Package ‘GeoThinneR’

April 24, 2025
Type Package
Title Efficient Spatial Thinning of Species Occurrences
Version 2.0.0

Description Provides efficient geospatial thinning algorithms to reduce
the density of coordinate data while maintaining spatial
relationships. Implements K-D Tree and brute-force distance-based
thinning, as well as grid-based and precision-based thinning methods.
For more information on the methods, see Elseberg et al. (2012)
<https://hdl.handle.net/10446/86202>.

License MIT + file LICENSE

URL https://github.com/jmestret/GeoThinneR,
https://jmestret.github.io/GeoThinneR/

BugReports https://github.com/jmestret/GeoThinneR/issues
Depends R (>=4.0.0)

Imports data.table, doParallel, fields, foreach, graphics, grDevices,
matrixStats, nabor, sf, stats, terra

Suggests ggplot2, knitr, rmarkdown, testthat (>= 3.0.0), tibble
VignetteBuilder knitr

BuildVignettes true

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Jorge Mestre-Tomas [aut, cre] (<https://orcid.org/0000-0002-8983-3417>)
Maintainer Jorge Mestre-Tomds <jorge.mestre.tomas@csic.es>
Repository CRAN

Date/Publication 2025-04-24 06:10:02 UTC

https://hdl.handle.net/10446/86202
https://github.com/jmestret/GeoThinneR
https://jmestret.github.io/GeoThinneR/
https://github.com/jmestret/GeoThinneR/issues
https://orcid.org/0000-0002-8983-3417

2 as_GeoThinned

Contents
as_GeoThinned e 2
calculate_spatial_coverage e 4
CATEILA v v e e e e e e 5
compute_nearest_neighbor_distances oL 6
compute_neighbors_brute Lo 7
compute_neighbors_kdtree oL 8
compute_neighbors_local_kdtree L oL o 9
distance_thinning L 10
estimate_ K max e e e e 11
grid_thinning L 12
lon_lat to_cartesian e e e e e e 14
max_thinning_algorithmo o Lo 15
precision_thinningo 16
select_target_points L. e e e e e e e e e e 17
thin_points e e e e e 18
thunnus e e 21

Index 22

as_GeoThinned GeoThinned Object Constructor and Methods
Description
Create and interact with spatial thinning results stored in a GeoThinned object.
Usage

as_GeoThinned(retained, method, params = list(), original_data = NULL)

new_GeoThinned(retained, method, params = list(), original_data = NULL)

S3 method for class 'GeoThinned'
print(x, ...)

S3 method for class 'GeoThinned'
summary (object, ...)

S3 method for class 'summary.GeoThinned'
print(x, ...)

S3 method for class 'GeoThinned'
plot(

X’

trial = NULL,
show_original = TRUE,

as_GeoThinned

col_original = "#EB714B",
col_thinned = "#5183B3",
pch_original = 1,

original_data
X

object

trial
show_original
col_original
col_thinned
pch_original
pch_thinned
main

crs

The original unmodified data.
An object of class GeoThinned.
Additional arguments (ignored).

An object of class GeoThinned.

Integer index of the thinning trial to extract (for get_trial(), plot(), as_sf()).

non
s

grid", "precision").

pch_thinned = 16,
main = NULL,
)
largest(x,
S3 method for class 'GeoThinned'
largest(x,
largest_index(x, ...)
S3 method for class 'GeoThinned'
largest_index(x, ...)
get_trial(x, trial = NULL, ...)
S3 method for class 'GeoThinned'
get_trial(x, trial = NULL, ...)
as_sf(x, ...)
S3 method for class 'GeoThinned'
as_sf(x, trial = NULL, crs = 4326, ...)
Arguments
retained A list of logical vectors indicating retained points per trial.
method The thinning method used (e.g., "distance
params A list of parameters used in thinning.

Default ‘NULL‘, which will return the largest dataset.

