Package ‘IRISSeismic’

April 25, 2025
Type Package

Version 1.7.0

Title Classes and Methods for Seismic Data Analysis
Depends R (>=3.1.0)

Imports methods, pracma, RCurl, seismicRoll (>= 1.1.0), signal,
stringr, XML, stats

Suggests knitr,rmarkdown
VignetteBuilder knitr

Description Provides classes and methods for seismic data analysis. The
base classes and methods are inspired by the python code found in
the 'ObsPy' python toolbox <https://github.com/obspy/obspy>. Additional classes and
methods support data returned by web services provided by the TRIS DMC'
<http://service.iris.edu/>.

Collate Class-Trace.R Class-Stream.R Class-IrisClient.R
mseedWrappers.R Utils.R spectralUtils.R zzz.R

License GPL (>=2)
Repository CRAN
NeedsCompilation yes

Author Jonathan Callahan [aut],
Rob Casey [aut],
Gillian Sharer [aut, cre],
Mary Templeton [aut],
Chad Trabant [ctb]

Maintainer Gillian Sharer <gillian.sharer@earthscope.org>
Date/Publication 2025-04-25 09:00:06 UTC

Contents
IRISSeismic-package 3
basicStats e e 11
butterworth e 13

https://github.com/obspy/obspy
http://service.iris.edu/

Contents

CIOSSSPECIIUM v v v v et e e e e e e e e e e e e e e e e e e e 14
DDT . . . 17
envelope L e 18
eventWindow 20
getAvailabilityo 21
getChannel 23
getDataAvailability 26
getDataselect L e e e e e e 28
getDistaz e 30
getBvalresp L 31
getEvent L 33
getGaPS e 34
getNetwork L 36
getRotation 38
getSNCL e e 39
getStation L. L e 41
getTimeseries o o e e 43
getTraveltime e 45
getUnavailability L e 47
getUpDownTimes L 49
hilbert e 50
hilbertFFT o . e 51
IrisClient-class e e 53
McNamaraBins 54
McNamaraPSD 55
mergeTraces e 57
mergeUpDownTimes e 58
miniseed2Stream L L L e 60
multiplyBy e e 61
noiseMatrix2PdfMatrixo 62
noiseModels 63
psADE2NoiseMatrix e e e e 64
psdList. L 65
psdList2NoiseMatrix e 67
psdPlot . . . 68
PSAStatistics L e e e e e 70
readMiniseedFile L 72
TINS o v v v e e e e e e e e e e e e e e e e e e 73
rotate2D . ..o L e 74
slice e 76
STALTA 77
Stream-class e e e 80
surfaceDistance L e 83
Trace-class 84
TraceHeader-class e 86
transferFunctionSpectra 87
triggerOnset 88

unHistogram L 90

IRISSeismic-package 3

Index 91

IRISSeismic-package Classes and methods for seismic data analysis

Description

This package provides S4 classes for downloading and processing seismological data available
from Earthscope Consortium (https://www.earthscope.org) (formerly IRIS) or other data cen-
ters offering FDSN web services. Core classes Trace, Stream and IrisClient and their asso-
ciated methods are inspired by the functionality available in the python ObsPy package (https:
//github.com/obspy/obspy/wiki/).

Introduction

The "IRISSeismic-intro" vignette gives introductory examples on using the package.

In 2023, IRIS (Incorporated Research Institutions for Seismology) and UNAVCO merged to form
EarthScope Consortium. IRIS (now EarthScope) webservices are unchanged but can now be ac-
cessed at https://service.earthscope.org as well as https://service.iris.edu.

History

version 1.7.0

¢ added slot 'retries’ to the IrisClient class, for use by select API calls
« addition of Class-IrisClient slot for fdsnws event service site
¢ addition of environmental variable ‘IrisClient_event_site* for f{dsnws event service site

e addition of environmental variable ‘IrisClient_passw* for authorization credentials for re-
stricted data, used by ‘getDataselect.IrisClient

* bring libmseed code into conformance with CRAN compiled code requirements
version 1.6.7

* update maintainer contact information
* update IRIS references to EarthScope
* replaced service.iris.edu with service.earthscope.org

* changed http calls to https
version 1.6.6

* for web service calls that support the nodata=<204|404> option, use nodata=204

* corrected the crossSpectrum documentation, Pxy is the cross-periodogram for ts1 and ts2
version 1.6.5
» examples and vignette updated for better error handling when accessing internet resources

version 1.6.4

https://www.earthscope.org
https://github.com/obspy/obspy/wiki/
https://github.com/obspy/obspy/wiki/
https://service.earthscope.org
https://service.iris.edu

IRISSeismic-package

* updated to (modified version of) libmseed-2.19.8
version 1.6.3

 Stream object @ timing_quality now averages the values of the miniSEED blockette 1001 tim-
ing quality values, instead of summing the blockette 1001 values and dividing by the number
of records

version 1.6.2

* getDataselect, modified default time out values

¢ fixed url in documentation
version 1.6.0

* irisNetrc definition moved inside getDataselect function
* restored getTimeseries function

* default values for class Trace InstrumentSensitivity and SensitivityFrequency changed to NA
from 1.0

¢ added transferFunctionSpectra function
version 1.5.2

* updated getDataAvailablity to use new fdsnws availability web service specification http://service.iris.edu/fdsnws/availa
* fixed bug in getDataAvailability when mergequality=FALSE
* fixed bug in getDataAvailability affecting start/end times, introduced in version 1.5.1

* fixed bug in mergeTraces when trace has gap at end, introduced in version 1.5.1
version 1.5.1

* changed a subset of time format OS to OS6
* fixed bug in mergeTraces when fdsnws/dataselect implementation cuts on records instead of
sample

version 1.5.0

* added spacing as an option to getEvalresp
* modified getEvalresp to use IrisClient service_type

* new getDataAvailability() to return dataframe of miniseed data extents in the IRIS archive
using IRIS web service http://service.iris.edu/irisws/availability/1/

* minor change to src code to pass CRAN checks
version 1.4.9

* additional error handling
* minor updates to the plot.Trace and plot.Stream functions

* updated src/libmseed to version 2.19.6

version 1.4.8

IRISSeismic-package 5

* updated src/libmseed to version 2.19.5

* fix bug related to leap seconds

* functions that call web services now follow redirects

* some error outputs have changed slightly

» rmsVariance function, na.rm=TRUE calculates data length minus NA values
* rmsVariance.Stream now honors na.rm=TRUE

 getGaps() error handling now checks for negative sample rates

 getEvent, getEvalresp now truncates start and end input times to seconds (time format OSO
instead of OS) to fix error when user set options(digits.secs=) > 3

version 1.4.7

* additional error handling for getDistaz

¢ added input service_type to IrisClient, defaults to fdsnws

* plot.Trace x-axis labels are "MM dd" instead of days of week for traces > 1 day and < 1 week
» getDataselect will retry once if it encounters http code 401

