue risk across tmin values and lags:
cb_tmin_file <- system.file("examples","cb_tmin.rds", package = "GHRmodel")
cb_tmin <- readRDS(cb_tmin_file) # loads cross-basis matrix into the environment

Generate predictions
pred_result <- crosspred_inla(

models = model_dlnm,
basis = cb_tmin,
mod_id = "mod3",
at = seq(17, 24, by = 1), # e.g., temperature sequence
lag = 2,
cen = 20,
ci.level = 0.95

)

14 dengue_MS

Inspect predictions
pred_result$predvar # the sequence of 'at' values
pred_result$allfit # fitted values
pred_result$alllow # lower CI
pred_result$allhigh # upper CI

dengue_MS Dengue cases from the "Mato Grosso do Sul" state of Brazil

Description

The dengue_MS example data set contains monthly counts of notified dengue cases by microregion,
along with a range of spatial and spatiotemporal covariates (e.g., environmental, socio-economic
and meteo-climatic factors). This data set represents a subset of a larger national data set that covers
the entire territory of Brazil. The subset focuses on a specific region, Mato Grosso do Sul, for the
purposes of illustration and computational efficiency. See @source for access to the complete data
set.

Usage

dengue_MS

Format

A data frame with 2,600 rows and 27 columns:

micro_code Unique ID number to each micro region (11 units)

micro_name Name of each micro region

micro_name_ibge Name of each micro region following IBGE

meso_code Unique ID number to each meso region (4 units)

meso_name Name of each meso region

state_code Unique ID number to each state (1 unit)

state_name Name of each state

region_code Unique ID number given to each Brazilian Region, In this data frame all observations
come from the "Southeast Region"

region_name Name of each Brazilian Region, In this data frame all observations come from the
"Southeast Region"

biome_code Biome code

biome_name Biome name

ecozone_code Ecozone code

ecozone_name Ecozone name

main_climate Most prevalent climate regime in the microregion. Based on Koppen Geiger climate
regimes

month Calendar month index, 1 = January, 12 = December

dengue_SP 15

year Year 2000 - 2019

time Time index starting at 1 for January 2000

dengue_cases Number of notified dengue cases registered in the notifiable diseases system in
Brazil (SINAN) in the microregion of reference, at the month of first symptoms

population Estimated population, based on projections calculated using the 2000 and 2010 cen-
suses, and counts taken in 2007 and 2017

pop_density Population density (number of people per km2)

tmax Monthly average daily maximum temperature; gridded values (at a 0.5 deg resolution) aver-
aged across each microregion

tmin Monthly average daily minimum temperature; gridded values (at a 0.5 deg resolution) aver-
aged across each microregion

pdsi Self-calibrated Palmer drought severity index for each microregion. It measures how wet
or dry a region is relative to usual conditions. Negative values represent periods of drought,
positive values represent wetter periods. Calculated by taking the mean value within each
microregion

urban Percentage of inhabitants living in urban areas (2010 census)

water_network Percentage of inhabitants with access to the piped water network according to the
2010 census

water_shortage Frequency of reported water shortages per microregion between 2000 - 2016

date First day of the Month, in date format ("%d-%m-%Y")

Source

source code on GitHub; source code on Zenodo;

dengue_SP Dengue cases from the "São Paulo" state of Brazil

Description

The dengue_SP example data set reports the weekly number of notified dengue cases in the mu-
nicipality of São Paulo together with climatic covariates. Data was sourced from Infodengue (see
@source).

Usage

dengue_SP

https://github.com/drrachellowe/hydromet_dengue
https://zenodo.org/records/4632205

16 extract_names

Format

A data frame with 678 rows and 8 columns:

date First day of the week, in date format ("%d-%m-%Y")
geocode Unique ID code for São Paulo microregion
cases Number of notified dengue cases
year Year 2000 - 2022
temp_med Weekly average daily mean temperature
precip_tot Weekly cumulative precipitation
enso El Niño-Southern Oscillation Index
pop Number of inhabitants

Source

Infodengue API

extract_names Extract Covariate Names

Description

This function allows the user to select variables from a data set by prefix (using the pattern argu-
ment) or by exact name matching. The return object is a character vector with the selected covariate
names that can be used as input for cov_add, cov_uni, cov_multi, cov_interact, cov_nl, and
cov_varying functions.

Usage

extract_names(data = NULL, pattern = NULL, name = NULL)

Arguments

data A data.frame containing the variables.
pattern A character vector specifying prefix(es) to match (e.g., "tmin" matches "tmin",

"tmin.l1", etc.).
name A character vector of exact variable name(s) to extract.

Value

A character vector of matched covariate names.

Examples

data <- data.frame(tmin = 1:10, tmin.l1 = 1:10, urban = 1:10)
extract_names(data, pattern = "tmin")
extract_names(data, name = "urban")
extract_names(data, pattern = "tmin", name = "urban")

https://info.dengue.mat.br/services/api

fit_models 17

fit_models Fit Multiple INLA Models

Description

This function fits a set of INLA model formulas, provided in a GHRformulas object, to a specified
dataset. For each fitted model, it extracts a range of outputs, including goodness-of-fit (GoF) metrics
and other model outputs (fitted values, fixed effects, random effects). Results are extracted and
stored in a GHRmodels object.

Usage

fit_models(
formulas,
data,
family,
name,
offset = NULL,
control_compute = list(config = FALSE, vcov = FALSE),
nthreads = 8,
pb = FALSE

)

Arguments

formulas A GHRformulas object containing multiple INLA model formulas.

data A data frame containing the variables used in the model formulas.

family A character string specifying the likelihood family (e.g., "poisson", "nbinomial",
etc.).

name A character string to label each fitted model (e.g., "mod").

offset A character string specifying the name of the offset variable in data. If NULL, no
offset is applied. Default is NULL. Internally, log(offset_values) is applied.

control_compute

A named list controlling additional computation options:

config Logical ; if TRUE, stores the Gaussian Markov Random Field (GMRF)
and enables the computation of posterior predictive distribution (1,000 draws).
Defaults to FALSE.

vcov Logical if TRUE, returns the variance-covariance (correlation) matrix of
fixed effects. Defaults to FALSE.

nthreads An integer specifying the number of threads for parallel computation. Default is
8.

pb Logical; if TRUE, displays a progress bar while fitting models. Default is FALSE.

18 fit_models

Details

This function iterates over each formula in the GHRformulas object and fits the corresponding INLA
model using the internal function .fit_single_model(). For each fitted model, it extracts the
fitted values, fixed effects, and random effects summaries. Then, it calculates a series of model
evaluation metrics using the .gof_single_model() internal function.