Logical, whether to show original points.
Colors for original points.

Colors for thinned points.

Point shapes for original points.

Point shapes for thinned points.

Title of the plot.

Coordinate reference system to assign to the resulting sf object (optional).

4 calculate_spatial_coverage

Value

A GeoThinned object or associated results (summary, plot, trial subset).

See Also

thin_points

calculate_spatial_coverage
Calculate Spatial Coverage (Convex Hull Area)

Description

Computes the area of the convex hull formed by the points. Uses geodetic area (km?2) if coordinates
are lon/lat and distance = "haversine", otherwise computes area in squared map units.

Usage

calculate_spatial_coverage(coordinates, distance = "haversine")
Arguments

coordinates A matrix of coordinates (longitude and latitude or planar x/y).

distance A character string: "haversine" (default) or "euclidean".
Value

A numeric value representing the convex hull area (km2 or unit2).

Examples

Geographic coordinates (lon/lat)

set.seed(456)

coords_geo <- matrix(cbind(runif(10, -10, 10), runif(10, 40, 50)), ncol = 2)
area_haversine <- calculate_spatial_coverage(coords_geo, distance = "haversine")
print(round(area_haversine, 2)) # in km2

Projected coordinates (Euclidean/map units)

coords_proj <- matrix(runif(20), ncol = 2) * 100 # e.g., map units
area_euclidean <- calculate_spatial_coverage(coords_proj, distance = "euclidean”)
print(round(area_euclidean, 2)) # in unit2

caretta 5

caretta Loggerhead Sea Turtle (Caretta caretta) Occurrence Records in the
Mediterranean Sea

Description

This dataset contains georeferenced occurrence records of the Loggerhead Sea Turtle (Caretta
caretta) within the Mediterranean Sea from 1962 to 2025. The data were obtained from the Global
Biodiversity Information Facility (GBIF) and filtered to include only marine points falling within a
defined Mediterranean polygon. Duplicated coordinates were removed.

Usage

data("caretta")

Format

A data frame with 8340 rows and 5 variables:

decimalLongitude Numeric. Longitude coordinates (WGS84).
decimalLatitude Numeric. Latitude coordinates (WGS84).
year Integer. Year in which the observation was recorded.
species Character. The species name (Caretta caretta).

coordinateUncertaintyInMeters Numeric. Positional uncertainty of the coordinates, in meters.

Details

The data were accessed through the GBIF API and clipped spatially using a Mediterranean Sea
polygon (https://www.marineregions.org/gazetteer.php?p=details&id=1905). All records were fil-
tered to ensure presence-only data with valid geographic coordinates. Duplicate coordinate pairs
were removed to reduce redundancy.

This dataset is used as a real-world example throughout the GeoThinneR package and the accom-
panying article.

For reproducibility, the GBIF download script is included in data-raw/caretta_download.R.
The Mediterranean Sea polygon used to spatially filter the records was download from Marinere-
gions.org: https://www.marineregions.org/gazetteer.php?p=details&id=1905. It is dis-

tributed with the package as inst/extdata/mediterranean_sea.gpkg and used in the data-raw/caretta_download.R
script.

Source

Global Biodiversity Information Facility (GBIF)
GBIF Occurrence Download https://doi.org/10.15468/d1.9jcjrm
Accessed from R via rgbif (https://github.com/ropensci/rgbif) on 2025-02-07

https://www.marineregions.org/gazetteer.php?p=details&id=1905

6 compute_nearest_neighbor_distances

compute_nearest_neighbor_distances
Compute Nearest Neighbor Distances

Description

Calculates nearest neighbor distances using geodesic or Euclidean distance.

Usage
compute_nearest_neighbor_distances(
coordinates,
distance = "haversine”,
R = 6371
)
Arguments
coordinates A matrix of coordinates with two columns.
distance A character string: "haversine" (default) or "euclidean".
R Radius of the Earth in kilometers. Default is 6371.
Value

A numeric vector of nearest neighbor distances, in meters (haversine) or in map units (euclidean).