* additional error handling for spectralUtils
version 1.4.6

* bug fix for IRISSeismic::slice
version 1.4.5

* fixed bug in noiseModels for low noise model results at periods > 10000 seconds

* retry if getEvent returns a service unavailable message
version 1.4.4
» modified error messages for getEvalresp() and getDistaz()
version 1.4.3
* changed getEvent default url from http://earthquake.usgs.gov/fdsnws/event/1/ to https://earthquake.usgs.gov/fdsnws/eve
version 1.4.2
* updated libmseed version to 2.19
version 1.4.1

* updated libmseed version to 2.18

* fix for reading miniseed with out of order records
version 1.4.0

* addition of repository argument to getDataselect and getSNCL, to match change in fdsnws-
dataselect web service

version 1.3.9

IRISSeismic-package

* fixes compile warning generated by clang

» removes followlocation=TRUE from getDataselect RCurl options
version 1.3.8

* getDataselect does not add a quality indicator to url by default. IRIS webservices itself
defaults to quality="M"

* getStation and getChannel do not add includerestricted indicator to url by default. IRIS
webservices itself defaults to TRUE

* better handling of textConnections
version 1.3.7

* users can now supply instrument response information in the form of frequency, amplitude,
phase to the functions psdStatistics, psdList2NoiseMatrix, psdPlot, in place of the
getEvalresp webservice call. Function argument order for psdPlot is changed.

* added showMedian option to psdPlot
version 1.3.5

* added ignoreEpoch option to getDataselect
version 1.3.4 — webservices and plotting

* getEvent forwards http://service.iris.edu/fdsnws/event/1/ calls to http://earthquake.usgs.gov/fdsnws/event/1/
» getDistaz changes output dataframe column name ellipsoid..attrs to ellipsoid.name

* plot.Trace allows for user supplied ylab and xlab input
version 1.3.3 — documentation

* Updated documentation and corrected outdated links
version 1.3.2 — bug fix

* noiseModels(), minor correction to the New High Noise Model
version 1.3.1 — bug fixes

* psdStatistics() correctly handles NA values when calculating high and low PDF bin limits and
returns pct_above and pct_below vectors of correct length

version 1.3.0 — compatibility with IRIS webservices
* getDistaz() returns new variables from output of http://services.iris.edu/irisws/distaz/1/
version 1.2.2 — PDF bug fix

» psdList2NoiseMatrix() adds 1 second to start time in getEvalresp call to work around a quirk
in http://services.iris.edu/irisws/evalresp/1/ webservice that will not return a response if the
start time is exactly on a metadata epoch boundary.

version 1.2.1 — PDF

IRISSeismic-package 7
 psdPlot() now compatible with changes to psdStatistics() in previous version. Adds ylo, yhi
arguments to customize y-axis limits in plot.
version 1.2.0 — PDF

* psdStatistics() changes method of setting PDF bins from fixed values to bins based on the
high and low PSD values and shifts bin centers by 0.5 dB. The result now matches output
from http://services.iris.edu/mustang/noise-pdf.

verison 1.1.7 — improved error handling

* getDataselect(), getNetwork(), getStation(), getChannel(), getAvailability(), getEvalresp(), get-
Traveltime() error handling now report unexpected http status codes.

version 1.1.6 — bug fixes

» getGaps() fixes issues with multiple sample rates and setting minimum gap length.

» mergeTraces.Stream() relaxes criteria for acceptable sample rate jitter.
version 1.1.5 — trace rotation

* rotate2D() changes orthogonality test tolerance from 5 degrees to 3 degrees.
version 1.1.4 — trace rotation

* rotate2D() exits if traces are not orthogonal.
version 1.1.3 — bug fix

 psdStatistics() fixes bug in calculation of pct_above and pct_below.
version 1.1.1 — bug fixes

* getGaps() minor bug fix.

* mergeTraces.Stream() minor bug fix.
version 1.0.10 — new data request argument and bug fixes

 Imports seismicRoll (>=1.1.0).
» getGaps() fixes bugs in calculation of initial and final gap of Trace.

* getDataselect(), getSNCL() adds "inclusiveEnd" argument, a logical that determines whether
a data point that falls exactly on the requested endtime is included in the Trace.

* libmseed change, when multiple sample rates exist in miniseed records use the mode of all
sample rates instead of using the sample rate in the first record.

* psdList() added rule for octave generation for channel codes that start with "V".
version 1.0.9 — Trace class expansion and bug fixes

* Improved error handling for getAvailability(), getChannel(), getDataselect(), getEvalresp(),
miniseed2Stream().
* parseMiniSEED.c, unpackdata.c updated. Fixes protection stack overflow issue.

* getGaps() includes a 0.5/sampling_rate tolerance factor.

IRISSeismic-package

* miniseed2Stream() uses endtime from parseMiniSEED instead of calculating from the sample
rate.

* Trace class now contains slots for optional metadata "latitude", "longitude", "elevation", "depth",
"azimuth", "dip", "SensitivityFrequency".

* rotate2D() uses Trace class "azimuth" slot information to identify channel orientation before
rotation instead of assuming lead and lag channel from trace input order.

version 1.0.8 — fixes required by ISPAQ

* Removed *maps’ and *mapdata’ from Suggested: packages.
* Changed URL syntax for FDSN web services to use "format=..." instead of "output=...".

* Fixed bug in getSNCL() so that it works when the "quality" argument is missing.
version 1.0.6 — CRAN updates required

* Removed "mode" argument form Trace.as.vector() signature.
version 1.0.4 — name change to IRISSeismic

* Name change required because ’seismic’ was recently taken.

» Using explicit references for ’utils’ and ’stats’ package functions as this is now required for
CRAN.

version 1.0.3 — cleanup for submission to CRAN
* Updated libmseed to version 2.16
version 0.2.8.0 — minor tweaks to 0.2.7

» Updated links to IRIS web services in the documentation.
* McNamaraBins() ignores bin #0 (~= DC)

* McNamaraPSD() conversion to dB occurs after binning, not before
version 0.2.7.0 — hilbert transform

¢ New hilbertFFT() function.
e New hilbert() trace method.

version 0.2.6.0 — cross correlation

¢ Added surfaceDistance() function.
¢ Added rotate2D() function.

version 0.2.5.0 — channel orientation

* Jumping to version 0.2.5 to match project milestone names.

* Added getSNCL() convenience wrapper for getDataselect() method.
* Added getDistaz() method of IrisClient.

¢ Added miniseed2Stream() and readMiniseedFile() functions.
Added getRotation() method of IrisClient.