The goodness-of-fit (GoF) metrics are organized into two categories:

A) Model-Specific Goodness-of-Fit Metrics

These are computed separately for each model:

1. Deviance Information Criterion (DIC)

DIC = D̄ + pD

where D̄ is the posterior mean deviance and pD is the effective number of parameters. Lower
DIC values indicate a better model fit, balancing goodness-of-fit and model complexity.

2. Watanabe-Akaike Information Criterion (WAIC)

WAIC = −2 (lppd− pWAIC)

WAIC evaluates predictive accuracy and penalizes model complexity through the log point-
wise predictive density (lppd). Lower values imply better generalization.

3. Log Mean Score (LMS)

LMS =
1

n

n∑
i=1

(− log(CPOi))

LMS assesses the average negative log-predictive density using Conditional Predictive Or-
dinates (CPO). Lower LMS values indicate stronger predictive performance by penalizing
models that assign low probability to observed outcomes.

4. Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi|

Measures the average absolute deviation between observed values yi and predicted values ŷi.
Lower MAE values indicate improved fit. If config = TRUE, MAE is computed using the
full posterior predictive distribution (PPD); otherwise, it uses point estimates from INLA’s
summary.fitted.values.

5. Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Captures average squared deviation between observed and predicted values. RMSE penalizes
larger errors more heavily. Lower values reflect better model fit. If config = TRUE, RMSE
uses the PPD; otherwise, it uses point estimates.

fit_models 19

6. Continuous Ranked Probability Score (CRPS)

CRPS(F, y) =

∫ ∞

−∞
[F (t)− 1{y ≤ t}]2 dt

CRPS assesses how well the predictive cumulative distribution aligns with the observed out-
come. Lower scores suggest better calibrated predictive distributions. Only available when
config = TRUE.

B) Model Comparison Metrics (relative to the first model)

The first model in the list is treated as the baseline for model comparisons. All other models are
evaluated against it using the following metrics:

1. Difference in DIC and WAIC Stored as dic_vs_first and waic_vs_first. These repre-
sent how much higher (or lower) each model’s DIC/WAIC is compared to the first model.
Additionally, 95% credible intervals for these differences are stored as *_vs_first_lci and
*_vs_first_uci.

2. Difference in MAE and RMSE Stored as mae_vs_first and rmse_vs_first. These reflect
the absolute difference in prediction error compared to the first model. No credible intervals
are computed for these metrics.

3. Continuous Ranked Probability Score Skill Score (CRPSS)

CRPSS = 1− CRPSmodel

CRPSbaseline

Indicates how much better the predictive distribution of the current model is relative to the
baseline model. Values closer to 1 indicate improvement; negative values imply worse perfor-
mance. Available only when config = TRUE.

4. Pseudo R-squared based on deviance

R2 = 1− exp

(
−2

n

(
devmodel

−2
− devbase

−2

))
Captures relative deviance reduction compared to the baseline model. Values range from 0
(no improvement) to 1 (strong improvement).

5. Random Effect Variance

Varre =
1

precision

Quantifies residual variance due to group- or cluster-level effects. Computed only when ran-
dom effects are defined in the model formula.

6. Proportional Change in Random Effect Variance

Varre

Var(1)re

− 1

Represents the relative change in group-level variance compared to the baseline model. Helps
assess how much variance is explained by added covariates.

20 fit_models

Value

An object of class GHRmodels containing:

$mod_gof A data frame of model-specific goodness-of-fit metrics.

$fitted A list of fitted values (one element per model). If config = TRUE, these are derived
from the posterior predictive distribution (PPD); otherwise, they are extracted from INLA’s
summary.fitted.values.

$fixed A list of summary tables for fixed effects (one element per model).

$random A list of summary tables for random effects (one element per model).

$formulas A character vector of the original model formulas used.

$re A character vector specifying any random effects defined in formulas.

$outcome A character string indicating the outcome variable used.

$data The original data frame passed to the function.

See Also

as_GHRformulas converts a set of R-INLA-compatible formulas into a GHRformulas object.

Examples

Load example dataset
data(dengueMS)

Declare formulas
formulas <- c(

"dengue_cases ~ tmin + f(year, model='rw1')",
"dengue_cases ~ pdsi + f(year, model='rw1')"

)

Tranform formulas into a 'GHRformulas' object
ghr_formulas <- as_GHRformulas(formulas)

Fit multiple models
results <- fit_models(

formulas = ghr_formulas,
data = dengue_MS,
family = "nbinomial",
name = "TestModel",
offset = "population",
nthreads = 2,
control_compute = list(config = FALSE),
pb = TRUE

)

Inspect goodness-of-fit metrics
results$mod_gof

get_covariates 21

get_covariates Retrieve Covariates from a GHRmodels Object as a List of Character
Vectors

Description

Extracts covariates from a GHRmodels object and returns them as a list of character vectors. If
unique = TRUE, the output contains unique covariates across models. If unique = FALSE, the output
preserves the original combinations of covariates as specified in the GHRmodels object.

Usage

get_covariates(model, unique = TRUE)

Arguments

model A GHRmodels object containing fitted models.

unique Logical; if TRUE, returns unique covariates across models. If FALSE, returns
vectors of covariate combinations as declared in the GHRmodels object.

Value

A list of character vectors.

Examples

Load example dataset
data(dengueMS)

Declare formulas
formulas <- c(

"dengue_cases ~ tmin + f(year, model='rw1')",
"dengue_cases ~ pdsi + f(year, model='rw1')"

)

Tranform formulas into a 'GHRformulas' object
ghr_formulas <- as_GHRformulas(formulas)

Fit multiple models
results <- fit_models(

formulas = ghr_formulas,
data = dengue_MS,
family = "nbinomial",
name = "TestModel",
offset = "population",
nthreads = 2,
control_compute = list(config = FALSE),
pb = TRUE

)

22 lag_cov

Extract the list of covariates from the models
get_covariates(results)

lag_cov Generate lagged variables for one or more lags

Description

This function creates lagged versions of one or more numeric or categorical variables in an equally
spaced time-series data set. A single call can create multiple lags for each selected variable and,
optionally, for each spatial/grouping unit.