Examples

Example with geographic (longitude/latitude) coordinates

set.seed(123)

coords_geo <- matrix(cbind(runif(10, -10, 10), runif(10, 40, 50)), ncol = 2)
nnd_haversine <- compute_nearest_neighbor_distances(coords_geo, distance = "haversine")
print(round(nnd_haversine, 2)) # in km

Example with projected coordinates (Euclidean)

coords_proj <- matrix(runif(20), ncol = 2) * 100 # e.g., meters or map units
nnd_euclidean <- compute_nearest_neighbor_distances(coords_proj, distance = "euclidean")
print(round(nnd_euclidean, 2))

compute_neighbors_brute 7

compute_neighbors_brute
Compute Neighbors Using Brute-Force

Description

Computes neighbors for each point in a set of coordinates using a greedy approach. All pairwise
distances are calculated to identify neighbors within a specified distance threshold.

Usage
compute_neighbors_brute(
coordinates,
thin_dist,
distance = c("haversine”, "euclidean”),
R = 6371
)
Arguments
coordinates A matrix of coordinates to thin, with two columns representing longitude and
latitude.
thin_dist A positive numeric value representing the thinning distance in kilometers.
distance A character string specifying the distance metric to use ‘c("haversine", "eu-
clidean")".
R A numeric value representing the radius of the Earth in kilometers. The default
is 6371 km.
Value

A list where each element corresponds to a point and contains the indices of its neighbors.

Examples

set.seed(123)
coords <- matrix(runif (20, min = -180, max = 180), ncol = 2)

Compute neighbors using brute fore
neighbors <- compute_neighbors_brute(coords, thin_dist = 10,)

8 compute_neighbors_kdtree

compute_neighbors_kdtree
Compute Neighbors Using kd-Tree

Description

Computes neighbors for each point in a set of coordinates using a kd-tree for efficient neighbor
searches. This method is particularly useful for large datasets.

Usage
compute_neighbors_kdtree(
coordinates,
thin_dist,
k = NULL,
distance = c("haversine”, "euclidean”),
R = 6371
)
Arguments
coordinates A matrix of coordinates to thin, with two columns representing longitude and
latitude.
thin_dist A positive numeric value representing the thinning distance in kilometers.
k An integer specifying the maximum number of neighbors to consider for each
point.
distance A character string specifying the distance metric to use ‘c("haversine", "eu-
clidean")".
R A numeric value representing the radius of the Earth in kilometers. The default
is 6371 km.
Details

This function uses kd-tree (via ‘nabor* package) for efficient spatial searches. The kd-tree inherently
works with Euclidean distances. If “"haversine"* is selected, the function first converts geographic
coordinates to 3D Cartesian coordinates before constructing the kd-tree.

Value

A list where each element corresponds to a point and contains the indices of its neighbors, excluding
the point itself.

compute_neighbors_local_kdtree

Examples

set.seed(123)
coords <- matrix(runif(20, min = -180, max = 180), ncol

Compute neighbors using kd-tree
neighbors <- compute_neighbors_kdtree(coords, thin_dist

2)

10,)

compute_neighbors_local_kdtree

Compute Neighbors Using Local kd-Trees

Description

Divides the search area into a grid of local regions and constructs kd-trees for each region to com-
pute neighbors efficiently. Neighbor regions are also considered to ensure a complete search.

Usage
compute_neighbors_local_kdtree(
coordinates,
thin_dist,
distance = c("haversine”, "euclidean”),
R = 6371,
n_cores = 1
)
Arguments
coordinates A matrix of coordinates to thin, with two columns representing longitude and
latitude.
thin_dist A positive numeric value representing the thinning distance in kilometers.
distance A character string specifying the distance metric to use ‘c("haversine", "eu-
clidean")‘.
R A numeric value representing the radius of the Earth in kilometers. The default
is 6371 km.
n_cores An integer specifying the number of cores to use for parallel processing. The
default is 1.
Value

A list where each element corresponds to a point and contains the indices of its neighbors, excluding

the point itself.

