wrapper creation tutorial

Creating a wrapper for a new GP package

This vignette serves as a tutorial on how to create a new wrapper for a GP package by editing the file
WrappedGP.R, turning it into the wrapper for a new GP package. The file is essentially a copy of the file
WrappedmlegpGP.R, a wrapper for the mlegp package. We assume that the user has some knowledge of GP
implementations in R.

We require the following methods for the new GP package:

e Create a new GP
e Make a prediction for a new data point with a given GP create by the package, returning the mean and
the error

e Store the covariance function of the GP

First, we describe a minimum version which goes over all necessary changes. Afterwards, we point the user to
more advanced implementations which can be found in WrappedDiceKrigingGP.R.

Changes in CreateWrappedGP.R

o Change the name of the package in CreateWrappedGP.R by replacing “dummy” with the name of the
package

Changes in WrappedGP.r

e Change gp_control in line 109. Here, we mean all arguments which are not the design matrix
texttt{X}, the target variable y or it’s uncertainties y_var. These include e.g. the covariance function,
parameters for the optimizer, etc.

o Update the method update_init_covpars in 1.170. In a gp from mlegp, the length scales of each
dimension are stored under gp$beta. The standard deviation of the whole GP is stored under gp$sig2,
and the (constant) mean under gp$mul[1].

o Update the method get_lengthscales in . 180. Use the same location that you used for the length
scales in update_init_covpars.

e Update the method get_cov_mat in 1.224. Replace the argument of the return function in 1. 229 with
the location of the covariance function in the gp object.

o Update the method call_create_gp in 1. 317. Start by replacing the method which creates the GP
mlegp: :mlegp in 1.321 with the one of the new package. Update the control parameters, too.

o Update the method call_predict in 1. 356. Start by replacing the method mlegp: :predict.gp
and it’s arguments used to define predictions in 1. 358 and 366. Then, replace the locations of the
mean and standard error in the prediction in 1. 363 and 371. In mlegp, the mean is stored under
prediction$fit, and the standard error under prediction$se.fit.

e Update the method predict inl. 432. This step is only necessary if add_buffer_in_prediction = TRUE.
Update the temporary gp temp_gp in . 461 by changing the method for gp creation mlegp: :mlegp
and the control parameters.

Optional and advanced features

Subsequent features are not necessary for the proper function of the package. Since these aspects are highly
dependent on the chosen package, we merely make the user aware of these features and point them to the
code sections in WrappedDiceKrigingGP.R.

e Including the prediction uncertainty. This can simply achieved by effectively replacing X, y in . 322
and 462 in WrappedGP.r with X, y, y_var, assuming that this is the proper order of the arguments in
the new package.

e Including a retrain buffer. Here, the train function needs to be adapted. See the beginning of the
train method in 1. 352 - 367 in WrappedDiceKrigingGP.R.

e Create a GP with given covariance parameters. If the package allows it, the GP parameters can be set
by the field init_covpars. This can be seen in WrappedDiceKrigingGP.R in . 562 - 576.

o Use bounds for GP parameters (i.e. length scales). This can be seen in WrappedDiceKrigingGP.R in 1.
484 - 507.

	Creating a wrapper for a new GP package
	Changes in
	Changes in
	Optional and advanced features