IRISSeismic-package 9

version 0.2.3.0 — cross spectrum

* Moved McNamaraPSD() from trace method to spectral utility function.
* Added spectral utility functions:

— crossSpectrum()
— McNamaraBins()

* All get~ methods that return dataframes now guarantee a default ordering of rows.
version 0.2.2.0 — PSD and friends

* Add dependency on pracma package.

* Use pracma::detrend() function in DDT.Trace().

* Added "increment" parameter to STALTA.Trace().

* Removed STALTA.Trace() algorithm "classic_LR2".

"

Fixed URL generation for getEvalresp() when location=
¢ Added NamaraPSD.Trace() method.
Added PSD/PDF utility functions:

noiseMatrix2PdfMatrix()
noiseModels()
psdDF2NoiseMatrix()
psdList()
psdList2NoiseMatrix()
psdStatistics()

psdPlot()

version 0.2.1.1 — Bug fix release
* Removed dependcy on signal, XML packages.
version 0.2.1.0 — FDSN web services
* Conversion to FDSN web services including the following new/rewritten methods: getNetwork,

getStation, getChannel, getAvailability, getUnavailability

» Updated version of getEvent to return a dataframe with columns named "latitude" and "lon-
gitude" for consistency with all other web services

» Updated documentation and Rscripts to match the API changes in the conversion to FDSN
web services.

* Removal of all StationXML classes in favor of storing that information in slots of the Trace
class.

» Updates to Trace object slots @Sensor, @ nstrumentSensitivity and @InputUnits to store
information as character, numeric and character instead of StationXML classes.

* The TraceHeader@quality slot now reflects the data quality returned in the miniSEED record
rather than the quality that was requested by getDataselect. (Requests with quality=B for
"Best" typically return quality=M.)

10 IRISSeismic-package

* Improved STALTA. Trace () method removes experimental algorithms and now uses C++ code
from package rollSeismic to calculate rolling means.

» Updated IrisClient now uses web services from http://service.iris.edu for the fol-
lowing methods: getDataselect, getEvalresp, getEvent
version 0.2.0.0
* Removed PSD methods of Stream and Trace. PSD algorithms are now part of the PSD
metric.

* Improved mergeTraces.Stream() method now accepts fillMethod="fillZero".
version 0.1.9.0

* New rollSeismic package for fast rolling algorithms implemented in C++/Rcpp.

e New num_spikes metric based on seismicRoll: :roll_hampel outlier detection.

* New correlation metric.

* New scripts glitchMetrics.Rscript, correlationMetric.Rscript, pressureCorrelation.Rscript
* New trace@stats@processing slot for data processing information.

e New Stream methods: mergeTraces, plot

* Improved getGaps.Stream() method properly handles initial and final gaps.

* Improved MCR error messing.

version 0.1.8.0 — IrisClient methods getEvent and getTraveltime, improved SNR metric
version 0.1.7.0 — PSD

version 0.1.6.0 — improved errors, miniSEED parser

version 0.1.5.0 — code cleanup, improved errors, package vignette

version 0.1.4.0 — STA/LTA, upDownTimes, basic plotting

version 0.1.3.0 — SNR, memory profiling

version 0.1.2.0 — ...

version 0.1.1.0 — ...

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

ObsPy: https://github.com/obspy/obspy/wiki/

EarthScope web services: https://service.earthscope.org/

See Also

IrisClient-class, Trace-class, Stream-class,

http://service.iris.edu
https://github.com/obspy/obspy/wiki/
https://service.earthscope.org/

basicStats 11

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient”, debug=TRUE)

starttime <- as.POSIXct("2010-02-27 06:45:00", tz="GMT")
endtime <- as.POSIXct("2010-02-27 07:45:00", tz="GMT")

Get the seismic data
result <- try(st <- getDataselect(iris,"IU","ANMO","00@",6 "BHZ",starttime,endtime))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {

Extract the first trace, display the metadata and plot it
tr1 <- st@traces[[1]]
show(tri@stats)
plot(trl)

basicStats Length, Max, Mean, Median, Min and Standard Deviation

Description

Basic statistics on the data in Trace and Stream objects.

Usage

length(x)

max(x, ...)
mean(x, ...)

median(x, na.rm)
min(x, ...)
sd(x, na.rm)
parallellLength(x)

parallelMax(x, na.rm)
parallelMean(x, na.rm)
parallelMedian(x, na.rm)
parallelMin(x, na.rm)
parallelSd(x, na.rm)

Arguments
X a Trace or Stream object
na.rm a logical specifying whether missing values should be removed

arguments to be passed to underlying methods, e.g. the mean function:

* na.rm— as above (default=FALSE)

12 basicStats

Details
Trace methods

When x is a Trace object, methods length, max, mean, median, min and sd operate on the data
slot of the Trace and are equivalent to, e.g., max(x@data, na.rm=FALSE).

Stream methods

When x is a Stream object, methods length, max, mean, median, min and sd are applied to the
concatenation of data from every Trace in the Stream, treating this as a single data series.

The parallel~ versions of these methods are available only on Stream objects and return a vector
of values, one for each Trace.

By default, the Stream-method versions of these methods use na.rm=FALSE as there should be no
missing datapoints in each Trace. The Trace methods default to na.rm=TRUE to accommodate
merged traces where gaps have been filled with NAs.

Value

For the simple statistics, a single numeric value is returned or NA if the Trace or Stream has no
data.

For the parallel~ versions of these methods, available on Stream objects, a numeric vector is
returned of the same length as Stream@traces.

Note

See the R documentation on the respective base functions for further details.

The length.Stream method only counts the number of actual data values in the individual Traces
in the Stream object. Missing values associated with the gaps between Traces are not counted.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient”)

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,"AK","PIN",6"" "BHZ",K starttime,endtime)

Get the first trace and generate some statistics
tr1 <- st@traces[[1]]

length(tr1)

max (tr1)

mean(tr1)

sd(tr1)

butterworth 13

End(Not run)

butterworth Apply Butterworth filter

Description
The butterworth method of Trace objects returns a new Trace where data in the @data slot have
been modified by applying a Butterworth filter.

Usage

butterworth(x, n, low, high, type)

Arguments
X a Trace object
n filter order
low frequency used in low- or stop/band-pass filters
high frequency used in high or stop/band-pass filters
type type of filter — 'low', 'high', 'pass' or 'stop'’
Details

This method creates a Butterworth filter with the specified characteristics and applies it to the Trace
data.

When only n and low are specified, a high pass filter is applied. When only n and high are specified,
a low pass filter is applied. When n and both low and high are specified, a band pass filter is applied.
To apply a band stop filter you must specify n, low, high and type="'stop'

Value

A new Trace object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

See Also

signal::butter, signal::filter

14 crossSpectrum

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

Compare to the results in figure 2a of

"Determination of New Zealand Ocean Bottom Seismometer Orientation
via Rayleigh-Wave Polarization”, Stachnik et al.