10 distance_thinning

Examples

set.seed(123)
coords <- matrix(runif(20, min = -18@, max = 180), ncol = 2)

Compute neighbors using local kd-trees with Euclidean distance
neighbors <- compute_neighbors_local_kdtree(coords, thin_dist = 10, n_cores = 1)

distance_thinning Perform Distance-Based Thinning

Description

This function applies a distance-based thinning algorithm using a kd-tree or brute-force approach.
Two modified algorithms based on kd-trees (local kd-trees and estimating the maximum number of
neighbors) are implemented which scale better for large datasets. The function removes points that
are closer than a specified distance to each other while maximizing spatial representation.

Usage
distance_thinning(
coordinates,
thin_dist = 10,
trials = 10,
all_trials = FALSE,
search_type = c("local_kd_tree"”, "k_estimation”, "kd_tree"”, "brute"),
target_points = NULL,
distance = c("haversine”, "euclidean”),
R = 6371,
n_cores = 1
)
Arguments
coordinates A matrix of coordinates to thin, with two columns representing longitude and
latitude.
thin_dist A positive numeric value representing the thinning distance in kilometers.
trials An integer specifying the number of trials to run for thinning. Default is 10.
all_trials A logical indicating whether to return results of all attempts (‘TRUE®) or only
the best attempt with the most points retained (‘FALSE*). Default is ‘FALSE®.
search_type A character string indicating the neighbor search method ‘c("local_kd_tree",
"k_estimation", "kd_tree", "brute")‘. The default value is ‘local_kd_tree‘. See
details.

target_points Optional integer specifying the number of points to retain. If ‘NULL* (default),
the function tries to maximize the number of points retained.

estimate_k_max 11

distance Distance metric to use ‘c("haversine”, "euclidean")‘. Default is Haversine for
geographic coordinates.

R Radius of the Earth in kilometers (default: 6371 km).

n_cores Number of cores for parallel processing (only for ‘"local_kd_tree" ‘). Default is
1.

Details
- “"kd_tree"‘: Uses a single kd-tree for efficient nearest-neighbor searches. - ‘"local_kd_tree"*:
Builds multiple smaller kd-trees for better scalability. - ‘"k_estimation"‘: Approximates a maxi-

mum number of neighbors per point to reduce search complexity. - “"brute"‘: Computes all pairwise
distances (inefficient for large datasets).

Value

A list. If “all_trials* is ‘FALSE", the list contains a single logical vector indicating which points are
kept in the best trial. If ‘all_trials‘ is “TRUE®, the list contains a logical vector for each trial.

Examples

Generate sample coordinates
set.seed(123)
result <- matrix(runif(20, min = -180, max = 180), ncol = 2) # 10 random points

Perform thinning with local kd-trees

result_partitioned <- distance_thinning(result , thin_dist = 5000, trials = 5,
search_type = "local_kd_tree”, all_trials = TRUE)

print(result_partitioned)

Perform thinning estimating max number of neighbors

result_estimated <- distance_thinning(result , thin_dist = 5000, trials = 5,
search_type = "k_estimation”, all_trials = TRUE)

print(result_estimated)

estimate_k_max Estimate Maximum Neighbors for kd-Tree Thinning

Description

This function estimates the maximum value of k (the number of nearest neighbors) for kd-tree-based
thinning by evaluating the densest regions of a spatial dataset. The function uses a histogram-based
binning approach for efficiency and low memory usage.