Usage

lag_cov(data, name, time, lag, group = NULL, add = TRUE)

Arguments

data A data.frame containing equally spaced observations.

name A character vector: name of the variable (or variables) to lag.

time A single character string: name of the time-index variable (e.g., "date").

lag A numeric vector of one or more positive integers. Each value is interpreted as
a ’lag’ (i.e. shift the series backward by k observations).

group Optional character vector naming column(s) that define independent time-series
(e.g. regions). If NULL, the whole data set is treated as one series.

add Logical. If TRUE (default) the lagged columns are appended to data; if FALSE
the function returns only the lagged columns as a matrix.

Value

Either a data frame (when add = TRUE) containing the original data plus the new lagged columns,
or a numeric matrix of lagged values (when add = FALSE).

Examples

Daily series for two micro-regions
d <- data.frame(

date = as.Date("2023-01-01") + 0:9,
micro_code = rep(c("A", "B"), each = 5),
tmin = rnorm(10, 10, 2),
pdsi = rnorm(10)

)

Create lags 1 to 3 for tmin and pdsi
lagged <- lag_cov(

map_MS 23

data = d,
name = c("tmin", "pdsi"),
time = "date",
group = "micro_code",
lag = c(1:3)

)

Only lagged columns (matrix),
lag_only <- lag_cov(

data = d, name = "tmin", time = "date",
lag = c(1:3), add = FALSE

)

map_MS Administrative Map for Municipalities in the Mato Grosso do Sul

Description

A simple feature (sf) multipolygon object representing a map of Mato Grosso do Sul, Brazil, in-
cluding 11 municipalities. See @source for access to the complete data set.

Usage

map_MS

Format

A simple feature (sf) object including 11 rows and 2 columns:

$code Unique ID number for each micro region (11 units)

$geometry geometries of the sf multipolygon

Source

source code on GitHub; source code on Zenodo;

onebasis_inla Create a One-Dimensional Basis for INLA

Description

This function is a wrapper around onebasis to create a one-dimensional basis for spline modeling.
This wrapper enhances the original function by allowing users to specify a custom prefix for the
column names using the basis_name argument, such that each set of basis variables can be easily
identified in the model formula by the INLA framework.

https://github.com/drrachellowe/hydromet_dengue
https://zenodo.org/records/4632205

24 plot_coef_crosspred

Usage

onebasis_inla(covariate, fun, basis_name, ...)

Arguments

covariate A numeric vector representing the covariate
fun A character string specifying the shape function to be used by onebasis.
basis_name A character string giving a base name for the columns in the resulting basis

matrix. The default prefix (usually "b") is replaced by this string.
... Additional arguments passed to onebasis, such as degree, df, knots, etc.

Value

An object of class "onebasis", as returned by onebasis, with column names modified according
to basis_name.

Examples

Import example data set
data("dengue_MS")

Build a one-dimensional spline basis with a custom name
ob_inla <- onebasis_inla(
covariate = dengue_MS$tmin,
fun = "bs",
basis_name = "tempBasis",
degree = 2

)

Check class of the one-basis object
class(ob_inla)

View first rows of the one-basis matrix
head(ob_inla)

plot_coef_crosspred Plot crosspred Objects: Overall, Slices, or Heatmap

Description

Generate plots from a "crosspred" object. Three plot types are available:

• type = "overall": Shows the overall exposure–response relationship, aggregated across all
lags.

• type = "slices": Produces line plots with credible interval ribbons, either across lags (for a
fixed var) or across values of var (for a fixed lag).

• type = "heatmap": Displays a two-dimensional heatmap of effects across both var and lag.
Not applicable for one-basis models.

plot_coef_crosspred 25

Usage

plot_coef_crosspred(
crosspred,
type = c("heatmap", "slices", "overall"),
var = NULL,
lag = NULL,
exp = FALSE,
palette = "-RdBu",
n_lag_smooth = 50,
line_color = "black",
line_size = 0.7,
ribbon_color = NULL,
ribbon_alpha = 0.2,
title = "",
ylab = NULL,
xlab = NULL,
...

)

Arguments

crosspred An object of class "crosspred" or "GHR_crosspred", produced by crosspred
or crosspred_inla.

type Character string. Options: "overall", "slices", or "heatmap".

var Optional numeric vector of exposure values (used when type = "slices" to
plot across lags).

lag Optional numeric vector of lag values (used when type = "slices" to plot
across variables).

exp Logical. If TRUE, exponentiates the results (e.g., for log or logit links).

palette Character string for heatmap palette when type = "heatmap". Options: GHR,
RColorBrewer or colorspace palette (e.g. "Purp").

n_lag_smooth Integer, number of interpolation points along lag for heatmap smoothing (default
= 50).

line_color Character string. Line color when type = "slices" or type = "overall". De-
fault is "black".

line_size Numeric. Line width (default = 0.7).

ribbon_color Character string. Color for credible interval ribbons. Defaults to line_color.

ribbon_alpha Numeric. Alpha transparency for ribbons (default = 0.2).

title Character string. Plot title.

ylab Character string. Label for y-axis.

xlab Character string. Label for x-axis.

... Additional arguments passed to ggplot2 functions.

26 plot_coef_lin

Value

A ggplot object for the specified plot type.

See Also

crosspred

Examples

Load example GHRmodels object from the package
model_dlnm_file <- system.file("examples", "model_dlnm.rds", package = "GHRmodel")
model_dlnm <- readRDS(model_dlnm_file)

Load example cross-basis matrix from the package: 2-dimensional cross-basis matrix of the
non-linear effect of dengue risk across tmin values and lags:
cb_tmin_file <- system.file("examples","cb_tmin.rds", package = "GHRmodel")
cb_tmin <- readRDS(cb_tmin_file) # loads cross-basis matrix into the environment

Generate predictions
pred_result <- crosspred_inla(

models = model_dlnm,
basis = cb_tmin,
mod_id = "mod3",
at = seq(17, 24, by = 1), # e.g., temperature sequence
lag = 2,
cen = 20,
ci.level = 0.95

)

Plot DLNM predictions
plot_coef_crosspred(
crosspred = pred_result, # Crosspred object with model predictions
type = "slices", # Plot temperature-specific slices of exposure-response curves
exp = TRUE, # Exponentiate the coefficients (to relative risk scale)
var = c(22:24), # Display results for temperature 22°C to 24°C
line_color = "red", # Red color for the lines representing effect estimates
line_size = 0.8, # Line thickness set to 0.8 for better visibility
ribbon_color = "red", # Red shading for credible interval ribbons
ribbon_alpha = 0.3, # Set ribbon transparency to 30%
title = "Effect of minimum temperatures 22°C to 23°C on dengue relative risk by lag",
xlab = "Lag", # Label for the x-axis (exposure variable)
ylab = "Relative Risk (RR)" # Label for the y-axis (effect estimate scale)
)

plot_coef_lin Produce a Forest Plot of Linear Covariates from a GHRmodels Object

plot_coef_lin 27

Description

This function extracts fixed-effect coefficients from a specified model in models, filters them by
name or interaction pattern, and produces a forest plot (point estimates with error bars).