#
#
#
#
#
http://srl.geoscienceworld.org/content/83/4/704
#

#

(note: since publication, ZU.NZ19..BH1 has been renamed BH2 and ZU.NZ19. .BH2 has been renamed BH1)

starttime <- as.POSIXct("2009-02-18 22:01:07",tz="GMT")
endtime <- starttime + 630
verticallLines <- starttime + seq(30,630,100)

Get data

stZ <- getSNCL(iris,"ZU.NZ19..BHZ", starttime,endtime)
st2 <- getSNCL(iris,"ZU.NZ19..BH2",fstarttime,endtime)
st1 <- getSNCL(iris,"ZU.NZ19..BH1",starttime,endtime)

Demean, Detrend, Taper

trZz <- DDT(stZ@traces[[1]],TRUE,TRUE,®.05)
tr2 <- DDT(st2@traces[[1]],TRUE,TRUE,@.05)
tr1 <- DDT(st1@traces[[1]],TRUE,TRUE,®.05)

Bandpass filter

trZ_f <- butterworth(trZ,2,0.02,0.04,type="pass')
tr2_f <- butterworth(tr2,2,0.02,0.04,type="pass"')
tr1_f <- butterworth(tr1,2,0.02,0.04,type="pass"')
3 rows

layout(matrix(seq(3)))

Plot

plot(trz_f)
abline(v=verticallines,col="gray50',1ty=2)
plot(tr2_f)
abline(v=verticallines,col="gray50',61ty=2)
plot(tri_f)
abline(v=verticallLines,col="gray50',1lty=2)

Restore default layout
layout (1)

End(Not run)

crossSpectrum Cross-Spectral Analysis

crossSpectrum 15

Description

The crossSpectrum() function is based on R’s spec.pgram() function and attempts to provide com-
plete results of cross-spectral FFT analysis in a programmer-friendly fashion.

Usage

crossSpectrum(x, spans = NULL, kernel = NULL, taper = 0.1,
pad = @, fast = TRUE,
demean = FALSE, detrend = TRUE,
na.action = stats::na.fail)

Arguments
X multivariate time series
spans vector of odd integers giving the widths of modified Daniell smoothers to be
used to smooth the periodogram
kernel alternatively, a kernel smoother of class "tskernel"
taper specifies the proportion of data to taper. A split cosine bell taper is applied to
this proportion of the data at the beginning and end of the series
pad proportion of data to pad. Zeros are added to the end of the series to increase its
length by the proportion pad
fast logical. if TRUE, pad the series to a highly composite length
demean logical. If TRUE, subtract the mean of the series
detrend logical. If TRUE, remove a linear trend from the series. This will also remove
the mean
na.action NA action function
Details

The multivariate timeseries passed in as the first argument should be a union of two separate time-
series with the same sampling rate created in the following manner:

ts1 <- ts(datal,frequency=sampling_rate)
ts2 <- ts(data2,frequency=sampling_rate)
X <= ts.union(ts1,ts2)

The crossSpectrum() function borrows most of its code from R’s spec.pgram() function. It omits any
plotting functionality and returns a programmer-friendly dataframe of all cross-spectral components
generated during Fourier analysis for use in calculating transfer functions.

The naming of cross-spectral components is borrowed from the Octave version of MATLAB’s
pwelch() function.

16 crossSpectrum

Value

A dataframe with the following columns:

freq spectral frequencies
specl "two-sided’ spectral amplitudes for ts1
spec? "two-sided’ spectral amplitudes for ts2
coh magnitude squared coherence between ts1 and ts2
phase cross-spectral phase between ts1 and ts2
Pxx periodogram for ts1
Pyy periodogram for ts2
Pxy cross-periodogram for ts1 and ts2
Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Octave pwelch() source code

Normalization of Power Spectral Density estimates

See Also

McNamaraPSD

Examples

Not run:
Create a new IrisClient
iris <- new("IrisClient")

Get seismic data
starttime <- as.POSIXct("2011-05-01", tz="GMT")
endtime <- starttime + 3600

st1 <- getDataselect(iris,”CI","PASC","00","BHZ",starttime,endtime)
st2 <- getDataselect(iris,"CI","PASC","10","BHZ",starttime,endtime)
tr1 <- stl@traces[[1]]
tr2 <- st2@traces[[1]]

Both traces have a sampling rate of 40 Hz
sampling_rate <- tril@stats@sampling_rate

ts1 <- ts(tri@data,frequency=sampling_rate)
ts2 <- ts(tr2@data, frequency=sampling_rate)

Calculate the cross spectrum
DF <- crossSpectrum(ts.union(ts1,ts2),spans=c(3,5,7,9))

https://sourceforge.net/p/octave/signal/ci/default/tree/inst/pwelch.m
https://CRAN.R-project.org/package=psd/vignettes/normalization.pdf

DDT 17

Calculate the transfer function

transferFunction <- DFPxy / DFPxx

transferAmp <- Mod(transferFunction)

transferPhase <- pracma::mod(Arg(transferFunction) * 180/pi,360)

2 rows
layout(matrix(seq(2)))

Plot

plot(1/DF$freq, transferAmp,type="'1"',6log="x",
xlab="Period (sec)”,
main="Transfer Function Amplitude"”)

plot(1/DF$freq, transferPhase,type="'1"',6log="x",
xlab="Period (sec)”, ylab="degrees",

main="Transfer Function Phase")

Restore default layout
layout (1)

End(Not run)

DDT Apply demean, detrend, cosine taper

Description

The DDT method of Trace objects returns a new Trace where data in the @data slot have been
modified. This is typically required before peforming any kind of spectral analysis on the seismic
trace.

Usage

DDT(x, demean, detrend, taper)

Arguments

X a Trace object

demean logical specifying whether to deman (default=TRUE)

detrend logical specifying whether to detrend (default=TRUE)

taper proportion of the signal to be tapered at each end (default=0.1)
Details

Use taper=0 for no tapering.

18 envelope

Value

A new Trace object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

P-wave onset for a big quake
starttime <- as.POSIXct("2010-02-27 06:30:00", tz="GMT")
endtime <- as.POSIXct("2010-02-27 07:00:00", tz="GMT")
result <- try(st <- getDataselect(iris,"IU","ANMO",6"00","BHZ", f starttime,endtime))
if (inherits(result,”"try-error”)) {
message(geterrmessage())
} else {
tr <- st@traces[[1]]
trClean <- DDT(tr,TRUE,TRUE,0.1)
layout(matrix(seq(2)))
plot(tr)
abline(h=0,col="gray60"')
mtext("Raw"”,side=3,1ine=-2,adj=0.05,col="red")
plot(trClean)
abline(h=0,col="gray60"')
mtext(”"Demean - Detrend - Cosine Taper”,line=-2,side=3,adj=0.05,col="red")

}

Restore default layout
layout (1)

envelope Envelope of a seismic signal

Description
The envelope method of Trace objects returns a Trace whose data have been replaced with the
envelope of the seismic signal.