Usage

estimate_k_max(coordinates, thin_dist, distance = c("haversine”, "euclidean"))

12 grid_thinning
Arguments
coordinates A matrix of spatial coordinates with two columns for longitude and latitude.
thin_dist A positive numeric value representing the thinning distance in kilometers. This
defines the resolution of the grid used for density calculations.
distance Distance metric used ‘c("haversine", "euclidean")*.
Details

The function divides the spatial domain into grid cells based on the specified thinning distance. Grid
cell sizes are determined assuming approximately 111.32 km per degree (latitude/longitude). The
function identifies the densest grid cells and their immediate neighbors to compute the maximum k
value.

Value

A numeric value representing the maximum k (number of nearest neighbors) required for the densest
regions in the dataset.

Examples

Generate sample data
set.seed(123)
coordinates <- matrix(runif(200, min = -10, max = 10), ncol = 2)

Estimate k for kd-tree thinning
k_max <- estimate_k_max(coordinates, thin_dist = 50)
print(k_max)

grid_thinning Perform Grid-Based Thinning of Spatial Points

Description

This function performs thinning of spatial points by assigning them to grid cells based on a spec-
ified resolution or thinning distance. It can either create a new raster grid or use an existing
‘terra::SpatRaster object.

Usage

grid_thinning(
coordinates,
thin_dist = NULL,
resolution = NULL,
origin = NULL,
raster_obj = NULL,
n=1,

grid_thinning 13

trials = 10,
all_trials = FALSE,
crs = "epsg:4326",
priority = NULL

)
Arguments

coordinates A numeric matrix or data frame with two columns representing the x (longitude)
and y (latitude) coordinates of the points.

thin_dist A numeric value representing the thinning distance in kilometers. It will be
converted to degrees if ‘resolution® is not provided.

resolution A numeric value representing the resolution (in degrees) of the raster grid. If
provided, this takes priority over ‘thin_dist".

origin A numeric vector of length 2 (e.g., ‘c(0, 0)°), specifying the origin of the raster
grid (optional).

raster_obj An optional ‘terra::SpatRaster® object to use for grid thinning. If provided, the
raster object will be used instead of creating a new one.

n A positive integer specifying the maximum number of points to retain per grid
cell (default: 1).

trials An integer specifying the number of trials to perform for thinning (default: 10).

all_trials A logical value indicating whether to return results for all trials (“TRUE®) or just
the first trial (‘FALSE‘, default).

crs An optional CRS (Coordinate Reference System) to project the coordinates and
raster (default WGS84, ‘epsg:4326°). This can be an EPSG code, a PROJ.4
string, or a ‘terra::crs‘ object.

priority A numeric vector of the same length as the number of points with numerical val-
ues indicating the priority of each point. Instead of eliminating points randomly,
higher values are preferred during thinning.

Value

A list of logical vectors indicating which points to keep for each trial.

Examples

Example: Grid thinning using thin_dist
coords <- matrix(c(-122.4194, 37.7749,
-122.4195, 37.7740,
-122.4196, 37.7741), ncol = 2, byrow = TRUE)

result <- grid_thinning(coords, thin_dist = 10, trials = 5, all_trials = TRUE)
print(result)

Example: Grid thinning using a custom resolution
result_res <- grid_thinning(coords, resolution = 0.01, n = 2, trials = 5)
print(result_res)

14

lon_lat to_cartesian

Example: Using a custom raster object
library(terra)

rast_obj <- terra::rast(nrows = 100, ncols = 100, xmin = =123, xmax = =121, ymin = 36, ymax = 38)

result_raster <- grid_thinning(coords, raster_obj = rast_obj, trials = 5)
print(result_raster)

lon_lat_to_cartesian Convert Geographic Coordinates to Cartesian Coordinates

Description

This function converts geographic coordinates, given as longitude and latitude in degrees, to Carte-
sian coordinates (X, y, z) assuming a spherical Earth model.

Usage

lon_lat_to_cartesian(lon, lat, R = 6371)

Arguments

lon Numeric vector of longitudes in degrees.

lat Numeric vector of latitudes in degrees.