• If name = NULL, all fixed-effect terms (excluding the intercept) are shown.
• If name is a character vector, only the matching terms are included.

Usage

plot_coef_lin(
models,
mod_id = NULL,
name = NULL,
pattern = NULL,
title = NULL,
mod_label = NULL,
var_label = NULL,
palette = "IDE2",
exp = FALSE,
legend = "Model"

)

Arguments

models An object of class GHRmodels containing fitted model output.
mod_id Character vector of model identifiers (must match entries in modelmod_gofmodel_id).

If NULL (the default), all models are considered.
name A character vector specifying exact linear covariates names to be plotted. If both

pattern and name are NULL (the default), all terms (except (Intercept)) are
plotted.

pattern A character vector specifying prefix(es) to match (e.g., "tmin" matches "tmin",
"tmin.l1", etc.) Covariates matching these patterns (case-insensitive search) will
be plotted. If both pattern and name are NULL (the default), all terms (except
(Intercept)) are plotted.

title An optional string specifying an overall plot title.
mod_label An optional named character vector mapping model names to custom labels,

e.g. c("mod1" = "Model 1"). Any model not found in the vector names retains
its original label.

var_label An optional named character vector mapping variable (or interaction) names to
custom labels. Interaction matching is order-insensitive: "A:B" matches "B:A".
Any term not found in the vector names retains its original label.

palette GHR, RColorBrewer or colorspace palette (e.g. "Purp") colour palette to use
for the different models. See all available options by running GHR_palettes(),
RColorBrewer::display.brewer.all() and colorspace::hcl_palettes(plot=TRUE).
Single R colors in colors() or hex codes can also be used.

exp Logical,if TRUE the coefficients are exponentiated, Default is if FALSE.
legend Legend title for the replicate color scale. Default is "Model".

28 plot_coef_nl

Details

Intercept By default, (Intercept) is excluded unless explicitly included in name.

Individual terms e.g., "temp".

Interaction Terms e.g. "temp:precip". Split by :, sorted, and compared setwise; for example,
"temp:precip" matches "precip:temp".

Labels If var_label is supplied, any matched covariate or interaction string is replaced by its
custom label on the y-axis.

Value

A ggplot2 forest plot object (class ggplot).

See Also

geom_pointrange for the plotting environment.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Plot point estimates with confidence intervals for the linear covariates:
plot_coef_lin(
model = model_list,
mod_id = c("mod2","mod4"),
var_label = c("tmin.l1"= "Min. temp lag 1",

"pdsi.l1" = "Drought index lag 1"),
title = "Effects of linear covariates"
)

plot_coef_nl Plot Nonlinear Effects from a GHRmodels Object

Description

Generates plots of nonlinear effects from one or more fitted models contained within a GHRmodels
object. The function supports two main display modes:

• Grid (when collapse = FALSE): one plot per covariate and model, with effects by column and
models by row.

– If multiple models are specified, the user must provide either name or pattern to select
which nonlinear effects to plot.

– If only one model is selected and both name and pattern are NULL, all nonlinear effects
in the model will be plotted.

plot_coef_nl 29

• Collapsed (when collapse = TRUE): one non-linear effect combined across models into a sin-
gle panel.

– The user must explicitly specify the exact variable name using name. It only accepts one
covariate name.

– Collapse mode can only be used when the selected effect is not replicated (that is, does
not have the format f(covariate, model = ..., replicate = group)) If replication
is detected, an error will be thrown.

Usage

plot_coef_nl(
models,
mod_id,
mod_label = NULL,
name = NULL,
pattern = NULL,
title = NULL,
var_label = NULL,
palette = "IDE2",
xlim = NULL,
ylab = NULL,
xlab = NULL,
histogram = FALSE,
legend = NULL,
hist_fill = "grey",
rug = FALSE,
collapse = FALSE,
exp = FALSE

)

Arguments

models A GHRmodels object containing fitted model outputs.

mod_id Integer vector specifying which model(s) to plot (as indexed in model$models).

mod_label An optional named character vector mapping model names to custom labels,
e.g. c("mod1" = "Model 1"). Any model not found in the vector names retains
its original label.

name Optional character vector of variable names (as used in inla.group(...)) to
select specific nonlinear effects. Required for collapse mode.

pattern Optional regular expression pattern to match effect names. Used to select non-
linear effects when name is not provided.

title Optional overall title for the plot.

var_label Optional named character vector providing custom labels for each nonlinear
variable. Names must match the variable names (e.g., used in inla.group(x)),
not full effect names.

palette Name of the color palette to use (passed to GHR_palette). Default is "IDE2".

30 plot_coef_nl

xlim Optional named list specifying x-axis limits for each effect. Each element should
be a numeric vector of length 2: list(var1 = c(min, max), var2 = c(min,
max)). Variable names must match those used in inla.group().

ylab Optional y-axis label. If NULL, defaults to "Effect size".

xlab Optional x-axis label. If NULL, defaults to "<variable> values". If explicitly
set to NULL, no x-axis label will be shown.

histogram Logical; if TRUE (default), includes a histogram below each partial-effect plot.

legend Legend title for the replicate color scale (if multi-replicate effects are present).
Default is "Replicate".

hist_fill Fill color for histogram bars. Default is "grey".

rug Include a rug plot in the x-axis. Default is FALSE.

collapse Logical; if TRUE, attempts to collapse plots across models to show one plot per
variable. This requires that selected nonlinear effect is not replicated (i.e. the
covariate is not in the format f(covariate, model = ..., replicate = group))

exp Logical,if TRUE the coefficients are exponentiated, Default is if FALSE.

Value

A ggplot or cowplot object, depending on the plotting mode.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Plot 2 models with non-linear PDSI at one month lag in collapsed mode:
plot_coef_nl(

models = model_list,
mod_id = c("mod5", "mod6") ,
mod_label = c("mod6" = "pdsi.l1_nl",

"mod5" = "pdsi.l1_nl + tmin.l1_nl"),
var_label = c("pdsi.l1" = "Drought index (PDSI)"),
name = c("pdsi.l1"),
title = "Change in PDSI with and without mean min. temp lag 1",
xlab = "PDSI",
palette = "IDE2",
collapse = TRUE

)

plot_coef_varying 31

plot_coef_varying Produce a Forest Plot for a Spatially or Temporally Varying Effects
from a GHRmodels object.