Usage

envelope(x)

Arguments

X a Trace object

envelope 19

Details

Before calculating the envelope, the seismic trace is "cleaned up’ by removing the mean, the trend
and by applying a cosine taper. See DDT for more details.

The seismic envelope is defined as:

B(t) = /T2(t) + H2(t)

where T'(t) is the seismic trace and H () is the Hilbert transform of 7'(¢).

Value

A Trace whose data have been replaced with the envelope of the seismic signal.

Note

This algorithm is adapted from code in the seewave package.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2010-02-27 06:00:00", tz="GMT")
endtime <- as.POSIXct("2010-02-27 09:00:00", tz="GMT")

Get the waveform
st <- getDataselect(iris,”IU","ANMO","00",6"BHZ",fstarttime,endtime)
tr <- st@traces[[1]]

Demean, detrend, cosine taper
tr <- DDT(tr)

Create envelope version of the trace
trenv <- envelope(tr)

Plot signal data and envelope data
plot(tr@data, type='l', col='gray80')
points(trenv@data, type='l', col='blue')

End(Not run)

20 eventWindow

eventWindow Return a portion of a trace surrounding an event.

Description
The eventWindow method of Trace uses the picker returned by the STALTA() method to center a
window around the the event detected by the picker.

Usage

eventWindow(x, picker, threshold, windowSecs)

Arguments
X a Trace object
picker a picker as returned by the STALTA() method applied to this Trace
threshold the threshold at which the picker is ’triggered’
windowSecs the size of the window in secs
Details

This utility function uses the trace method triggerOnset () to determine p-wave onset followed by
the slice() method to return a new Trace object of the desired size centered near the event onset.

When no threshold value is supplied, the default value is calculated as:
threshold=quantile(picker,©.999,na.rm=TRUE)

Value

A new Trace object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

See Also

STALTA, triggerOnset

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient”)

starttime <- as.POSIXct("2002-04-20", tz="GMT")
endtime <- as.POSIXct("2002-04-21", tz="GMT")

getAvailability 21

Get the waveform
st <- getDataselect(iris,"US","OXF","","BHZ", 6 starttime,endtime)

Seismic signal in third trace
tr <- st@traces[[3]]

Create a picker
picker <- STALTA(tr,3,30)
threshold <- quantile(picker,©.99999,na.rm=TRUE)

3 rows
layout(matrix(seq(3)))

Plot trace and p-wave closeups

closeupl <- eventWindow(tr,picker,threshold, 3600)
closeup2 <- eventWindow(tr,picker,threshold, 600)
plot(tr)

plot(closeupl,subsampling=1)
abline(v=length(closeup1)/2, col='red')
plot(closeup2,subsampling=1)
abline(v=length(closeup2)/2, col='red")

Restore default layout
layout (1)

End(Not run)

getAvailability Retrieve Channel metadata from EarthScope

Description
The getAvailability method obtains channel metadata for available channels from the Earth-
Scope station web service and returns it in a dataframe.

Usage

getAvailability(obj, network, station, location, channel,
starttime, endtime, includerestricted,
latitude, longitude, minradius, maxradius)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code

channel character string with the three letter channel code

22 getAvailability

starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
includerestricted

optional logical identifying whether to report on restricted data (default=FALSE)

latitude optional latitude used when specifying a location and radius

longitude optional longitude used when specifying a location and radius

minradius optional minimum radius used when specifying a location and radius

maxradius optional maximum radius used when specifying a location and radius
Details

The getAvailability method uses the station web service to obtain data for all available channels
that meet the criteria defined by the arguments and returns that data in a dataframe. Each row of the
dataframe represents a unique channel-epoch. This method is equivalent to the getChannel method
with the following additional parameters attached to the url:

&includeavailability=true&matchtimeseries=true

Each of the arguments network, station, location or channel may contain a valid code or a
wildcard expression, e.g. "BH?" or "*". Empty strings are converted to "*". Otherwise the ascii
string that is used for these values is simply inserted into the web service request URL. (For non-
available channels use getUnavailability.)

For more details see the web service documentation.

Value

A dataframe with the following columns:

network, station, location, channel, latitude, longitude, elevation,
depth, azimuth, dip, instrument, scale, scalefreq, scaleunits,
samplerate, starttime, endtime, snclId

Rows are ordered by snclId.

The snclld column, eg. "US.OCWA..BHE", is generated as a convenience. It is not part of the
normal return from the station web service.

Note: The snclId is not a unique identifier. If the time span of interest crosses an epoch boundary
where instrumentation was changed then multiple records (rows) will share the same snclId.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

https://service.earthscope.org/fdsnws/station/1/

getChannel 23

References

The EarthScope station web service:
https://service.earthscope.org/fdsnws/station/1/
This implementation was inspired by the functionality in the obspy get_stations() method.

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.
html

See Also

IrisClient-class, getChannel, getUnavailability

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

Date of Nisqually quake
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- starttime + 2%*24*3600

Use getEvent web service to retrieve events in this time period
result <- try(events <- getEvent(iris,starttime,endtime,6.0))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {
events

biggest event is Nisqually
eIndex <- which(events$magnitude == max(events$magnitude))
e <- events[elIndex[1],]

Find all BHZ channels collecting data at the time of the quake and within
5 degrees of the quake epicenter
result <- try(channels <- getAvailability(iris,"x","x" "x" "BHZ", K starttime,endtime,
lat=e$latitude,long=e$longitude,maxradius=5))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {
channels

getChannel Retrieve Channel metadata from EarthScope

Description

The getChannel method obtains channel metadata from the EarthScope station web service and
returns it in a dataframe.

https://service.earthscope.org/fdsnws/station/1/
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html

24 getChannel

Usage

getChannel(obj, network, station, location, channel,
starttime, endtime, includerestricted,
latitude, longitude, minradius, maxradius)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
includerestricted
optional logical identifying whether to report on restricted data
latitude optional latitude used when specifying a location and radius
longitude optional longitude used when specifying a location and radius
minradius optional minimum radius used when specifying a location and radius
maxradius optional maximum radius used when specifying a location and radius
Details

The getChannel method uses the station web service to obtain data for all channels that meet the
criteria defined by the arguments and returns that data in a dataframe. Each row of the dataframe
represents a unique channel-epoch.

Each of the arguments network, station, location or channel may contain a valid code or a
wildcard expression, e.g. "BH?" or "*". Empty strings are converted to "*". Otherwise the ascii
string that is used for these values is simply inserted into the web service request URL.