R Radius of the Earth in kilometers (default: 6371 km).
Value

A numeric matrix with three columns (x, y, z) representing Cartesian coordinates.

Examples

lon <- ¢c(-122.4194, 0)
lat <- c(37.7749, o)
lon_lat_to_cartesian(lon, lat)

max_thinning_algorithm 15

max_thinning_algorithm
Thinning Algorithm for Spatial Data

Description

This function performs the core thinning algorithm used to reduce the density of points in spa-
tial data while maintaining spatial representation. It iteratively removes the points with the most
neighbors until no points with neighbors remain. The algorithm supports multiple trials to find the
optimal thinning solution.

Usage

max_thinning_algorithm(neighbor_indices, trials, all_trials = FALSE)

Arguments

neighbor_indices

A list of integer vectors where each element contains the indices of the neigh-
boring points for each point in the dataset.

trials A positive integer specifying the number of thinning trials to perform. Default
is 10.
all_trials A logical value indicating whether to return results of all attempts (‘TRUE)
or only the best attempt with the most points retained (‘FALSE®). Default is
‘FALSE".
Value

A list of logical vectors indicating which points are kept in each trial if all_trials is TRUE; otherwise,
a list with a single logical vector indicating the points kept in the best trial.

Examples

Example usage within a larger thinning function

neighbor_indices <- list(c(2, 3), c(1, 3), c(1, 2))

trials <- 5

all_trials <- FALSE

kept_points <- max_thinning_algorithm(neighbor_indices, trials, all_trials)
print(kept_points)

16 precision_thinning

precision_thinning Precision Thinning of Spatial Points

Description

This function performs thinning of spatial points by rounding their coordinates to a specified pre-
cision and removing duplicates. It can perform multiple trials of this process and return the results
for all or just the best trial.

Usage

precision_thinning(
coordinates,
precision = 4,
trials = 10,
all_trials = FALSE,
priority = NULL

)
Arguments
coordinates A numeric matrix or data frame with two columns representing the longitude
and latitude of points.
precision A positive integer specifying the number of decimal places to which coordinates
should be rounded. Default is 4.
trials A positive integer specifying the number of thinning trials to perform. Default
is 10.
all_trials A logical value indicating whether to return results for all trials (“TRUE®) or just
the first/best trial (‘FALSE®). Default is ‘FALSE".
priority A numeric vector of the same length as the number of points with numerical val-
ues indicating the priority of each point. Instead of eliminating points randomly,
higher values are preferred during thinning.
Details

The function performs multiple trials to account for randomness in the order of point selection. By
default, it returns the first trial, but setting ‘all_trials = TRUE® will return the results of all trials.

Value

If “all_trials* is ‘FALSE’, returns a logical vector indicating which points were kept in the first trial.
If ‘all_trials® is ‘TRUE", returns a list of logical vectors, one for each trial.

select_target_points 17

Examples

Example usage

coords <- matrix(c(-123.3656, 48.4284, -123.3657, 48.4285, -123.3658, 48.4286), ncol = 2)
result <- precision_thinning(coords, precision = 3, trials = 5, all_trials = TRUE)
print(result)

Example with a single trial and lower precision
result_single <- precision_thinning(coords, precision = 2, trials =1, all_trials = FALSE)
print(result_single)

select_target_points Select Target Number of Points for Spatial Thinning

Description

This function selects a specified number of points from a spatial dataset while maximizing the
distance between selected points.

Usage

select_target_points(
distance_matrix,
target_points,
thin_dist,
trials,
all_trials = FALSE

Arguments

distance_matrix
A matrix of pairwise distances between points.

target_points An integer specifying the number of points to retain.

thin_dist A positive numeric value representing the thinning distance in kilometers.
trials A positive integer specifying the number of thinning trials to perform. Default
is 10.
all_trials A logical value indicating whether to return results of all attempts (‘TRUE)
or only the best attempt with the most points retained (‘FALSE®). Default is
‘FALSE".
Value

A list of logical vectors indicating which points are kept in each trial if ‘all_trials‘ is ‘TRUE‘;
otherwise, a list with a single logical vector indicating the points kept in the best trial.