Description

Generates a forest plot for a specified spatially or temporally varying coefficient (i.e. a random
slope) from a fitted GHRmodels object. The plot displays the effect estimates (x-axis) for each
spatial/temporal unit (y-axis).

Usage

plot_coef_varying(
models,
mod_id,
name,
unit_label = NULL,
palette = "IDE2",
title = NULL,
xlab = "Effect size",
ylab = NULL,
exp = FALSE

)

Arguments

models A GHRmodels object containing fitted model output.
mod_id A character specifying which model to be plotted (as in modelsmod_gofmodel_id).
name A character string naming the spatially or temporally varying coefficient to plot.

This should match a random effect name in models$random[[mod_id]].
unit_label Optional named character vector providing custom labels for each spatial/temporal

unit.
palette Character string for the GHR, RColorBrewer or colorspace palette (e.g. "Purp")

colour palette to use for the different models. See all available options by run-
ning GHR_palettes(), RColorBrewer::display.brewer.all() and colorspace::hcl_palettes(plot=TRUE).
Single R colors in colors() or hex codes can also be used.

title Optional string for the plot title.
xlab Optional character string for the x-axis label (default = "Effect size").
ylab Optional character string for the y-axis label (default constructed from varying

covariate name).
exp Logical,if TRUE the coefficients are exponentiated, Default is if FALSE.

Value

A ggplot2 forest plot object representing the spatially or temporally varying effect, with each line
corresponding to a different spatial or temporal unit.

32 plot_fit

Examples

Load example GHRmodels object from the package:
model_cov_list_file <- system.file("examples", "model_cov_list.rds", package = "GHRmodel")
model_cov_list <- readRDS(model_cov_list_file)

plot_coef_varying(
models = model_cov_list, # A list of fitted INLA model objects
mod_id = "mod8", # Select the model with varying slopes
palette = "Blues", # Color palette for the plot
name = "main_climate_f", # The grouping variable
title = "Effect of PDSI at one-month lag for each climate zone", # Plot title
ylab = "Main climate zones", # Label for the y-axis
unit_label = c(# Map factor levels to descriptive names
"1" = "Tropical Rainforest Climate",
"2" = "Tropical Monsoon Climate",
"3" = "Tropical Savanna Climate with Dry Winter",
"4" = "Humid Subtropical Climate")

)

plot_fit Plot Observed vs. Fitted Cases

Description

This function creates a time-series plot comparing observed cases with fitted values from one or
more models in a GHRmodels object. The plot supports faceting by model and/or group.

Usage

plot_fit(
models = NULL,
mod_id = NULL,
time = NULL,
group = NULL,
group_id = NULL,
mod_label = NULL,
mod_facet = FALSE,
palette = "IDE2",
ref_color = NULL,
obs_color = NULL,
obs_label = NULL,
title = "",
ci = FALSE,
transform = "identity",
xlab = "Time",

plot_fit 33

ylab = "Cases",
xlim = NULL,
legend = "Model"

)

Arguments

models A GHRmodels object containing fitted model output.

mod_id Character vector of model identifiers (from modelsmod_gofmodel_id) to plot.

time Character; name of the time-variable column in models$data.

group Optional; character name of the column defining independent time series (e.g.,
spatial areas).

group_id Optional vector of specific group values to subset if group is provided.

mod_label Optional custom labels for each model. Can be a named vector (e.g., c("mod1"
= "Base")) or an unnamed vector with the same length and order as mod_id.

mod_facet Logical; if TRUE, faceting is applied by model. Can be combined with group.

palette Character; name of the color palette for fitted lines. Default is "IDE2".

ref_color Optional color to override the first model’s line (reference model).

obs_color Color for observed data line. Default is "black".

obs_label Legend label for observed data. Default is "Observed".

title Character; title of the plot.

ci Logical; if TRUE, adds 95% credible interval ribbons for model fits.

transform Character string for y-axis transformation. Defaults to "identity" (no trans-
form). Other options include "log10p1", "log1p", "sqrt", etc.

xlab Label for the x-axis. Default is "Time".

ylab Label for the y-axis. Default is "Cases".

xlim Character vector of length two in "yyyy-mm-dd" format (e.g., c("2010-01-01",
"2020-12-31")). Use NA to leave one side open (e.g., c("2015-01-01", NA)).

legend Legend title for model lines. Default is "Model".

Details

• Faceting is flexible: if mod_facet = TRUE and group is provided, both are used.

• If ci = TRUE, ribbons are plotted for fitted model uncertainty.

• mod_label, ref_color, and obs_color allow full customization of the legend.

• The function automatically sums values across replicates for grouped time series.

Value

A ggplot2 object:

• Time-series line plot of observed vs fitted cases

• Optionally includes credible intervals and facets by model or group

• X-axis can be limited by xlim; Y-axis can be transformed for readability

34 plot_gof

See Also

fit_models to generate GHRmodels.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Plot observed vs. fitted cases over time for three selected models
plot_fit(
models = model_list, # A GHRmodels object containing the fitted models
mod_id = c("mod1", "mod3", "mod5"), # Vector of model IDs to plot
mod_label = c("Baseline", # Custom display names

"tmin.l1.nl",
"pdsi.l1.nl_tmin.l1.nl"),

ref_color = "grey", # Color for the reference model
time = "date", # Name of the time variable
palette = "Set2", # Color palette for fitted lines
xlim = c("2010-01-01", "2020-01-01"), # Limit x-axis to this date range
title = "Fitted vs Observed" # Main plot title

)

plot_gof Plot Models by Goodness-of-Fit

Description

Provides visualization of model performance using selected goodness-of-fit (GoF) metrics for one
or more models. It is typically used with the mod_gof component of a GHRmodels object (produced
by fit_models), but it can also accept any custom data frame — provided it contains the same
column names as the default mod_gof output (including model_id and the relevant metric column
names). It supports visual grouping by aesthetics (color, shape, facet), arranging models by metric,
and adding credible intervals for model differences.