For more details see the webservice documentation.

Value

A dataframe with the following columns:

network, station, location, channel, latitude, longitude, elevation,
depth, azimuth, dip, instrument, scale, scalefreq, scaleunits,
samplerate, starttime, endtime, snclId

Rows are ordered by snclId.

The snclld column, eg. "US.OCWA..BHE", is generated as a convenience. It is not part of the
normal return from the station web service.

Note: The snclIds is not a unique identifier. If the time span of interest crosses an epoch boundary
where instrumentation was changed then multiple records (rows) will share the same snclId.

https://service.earthscope.org/fdsnws/station/1/

getChannel 25

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope station webservice:
https://service.earthscope.org/fdsnws/station/1/
This implementation was inspired by the functionality in the obspy get_stations() method.

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.
html

See Also

IrisClient-class, getAvailability, getUnavailability

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

Date of Nisqually quake
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- starttime + 2%24%*3600

Use the getEvent web service to determine what events happened in this time period
result <- try(events <- getEvent(iris,starttime,endtime,6.0))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {
events

biggest event is Nisqually
elndex <- which(events$magnitude == max(events$magnitude))
e <- events[eIndex[1],]

}

Which stations in the US network are within 5 degrees of the quake epicenter?
result <- try(stations <- getStation(iris,"US","x" "x" "BHZ", starttime,endtime,
lat=e$latitude,long=e$longitude,maxradius=5))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {
stations

}

Get some detailed information on any BHZ channels at the "Octopus Mountain” station
result <- try(channels <- getChannel(iris,"US","OCWA","x" "BHZ",6starttime,endtime))
if (inherits(result,”"try-error”)) {

message(geterrmessage())
} else {

https://service.earthscope.org/fdsnws/station/1/
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html

26 getDataAvailability

channels

}

getDataAvailability Retrieve miniseed trace extents from EarthScope

Description

The getDataAvailability method obtains miniseed time extents from the EarthScope availability
web service and returns it in a dataframe.

Usage

getDataAvailability(obj, network, station, location, channel,starttime, endtime,
mergequality, mergesamplerate, mergeoverlap, mergetolerance,
includerestricted, excludetoolarge)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)

mergequality optional logical identifying if timespans with differing qualities are grouped to-
gether (default=TRUE)

mergesamplerate
optional logical identifying if timespans from data with differing sample rates
are grouped together (default=FALSE)

mergeoverlap optional logical identifying if overlapping timespans are merged together (de-
fault=TRUE)

mergetolerance optional numeric. Time spans separated by less than or equal to the mergetol-
erance value in seconds are merged together. To have an effect, the mergetol-
erance value must be larger than 1.5 times the sample period. This implements
the mergegaps option in the fdsnws availability web service specification.
includerestricted
optional logical identifying whether to report on restricted data (default=FALSE)
excludetoolarge

optional logical, if TRUE sets the fdsnws availability web service option "limit=500000".
default=TRUE

getDataAvailability 27

Details

The getDataAvailability method uses the FDSNWS availability service to obtain start and end-
times for all continuous trace segments in the IRIS (or other) archive for the requested network,
station, location, channels and returns that data in a dataframe. Each row of the dataframe repre-
sents a unique data trace extent.

Each of the arguments network, station, location or channel may contain a valid code or a
wildcard expression, e.g. "BH?" or "*". Empty strings are converted to "*". Otherwise the ascii
string that is used for these values is simply inserted into the web service request URL.

For more details see the web service documentation.

Value

A dataframe with the following columns:

mergequality=TRUE and mergesamplerate=FALSE (defaults):

network, station, location, channel, samplerate, starttime, endtime, snclId

mergequality=TRUE and mergesamplerate=TRUE:

network, station, location, channel, starttime, endtime, snclId

mergequality=FALSE and mergesamplerate=FALSE:

network, station, location, channel, quality, samplerate, starttime, endtime, snclId

mergequality=FALSE and mergesamplerate=TRUE:

network, station, location, channel, quality, starttime, endtime, snclId

Rows are ordered by snclId.

The snclld column, eg. "US.OCWA..BHE", is generated as a convenience. It is not part of the
normal return from the station web service.
Author(s)

Gillian Sharer <gillian.sharer@earthscope.org>

References

The EarthScope station web service:

https://service.earthscope.org/fdsnws/availability/1/ https://service.earthscope.
org/ph5ws/availability/1/

https://service.earthscope.org/fdsnws/availability/1/
https://service.earthscope.org/fdsnws/availability/1/
https://service.earthscope.org/ph5ws/availability/1/
https://service.earthscope.org/ph5ws/availability/1/

28 getDataselect

See Also

IrisClient-class

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2018-01-01",tz="GMT")
endtime <- as.POSIXct("2019-01-01",tz="GMT")
network <- "TA"

station <- "M22K"

channel <- "BHZ"

result <- try(tracelList <- getDataAvailability(iris,network,station,"*", 6 channel,starttime,endtime))
if (inherits(result,”try-error”)) {

message(geterrmessage())
} else {

tracelist

getDataselect Retrieve seismic data from EarthScope

Description

The getDataselect method makes a request of the EarthScope dataselect webservice and re-
turns a Stream object in which individual Traces have been sorted by start time.

Usage
getDataselect(obj, network, station, location, channel,
starttime, endtime, ...)
Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)

endtime POSIXct class specifying the endtime (GMT)

getDataselect 29

optional arguments quality optional character string identifying the quality.
IRIS webservices defaults to quality="M". repository optional character string
identifying whether to exclusively search primary archive or realtime collection
buffers. Acceptable values are "primary" or "realtime". If not specified, IRIS
webservices defaults to both repositories. inclusiveEnd optional logical de-
termining whether the endtime is inclusive (default = TRUE) ignoreEpoch op-
tional logical defining behavior when multiple epochs are encountered (default
= FALSE)

Details

This is the primary method for retrieving seismic data. Data requests are made through the dataselect
webservice and returned data are parsed using the internal miniseed2Stream() function.

If the location argument contains an empty string to specify a *blank’ location code, a location code
of "--" will be used in the dataselect request URL. (See dataselect documentation.)

If inclusiveEnd=FALSE, then getDataselect will subtract 0.000001 seconds from the endtime
before passing the value to the dataselect webservice. An endtime of, e.g., as.POSIXct("2016-01-03",
tz="GMT") will be passed into dataselect as end=2016-01-02723:59:59.999999. A data sam-

ple at time 2016-01-03T00:00:00 will not be returned unless inclusiveEnd=TRUE.

Error returns from the webservice will stop evaluation and generate an error message.