18 thin_points

Examples

Example distance matrix (3 points)
dist_matrix <- matrix(c(e, 2, 5,

2, 0, 3,

5, 3, 0), ncol = 3)

Select 2 points maximizing distance
result <- select_target_points(dist_matrix, target_points = 2,
thin_dist = 4, trials = 5, all_trials = TRUE)

thin_points Spatial Thinning of Points

Description

This function performs spatial thinning of geographic points to reduce point density while main-
taining spatial representation. Points are thinned based on a specified distance, grid, or decimal
precision, with support for multiple trials and optional grouping.

Usage

thin_points(
data,
lon_col = "lon",
lat_col = "lat",
group_col = NULL,

method = c("distance”, "grid", "precision”),
trials = 10,

all_trials = FALSE,

seed = NULL,

verbose = FALSE,

)
Arguments

data A data frame or tibble containing the input points to thin. Must contain longitude
and latitude columns.

lon_col Character name of the column with longitude coordinates (default: *"lon"*).

lat_col Character name of the column with latitude coordinates (default: ‘"lat"*).

group_col Character name of the column for grouping points (e.g., species name, year). If
‘NULL?, no grouping is applied.

method Thinning method to use. One of ‘"distance", "grid", "precision”‘.

trials Number of thinning iterations to perform (default: ‘10°). Must be a positive

integer.

thin_points 19

all_trials If ‘TRUE®, returns results of all attempts; if ‘FALSE®, returns the best attempt
with the most points retained (default: ‘FALSE®).

seed Optional; an integer seed for reproducibility of results.

verbose If ‘TRUE", prints progress messages (default: ‘FALSE®).

Additional arguments passed to specific thinning methods. See Details.

Details
The following thinning methods are available:

"e

‘"'distance''‘ Forces a specific minimum distance between points.
‘"grid"'¢ Applies a grid-based thinning method.

‘"'precision''¢ Utilizes precision-based thinning.

Distance-based thinning

The specific parameters for distance-based thinning are:

‘thin_dist* A positive numeric value representing the thinning distance in kilometers.

‘search_type‘ A character string indicating the neighbor search method ’c("local_kd_tree", "k_estimation",
"kd_tree", "brute")’. The defult value is ’local_kd_tree’.

‘distance‘ Distance metric to use ’c("haversine", "euclidean")’. Default is Haversine for geo-
graphic coordinates.

‘R¢ The radius of the Earth in kilometers. Default is 6371 km.

‘target_points‘ Optional integer specifying the number of points to retain. If "NULL’ (default),
the function tries to maximize the number of points retained.

‘n_cores‘ Number of cores for parallel processing (only for *"local_kd_tree"”). Default is 1.

Grid-based thinning

The specific parameters for grid-based thinning are:

‘thin_dist* A positive numeric value representing the thinning distance in kilometers.

‘resolution‘ A numeric value representing the resolution (in degrees) of the raster grid. If provided,
this takes priority over "thin_dist’.

‘origin‘ A numeric vector of length 2 (e.g., *c(0, 0)’), specifying the origin of the raster grid (op-
tional).

‘raster_obj¢ An optional ’terra::SpatRaster’ object to use for grid thinning. If provided, the raster
object will be used instead of creating a new one.

‘n¢ A positive integer specifying the maximum number of points to retain per grid cell (default: 1).

‘ers¢ An optional CRS (Coordinate Reference System) to project the coordinates and raster (default
WGS84, "epsg:4326’). This can be an EPSG code, a PROJ .4 string, or a ’terra::crs’ object.

‘priority A numeric vector of the same length as the number of points with numerical values
indicating the priority of each point. Instead of eliminating points randomly, higher values are
preferred during thinning.