Usage

plot_gof(
mod_gof,
metric = "dic",
mod_id = NULL,
mod_label = NULL,
ci = FALSE,
var_arrange = NULL,
var_color = NULL,
var_shape = NULL,

plot_gof 35

var_facet = NULL,
palette = "IDE2"

)

Arguments

mod_gof A data frame containing goodness-of-fit statistics for each model. Typically
this is the mod_gof component of a GHRmodels object. It must include at least
a model_id column and the selected metric. Other columns can be used for
aesthetics (e.g., color, shape).

metric Character string specifying the GoF metric to plot. Common options include:
• "dic", "waic", "lms", "mae", "rmse", "crps", "rsq"
• Differences from baseline: "dic_vs_first", "waic_vs_first", "mae_vs_first",

etc.
• Random effect variances: "re_n_var", "re_n_var_change", where n is

an index.
mod_id Optional character vector of model IDs to include. If NULL, includes all in

mod_gof.
mod_label Optional named or unnamed vector to customize display names for models. If

unnamed, must match the order of mod_id.
ci Logical. If TRUE, adds credible intervals for "*_vs_first" metrics (if avail-

able).
var_arrange Character string for a column name used to order models along the x-axis. De-

faults to "model_id" order if NULL.
var_color Optional; name of a column in mod_gof to use for color grouping.
var_shape Optional; name of a column in mod_gof to use for point shape grouping.
var_facet Optional; name of a column in mod_gof to use for faceting the plot.
palette Character; name of a color palette to use if var_color is provided. Default is

"IDE2".

Details

This function helps interpret and visualize comparative model performance:

• Relative metrics (e.g., "*_vs_first") assume the first model is a reference.
• If ci = TRUE, the function looks for columns like "dic_vs_first_lci" and "_uci".
• The user can customize model order with var_arrange and legend groupings using var_color,

etc.

Value

A ggplot2 object showing the specified metric for each model, optionally grouped and faceted.
The plot supports:

• Ranking or sorting models by a specified variable
• Highlighting credible intervals for relative metrics (e.g. "dic_vs_first")
• Group-level comparisons via color, shape, and facet aesthetics

36 plot_ppd

See Also

fit_models for fitting multiple INLA models.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Plot models by difference in DIC

plot_gof(mod_gof = model_list$mod_gof,
metric = "dic_vs_first",
ci = TRUE,
var_arrange = "dic",
var_color = "covariate_1",
var_shape = "covariate_2",
palette= "IDE2")

plot_ppd Plot Posterior Predictive Densities Versus Observed Data

Description

This function draws kernel-density curves for posterior-predictive samples and observed data using
ggplot2::geom_line(). Each predictive sample’s density is plotted in light blue; the observed
density is overlaid in black.

Usage

plot_ppd(
ppd,
xlab = "Outcome",
ylab = "Density",
title = "Posterior Predictive Distribution",
xlim = NULL,
obs_color = NULL,
ppd_color = NULL

)

Arguments

ppd A data.frame containing posterior-predictive samples (one column per sample)
and the column with observed data.

xlab Character: x-axis label. Default "Outcome".

ylab Character: y-axis label. Default "Density".

plot_ppd 37

title Character: plot title. Default "Posterior Predictive Distribution".

xlim Numeric vector of length 2 giving the minimum and maximum x-axis values,
e.g. c(0, 25). If NULL (default) the limits are c(0, quantile(observed,
0.95)).

obs_color Color for the observed line density

ppd_color Color for the posterior predictive distribution lines density

Value

A ggplot2 plot object.

Examples

Load example dataset
data(dengueMS)

Declare formulas
formulas <- c("dengue_cases ~ tmin + f(year, model='rw1')")

Tranform formulas into a 'GHRformulas' object
ghr_formula <- as_GHRformulas(formulas)

Fit multiple models
results <- fit_models(

formulas = ghr_formula,
data = dengue_MS[dengue_MS$year %in% 2005:2010,],
family = "nbinomial",
name = "model",
offset = "population",
nthreads = 2,
control_compute = list(config = FALSE),
pb = TRUE

)

Generate 100 samples from the posterior predictive distribution of the model
ppd_df <- sample_ppd(

results,
mod_id = "model1",
s = 100,
nthreads = 2)

Plot densities of the posterior predictive distribution and observed cases.
plot_ppd(ppd_df, obs_color = "blue", ppd_color = "red")

38 plot_re

plot_re Plot Random Effects

Description

Generates plots of random effects from one or more fitted models contained within a GHRmodels
object. The function supports two main display modes:

• Caterpillar plot of effect sizes with uncertainty intervals (the default).

• Choropleth map (when a spatial map (sf object) is provided in the map argument).

It also supports visualization of replicated or grouped effects via the rep_id argument.

Usage

plot_re(
models,
mod_id,
re_id,
rep_id = NULL,
map = NULL,
map_area = NULL,
mod_label = NULL,
re_label = NULL,
rep_label = NULL,
ref_color = NULL,
palette = NULL,
var_arrange = "ID",
title = "",
xlab = "Re ID",
ylab = "Effect Size",
legend = "Effect Size",
centering = 0,
exp = FALSE

)

Arguments

models A GHRmodels object containing fitted models and random effects.

mod_id Character vector of model IDs to plot (must match entries in modelsmod_gofmodel_id).

re_id Character; name of the variable defining the random effect (from models$re).

rep_id Optional character string; name of a grouping variable if random effects are
replicated. Default is NULL.

map Optional sf object providing spatial geometry. If NULL, returns a caterpillar plot.

map_area Character; column name in map indicating spatial units (must match re_id or-
der).

plot_re 39

mod_label Optional labels for models. Can be a named vector (e.g., c("mod1" = "Baseline",
"mod2" = "Adjusted")) or an unnamed vector with the same order as mod_id.

re_label Optional; variable in the data to label the random effect units (e.g., year names
instead of numeric IDs).

rep_label Optional; label for replicated grouping variable (e.g., for years or time periods).

ref_color Color used for the reference model. If specified, this will apply to the first model
in mod_id.

palette Character; name of the color palette to use. Defaults to "IDE1" for maps and
"IDE2" otherwise.

var_arrange Character; how to arrange REs on the x-axis. Options: "median" or "ID".
Default is "ID".

title Title for the plot.

xlab Label for the x-axis. Default is "Re ID".

ylab Label for the y-axis. Default is "Effect Size".

legend Label for the legend in map plots. Default is "Effect Size".

centering Value at which to center the color scale for map plots. Default is 0.

exp Logical; if TRUE, exponentiates the effects (useful for log-scale models). Default
is FALSE.

Details

Plot Random Effects from GHRmodels

• If map is used, map_area must match a column in map and correspond in order to the RE unit.

• For BYM/BYM2 models, only the total random effect is plotted (structured/unstructured parts
are merged).