Sometimes the station webservice will return multiple records for the same SNCL, each with a
different scale or starttime. These represent different epochs with potentially different metadata
parameters for the SNCL and, by default, will cause a "Multiple epochs’ error message to be gener-
ated.

Handling all possible metadata differences so that the data may be merged is beyond the scope of
this package. Instead, to avoid errors, users may specify ignoreEpoch=TRUE in which case the very
first SNCL-epoch encountered will be used and all others will be discarded.

For access to restricted data, getDataselect will look for a system environmental variable "IrisClient_passw"
which should be a string in the form "login:password". Alternatively, getDataselect will look for
system environmental variable "IrisClient_netrc" which should point to a .netrc authentication file.

Value

A new Stream object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope dataselect webservice:
https://service.earthscope.org/fdsnws/dataselect/1/
This implementation is similar in functionality to the obspy dataselect function:

https://docs.obspy.org/_modules/obspy/clients/fdsn/client.html

https://service.earthscope.org/fdsnws/dataselect/1/
https://service.earthscope.org/fdsnws/dataselect/1/
https://docs.obspy.org/_modules/obspy/clients/fdsn/client.html

30 getDistaz

See Also

getSNCL, IrisClient-class

Examples

Not run:

Open a connection to EarthScope webservices
iris <- new("IrisClient")
options("nanotimeFormat”="%Y-%m-%dT%H-%M-%E9S")

Use getDataselect to request data for II.JTS.00.BHZ
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- as.POSIXct("”2001-03-01",tz="GMT")

st <- getDataselect(iris, "II","JTS","00","BHZ",starttime, endtime,
inclusiveEnd=FALSE, ignoreEpoch=TRUE)

Display structure of trace(s)
str(st)

Plot trace
plot(st)

End(Not run)

getDistaz Retrieve great circle distance information from EarthScope

Description

The getDistaz method obtains great circle distance data from the EarthScope distaz web service.

Usage

getDistaz(obj, latitude, longitude, stalLatitude, stalLongitude)

Arguments
obj an IrisClient object
latitude latitude of seismic event
longitude longitude of seismic event
stalLatitude latitude of seismic station

stalLongitude longitude of seismic station

getEvalresp 31

Details

The distance-azimuth service will calculate the great-circle angular distance, azimuth, and back
azimuth between two geographic coordinate pairs. Azimuth and back azimuth are measured clock-
wise from North.

Value
A dataframe with the following columns:

ellipsoid.semiMajorAxis, ellipsoid.flattening, ellipsoid.name, fromlat, fromlon, tolat, tolon,
azimuth,backAzimuth, distance, distanceMeters

Where fromlat is the event latitude, fromlon is the event longitude, tolat is the station latitude,
and tolon is the station longitude. azimuth, backAzimuth, and distance are measured in degrees.
distanceMeters is distance in meters. ellipsoid.semiMajorAxis, ellipsoid.flattening,
and ellipsoid. name refer to the World Geodetic System standard coordinate system version used
to correct for ellipticity when converting to geocentric latitudes.

Only a single row is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope distaz webservice:

https://service.earthscope.org/irisws/distaz/1/

See Also

IrisClient-class

getEvalresp Retrieve instrument response information from EarthScope

Description
The getEvalresp method obtains instrument response data from the EarthScope evalresp web-
service.

Usage

getEvalresp(obj, network, station, location, channel,
time, minfreq, maxfreq, nfreq, units, output, spacing)

https://service.earthscope.org/irisws/distaz/1/

32

Arguments
obj
network
station
location
channel
time
minfreq
maxfreq
nfreq
units
output

spacing

Details

getEvalresp

an IrisClient object

character string with the two letter seismic network code

character string with the station code

character string with the location code

character string with the three letter channel code

POSIXct class specifying the time at which response is evaluated (GMT)
optional minimum frequency at which response will be evaluated
optional maximum frequency at which response will be evaluated
optional number of frequencies at which response will be evaluated
optional code specifying unit conversion

optional code specifying output type (default="fap")

optional code specifying spacing, accepted values are "lin" or "linear", "log" or
"logarithmic" (default="log")

The evalresp webservice responds to requests with data that can be used to remove instrument
response from a seismic signal.

Each of network, station or channel should contain a valid code without wildcards. The ascii
string that is used for these values is simply passed through to evalresp.

If the location argument contains an empty string to specify a ’blank’ location code, a location
code of "--" will be used in the dataselect request URL. (See dataselect documentation.)

The response from evalresp is converted into a dataframe with rows in order of increasing fre-

quency.

Value

For output="fap"”, a dataframe with columns named:

freq, amp, phase

For output="cs", a dataframe with columns named:

freq, real, imag

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope evalresp webservice:

https://service.earthscope.org/irisws/evalresp/1/

https://service.earthscope.org/fdsnws/dataselect/1/
https://service.earthscope.org/irisws/evalresp/1/

getEvent 33

See Also

IrisClient-class,

getEvent Retrieve seismic event information from the USGS NEIC

Description

The getEvent method obtains seismic event data from the USGS NEIC event webservice.

Usage

getEvent(obj, starttime, endtime, minmag, maxmag, magtype,
mindepth, maxdepth)

Arguments
obj an IrisClient object
starttime POSIXct class limiting results to events occurring after starttime (GMT)
endtime POSIXct class limiting results to events occurring before endtime (GMT)
minmag optional minimum magnitude
maxmag optional maximum magnitude
magtype optional magnitude type
mindepth optional minimum depth (km)
maxdepth optional maximum depth (km)
Details

The getEvent method uses the event web service to obtain data for all events that meet the criteria
defined by the arguments and returns that data in a dataframe. Each row of the dataframe represents
a unique event.

getEvent calls to the IRIS event webservice now go to https://earthquake.usgs.gov/fdsnws/event/1/.
If obj@site is something other than "https://service.earthscope.org", getEvent will point to obj@site/fdsnws/event/1/.
The event service must be able to output format=text.

Value

A dataframe with the following columns:

eventIld ,time, latitude, longitude, depth, author, cCatalog, contributor,
contributorId, magType, magnitude, magAuthor, eventLocationName

Rows are ordered by time.

NOTE: column names are identical to the names returned from the event web service with the
exception of "latitude" for "lat" and "longitude" for "lon". The longer names are used for internal
consistency — all other web services return columns named "latitude" and "longitude".