20 thin_points

Precision-based thinning

The specific parameters for precision-based thinning are:

‘precision‘ A positive integer specifying the number of decimal places to which coordinates should
be rounded. Default is 4.

‘priority A numeric vector of the same length as the number of points with numerical values
indicating the priority of each point. Instead of eliminating points randomly, higher values are
preferred during thinning.

For more information on specific thinning methods and inputs, refer to their respective documenta-
tion:

* ‘distance_thinning()*

e ‘grid_thinning()*

* ‘precision_thinning()*

Value

A ‘GeoThinned* object (S3 class), which contains:

* ‘retained: A list of logical vectors (one per trial) indicating retained points.
* ‘original_data‘: The original input dataset.
* ‘method‘: The thinning method used.

e ‘params‘: A list of the thinning parameters used.

Examples

Basic usage

set.seed(123)

sample_data <- data.frame(
lon = runif(100, -10, 10),
lat = runif (100, -5, 5)

)

result <- thin_points(sample_data, method = "distance”, thin_dist = 100)

Grouped thinning

sample_data$species <- sample(c("A", "B"), 100, replace = TRUE)

grouped_result <- thin_points(sample_data, group_col = "species”,
method = "distance”, thin_dist = 100)

thunnus 21

thunnus Yellowfin Tuna (Thunnus albacares) Worldwide Occurrence Records

Description

This dataset contains georeferenced occurrence records of the Yellowfin Tuna (Thunnus albacares)
from 1950 to 2025, obtained globally from the Global Biodiversity Information Facility (GBIF).
The dataset was filtered to include presence-only records with valid geographic coordinates and
year, and duplicate coordinates were removed.

Usage

data("thunnus")

Format
A data frame with 80,163 rows and 3 variables:
decimalLongitude Numeric. Longitude coordinates (WGS84).

decimalLatitude Numeric. Latitude coordinates (WGS84).

year Integer. Year in which the observation was recorded.

Details

The data were accessed through the GBIF API and used for benchmarking thinning algorithms in
the GeoThinneR package. Coordinates include marine records, and the data were globally sampled
across many decades.

For reproducibility, the GBIF download script is included in data-raw/thunnus_download.R.

Source

Global Biodiversity Information Facility (GBIF)
GBIF Occurrence Download https://doi.org/10.15468/dl.xsyrkh
Accessed from R via rgbif (https://github.com/ropensci/rgbif) on 2025-02-07

Index

x datasets
caretta, 5
thunnus, 21

as_GeoThinned, 2
as_sf (as_GeoThinned), 2

calculate_spatial_coverage, 4
caretta, 5
compute_nearest_neighbor_distances, 6
compute_neighbors_brute, 7
compute_neighbors_kdtree, 8
compute_neighbors_local_kdtree, 9

distance_thinning, 10
estimate_k_max, 11

get_trial (as_GeoThinned), 2
grid_thinning, 12

largest (as_GeoThinned), 2
largest_index (as_GeoThinned), 2
lon_lat_to_cartesian, 14

max_thinning_algorithm, 15
new_GeoThinned (as_GeoThinned), 2

plot.GeoThinned (as_GeoThinned), 2
precision_thinning, 16
print.GeoThinned (as_GeoThinned), 2
print.summary.GeoThinned
(as_GeoThinned), 2

select_target_points, 17
summary.GeoThinned (as_GeoThinned), 2

thin_points, 4, 18
thunnus, 21

22

	as_GeoThinned
	calculate_spatial_coverage
	caretta
	compute_nearest_neighbor_distances
	compute_neighbors_brute
	compute_neighbors_kdtree
	compute_neighbors_local_kdtree
	distance_thinning
	estimate_k_max
	grid_thinning
	lon_lat_to_cartesian
	max_thinning_algorithm
	precision_thinning
	select_target_points
	thin_points
	thunnus
	Index