• When no map is used, the plot compares models via colored points and intervals for each RE
unit.

• Replicated REs (e.g., for years) can be plotted across facets using rep_label.

• Model comparison is visually aided using distinct colors; the first model in mod_id is the
reference.

Value

A ggplot2 plot object:

• If map is NULL, returns a caterpillar plot showing median REs with 95% uncertainty intervals.

• If map is provided, returns a faceted choropleth map showing RE medians by area and (op-
tionally) replicate.

See Also

fit_models for model fitting; as_GHRformulas for formula setup.

40 rank_models

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Plot the estimated yearly random effects for three different models.
plot_re(

model = model_list, # A GHRmodels object
mod_id = c("mod1", "mod3", "mod5"), # IDs of the models
mod_label = c("Baseline", # Custom labels for the models

"tmin.l1_nl",
"pdsi.l1_nl + tmin.l1_nl"),

re_id = "year_id", # Name of the random effect variable
re_label = "year", # Label to map year_id to calendar years
ref_color = "grey", # Color for the reference model’s effects
palette = "IDE2", # Color for other model effects
title = "Yearly Random Effect", # Title for the plot
xlab = "Year" # Label for the x-axis

)

rank_models Rank Models by Goodness-of-Fit

Description

This function ranks fitted models in a GHRmodels object by a chosen metric (e.g., dic, waic, crps,
etc.).

Usage

rank_models(models, metric = "dic", n = 10)

Arguments

models A GHRmodels object containing fitted model output.

metric A character string indicating which goodness-of-fit metric to use for ranking.
One of: "dic", "waic","lms","mae", "rmse","crps", "rsq","dic_vs_first",
"waic_vs_first", "mae_vs_first", "rmse_vs_first", "crps_vs_first",
"re_n_var", and "re_n_var_change" (where n is the number of random ef-
fect, for ex. re_1_var, re_1_var_change).

n An integer specifying how many top-ranked models to return (default 10).

Value

A character vector of the top model IDs (in ascending order of the specified metric).

sample_ppd 41

See Also

fit_models for fitting multiple INLA models.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Get a list of the 5 best models by DIC
top_model_dic <- rank_models(

models = model_list,
metric = "dic",
n = 5

)
top_model_dic

sample_ppd Sample from the Posterior Predictive Distribution

Description

This function refits a specified model from a GHRmodels object and generates samples from its
posterior predictive distribution.

Usage

sample_ppd(models, mod_id, s = 1000, nthreads = 8)

Arguments

models A GHRmodels object.

mod_id Character; model identifier (from modelsmod_gofmodel_id).

s An integer specifying the number of samples to draw from the posterior predic-
tive distribution.

nthreads An integer specifying the number of threads for parallel computation to refit the
model. Default is 8.

Value

A data.frame containing columns for each of the posterior predictive samples and one column
with observed data.

42 stack_models

Examples

Load example dataset
data(dengueMS)

Declare formulas
formulas <- c("dengue_cases ~ tmin + f(year, model='rw1')")

Tranform formulas into a 'GHRformulas' object
ghr_formula <- as_GHRformulas(formulas)

Fit multiple models
results <- fit_models(

formulas = ghr_formula,
data = dengue_MS[dengue_MS$year %in% 2005:2010,],
family = "nbinomial",
name = "model",
offset = "population",
nthreads = 2,
control_compute = list(config = FALSE),
pb = TRUE

)

Generate 100 samples from the posterior predictive distribution of the model
ppd_df <- sample_ppd(

results,
mod_id = "model1",
s = 100,
nthreads = 2)

stack_models Merge GHRmodels

Description

This function stack together two or more objects GHRmodels object, returning one GHRmodels object
that contains all the input models.

If any model_id is duplicated across the inputs the new_name argument must be provided to ensure
unique IDs.

Usage

stack_models(..., new_name = NULL, vs_first = FALSE)

Arguments

... Two or more GHRmodels objects, or a single list of them.

subset_models 43

new_name NULL (default) or a character used to build the new model IDs.

vs_first Logical. If TRUE columns comparing the model vs the first model are kept in
the mod_gof, otherwise are discarded. Default is FALSE. Set to TRUE only
when models contained in the GHRmodels object to be stacked are compared
with the same first models.

Details

Combine (Stack) Multiple GHRmodels Objects

Value

A single GHRmodels object containing all models from the inputs.

See Also

subset_models for subsetting GHRmodels objects, fit_models for fitting INLA models.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Load example GHRmodels object with DLNM from the package:
model_dlnm_file <- system.file("examples", "model_dlnm.rds", package = "GHRmodel")
model_dlnm <- readRDS(model_dlnm_file)

Merge models from the model_list and model_dlnm objects
model_stack <- stack_models(

model_list,
model_dlnm,
new_name = "mod")

The combined model_stack combines the models in the model_list and model_dlnm objects
model_stackmod_gofmodel_id

subset_models Subset GHRmodels Objects

Description

This function subsets selected models from a GHRmodels object into a new reduced GHRmodels
object.

44 subset_models

Usage

subset_models(models, mod_id, new_name = NULL)

Arguments

models A GHRmodels object.

mod_id A character vector of model IDs indicating which model(s) to keep. These must
match modelsmod_gofmodel_id.

new_name NULL (default) or a character used to build the new model IDs.

Value

A new GHRmodels object containing only the specified model(s).

See Also

stack_models for combining GHRmodels objects, fit_models for fitting INLA models.

Examples

Load example GHRmodels object from the package:
model_list_file <- system.file("examples", "model_list.rds", package = "GHRmodel")
model_list <- readRDS(model_list_file)

Extract a vector with the moded IDs of the 2 best fitting models by WAIC
best_waic <- rank_models(

models = model_list, # GHRmodels object containing model fit results
metric = "waic", # Metric used to rank models (lower WAIC is better)
n = 2 # Number of top-ranked models to return

)

The output is a vector
best_waic

Subset those specific models and assign new IDs
model_waic <- subset_models(

model = model_list,
mod_id = best_waic,
new_name = "best_waic"

)

Check output subset model names
model_waicmod_gofmodel_id

write_inla_formulas 45

write_inla_formulas Generate INLA-compatible Model Formulas

Description

This function streamlines the creation of INLA-compatible model formulas by automatically struc-
turing fixed effects, random effects, and interactions. It accepts a list of covariate sets and produces
a corresponding set of model formulas that share a common random effect structure.

Usage

write_inla_formulas(
outcome,
covariates = NULL,
baseline = TRUE,
re1 = list(id = NULL, model = NULL, replicate = NULL, group = NULL, graph = NULL,
cyclic = FALSE, scale.model = FALSE, constr = FALSE, adjust.for.con.comp = FALSE,
hyper = NULL),

re2 = NULL,
re3 = NULL,
re4 = NULL,
re5 = NULL

)

Arguments

outcome Character string specifying the name of the outcome variable.

covariates A list of character vectors, where each vector contains covariate names to be
included in the model. If a single vector is provided, a single model formula is
generated.

baseline Logical; If TRUE, a baseline formula without covariates is included. If no random
effects are specified, this will be an intercept-only model. If random effects are
specified, the baseline formula will include random effects but not covariates.
This formula will be the first in the list. Default is TRUE.

re1 A list defining a random effect structure. Up to five such lists (re1 through re5)
can be passed.

re2 Additional random effect definitions, as described for re1.

re3 Additional random effect definitions, as described for re1.

re4 Additional random effect definitions, as described for re1.

re5 Additional random effect definitions, as described for re1.

46 write_inla_formulas

Details

The write_inla_formulas() function simplifies the creation of multiple INLA models by auto-
matically structuring fixed effects, random effects, and interactions. The function ensures that all
models have a consistent structure, making them easier to analyze and modify.

If baseline = TRUE, a null formula (without covariates) is included as the first element of the list.

The number of formulas generated depends on the length of the covariates list.

Random effects can be added using re1, ..., re5, where each effect must be a named list (e.g.
re1 = list(id = "year_id", model = "rw1")). In the list the following fields are strictly necessary:

• id (character): the variable name that indexes the random effect (e.g., "year", "region").

• model (character): the type of random effect. Supported values include: "iid", "rw1",
"rw2", "bym", and "bym2".

• The following optional fields can be provided in the random effect list:

– replicate (character): defines an additional variable used to replicate the random effect
structure across groups (e.g., spatial units for repeated time-series).

– group (character): used to model group-specific effects or nested structures.

– graph (character): required for "bym" and "bym2" models; refers to the name of an object
in the environment that holds the spatial adjacency matrix.

– cyclic (logical): indicates whether the random walk ("rw1" or "rw2") is cyclic. Default
is FALSE. Use for periodic structures (e.g., months).

– scale.model (logical): if TRUE, scales structured random effects (like rw1, rw2, bym) so
the generalized variance is 1. For bym2 INLA automatically applies scale.model = TRUE
internally.

– constr (logical): If TRUE, a sum to zero constrain is introduced. This ’constr’ option is
applied only to ’iid’ random effects. For rw, ar, bym, bym2 INLA automatically applies
scale.model = TRUE internally.

– adjust.for.con.comp (logical): if TRUE, accounts for disconnected components in spa-
tial graphs. Recommended for "bym" and "bym2". Default is FALSE.

– hyper (character): the name of an object in the environment that contains the hyperprior
specification for the random effect’s precision or other parameters.

For more information on random effects in R-INLA, see Bayesian inference with INLA: Mixed-
effects Models.

Value

A character vector of INLA model formulas.

See Also

as_GHRformulas for transforming model formulas into structured objects.

https://becarioprecario.bitbucket.io/inla-gitbook/ch-mixed.html
https://becarioprecario.bitbucket.io/inla-gitbook/ch-mixed.html

write_inla_formulas 47

Examples

Define covariates of interest
covs <- c("tmin.l1", "tmin.l2", "pdsi.l1", "pdsi.l2", "urban_level")

Combine covariate names using a pattern-matching functionality
combined_covariates <- cov_multi(

covariates = covs,
pattern = c("tmin", "pdsi", "urban_level")

)

Define hyperprior specifications for random effects
prior_re1 <- list(prec = list(prior = "loggamma", param = c(0.01, 0.01)))
prior_re2 <- list(prec = list(prior = "loggamma", param = c(0.01, 0.01)))
prior_re3 <- list(

prec = list(prior = "pc.prec", param = c(0.5 / 0.31, 0.01)),
phi = list(prior = "pc", param = c(0.5, 2 / 3))

)

Write a set of INLA-compatible model formulas
inla_formulas <- write_inla_formulas(

outcome = "dengue_cases",
covariates = combined_covariates,
re1 = list(
id = "month_id",
model = "rw1",
cyclic = TRUE,
hyper = "prior_re1",
replicate = "spat_meso_id"

),
re2 = list(

id = "year_id",
model = "rw1",
hyper = "prior_re2"

),
re3 = list(

id = "spat_id",
model = "iid",
hyper = "prior_re3"

),
baseline = TRUE

)

Index

∗ datasets
dengue_MS, 14
dengue_SP, 15
map_MS, 23

as_GHRformulas, 3, 20, 39, 46

cov_add, 4, 16
cov_interact, 5, 16
cov_multi, 4, 5, 6, 7, 9, 16
cov_nl, 6, 7, 16
cov_uni, 5–7, 8, 9, 16
cov_varying, 9, 16
crossbasis, 11
crossbasis_inla, 10, 12
crosspred, 13, 25, 26
crosspred_inla, 12, 25

dengue_MS, 14
dengue_SP, 15
dlnm::crossbasis, 10, 11
dlnm::crosspred, 12, 13

extract_names, 6, 9, 16

fit_models, 3, 17, 34, 36, 39, 41, 43, 44

geom_pointrange, 28
get_covariates, 21

lag_cov, 11, 22

map_MS, 23

onebasis, 23, 24
onebasis_inla, 12, 23

plot_coef_crosspred, 24
plot_coef_lin, 26
plot_coef_nl, 28
plot_coef_varying, 31

plot_fit, 32
plot_gof, 34
plot_ppd, 36
plot_re, 38

rank_models, 40

sample_ppd, 41
stack_models, 42, 44
subset_models, 43, 43

write_inla_formulas, 3–10, 45

48

	as_GHRformulas
	cov_add
	cov_interact
	cov_multi
	cov_nl
	cov_uni
	cov_varying
	crossbasis_inla
	crosspred_inla
	dengue_MS
	dengue_SP
	extract_names
	fit_models
	get_covariates
	lag_cov
	map_MS
	onebasis_inla
	plot_coef_crosspred
	plot_coef_lin
	plot_coef_nl
	plot_coef_varying
	plot_fit
	plot_gof
	plot_ppd
	plot_re
	rank_models
	sample_ppd
	stack_models
	subset_models
	write_inla_formulas
	Index