34 getGaps

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The USGS event webservice: https://earthquake.usgs.gov/fdsnws/event/1/

See Also

IrisClient-class,

Examples
Not run:
NOTE: 'maps' and 'mapdata’ packages must be installed
#require(maps)
#require(mapdata)

Open a connection to EarthScope webservices
iris <- new("IrisClient”)

Get events > mag 5.0 over a week in June of 2012
starttime <- as.POSIXct("2012-06-21", tz="GMT")
endtime <- starttime + 3600 * 24 % 7
result <- try(events <- getEvent(iris, starttime, endtime, minmag=5.0))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {

Look at all events
print(paste(nrow(events), "earthquakes found with magnitude > 5.0"))

Plot events on a map
#map('world")
#points(events$longitude, events$latitude, pch=16, cex=1.5, col='red")

#labels <- paste(” ", as.character(round(events$magnitude,1)), sep="")
#text(events$longitude, events$latitude, labels=labels, pos=4, cex=1.2, col='red3')
}

End(Not run)

getGaps Gap analysis

Description

The getGaps method calculates data dropouts that occur within the requested time range associated
with a Stream.

https://earthquake.usgs.gov/fdsnws/event/1/

getGaps 35

A Stream object returned by getDataselect contains a list of individual Trace objects, each
of which is guaranteed to contain a continuous array of data in each Trace@data slot. Each
TraceHeader also contains a starttime and an endtime defining a period of uninterrupted data
collection.

Data dropouts are determined by examining the requestedStartime and requestedEndtime slots
associated with the Stream and the starttime and endtime slots found in the each TraceHeader.

Usage
getGaps(x, min_gap)

Arguments

X Stream object

min_gap minimum gap (sec) below which gaps will be ignored (default=1/sampling_rate)
Details

This method first checks the SNCL id of each Trace to make sure they are identical and generates
an error if they are not. Mismatches in the sampling_rate will also generate an error.

The data gaps (in seconds) within a Stream are determined and the associated sampling_rate is
used to calculate the number of missing values in each gap. The length of the gaps and nsamples
vectors in the returned list will be one more than the number of Traces (inital gap + gaps between
traces + final gap).

Gaps smaller than min_gap are set to @. Values of min_gap smaller than 1/sampling_rate will be
ignored and the default value will be used instead.

Overlaps will appear as gaps with negative values.

Value

A list is returned with the following elements:

* gaps numeric vector of data gaps within a Stream

* nsamples number of missing samples associated with each gap

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform

36 getNetwork

st <- getDataselect(iris,"AK"”,"PIN","" "BHZ",K starttime,endtime)

Save the gap analysis in a variable
gapInfo <- getGaps(st)

See what information is availble
names(gapInfo)

Look at a histogram of data dropouts
hist(gapInfo$nsamples, breaks=50,
main="Data Gaps in AK.PIN..BHZ Jan 24, 2012",
xlab="number of missing samples per gap")

End(Not run)

getNetwork Retrieve Network metadata from EarthScope

Description

The getNetwork method obtains network metadata from the EarthScope station web service and
returns it in a dataframe.

Usage

getNetwork(obj, network, station, location, channel,
starttime, endtime, includerestricted,
latitude, longitude, minradius, maxradius)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
includerestricted
optional logical identifying whether to report on restricted data (default=FALSE)
latitude optional latitude used when specifying a location and radius
longitude optional longitude used when specifying a location and radius
minradius optional minimum radius used when specifying a location and radius

maxradius optional maximum radius used when specifying a location and radius

getNetwork 37

Details

The getNetwork method utilizes the station web service to return data for all stations that meet the
criteria defined by the arguments and returns that data in a dataframe. Each row of the dataframe
represents a unique network.

Each of the arguments network, station, location or channel may contain a valid code or a
wildcard expression, e.g. "BH?" or "*". Empty strings are converted to "*". Otherwise, the ascii
string that is used for these values is simply inserted into the web service request URL.

For more details see the web service documentation.

Value

A dataframe with the following columns:
network, description, starttime, endtime, totalstations
Rows are ordered by network.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope station web service:
https://service.earthscope.org/fdsnws/station/1/
This implementation was inspired by the functionality in the obspy get_stations() method.

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.
html

See Also

IrisClient-class

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

Date of Nisqually quake
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- starttime + 2%24*3600

Use the getEvent web service to determine what events happened in this time period
result <- try(events <- getEvent(iris,starttime,endtime,6.0))
if (inherits(result,”"try-error”)) {
message(geterrmessage())
} else {
events

https://service.earthscope.org/fdsnws/station/1/
https://service.earthscope.org/fdsnws/station/1/
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html

38 getRotation

biggest event is Nisqually
eIndex <- which(events$magnitude == max(events$magnitude))
e <- events[eIndex[1],]

Which seismic networks have BHZ stations within 5 degrees of the quake epicenter?
result <- try(networks <- getNetwork(iris,"x","*" "x" "BHZ" starttime,endtime,
lat=e$latitude, lon=e$longitude,maxradius=>5))
if (inherits(result,”"try-error”)) {
message(geterrmessage())
} else {
networks

getRotation Retrieve rotated seismic data from EarthScope

Description
The getRotation method makes a request of the EarthScope rotation web service and returns a
list of 3 Stream objects.

Usage

getRotation(obj, network, station, location, channelSet,
starttime, endtime, processing)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channelSet the first two characters of the selected source channels
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
processing optional character string with processing commands
Details

The rotation web service returns a triplet of seismic Streams, rotated according to the processing
commands.

If the location argument contains an empty string to specify a ’blank’ location code, a location code
of "--" will be used in the dataselect request URL.

getSNCL 39

The processing parameter can be used to specify any type of processing supported by the rotation
webs service. This string must begin with an ampersand and be ready to be appended to the request
url, e.g. processing="&components=ZRT&azimuth=23.1". This gives the user complete control
over the number and order of processing commands. (See rotation documentation.)

Error returns from the web service will stop evaluation and generate an error message.

Value

A list of three Stream objects is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope rotation web service:

https://service.earthscope.org/irisws/rotation/1/

See Also

IrisClient-class

getSNCL Retrieve seismic data from EarthScope

Description

The getSNCL() method is a convenience wrapper for the getSNCL() method and returns a Stream
object in which individual Traces have been sorted by start time.

Usage
getSNCL(obj, sncl, starttime, endtime, ...)
Arguments
obj IrisClient object
sncl character string with the SNCL code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)

optional arguments quality optional character string identifying the quality.
IRIS webservices defaults to quality="M". repository optional character string
identifying whether to exclusively search primary archive or realtime collection
buffers. Acceptable values are "primary" or "realtime". If not specified, IRIS

https://service.earthscope.org/irisws/rotation/1/
https://service.earthscope.org/irisws/rotation/1/

40

Details

getSNCL

webservices defaults to both repositories. inclusiveEnd optional logical de-
termining whether the endtime is inclusive (default = TRUE) ignoreEpoch op-
tional logical defining behavior when multiple epochs are encountered (default
= FALSE)

The SNCL argument should be ordered network-station-location channel, e.g. IU.ANMO.0@.LHZ.
This argument is split into component parts which are then used in a call to the getSNCL() method.

Value

A new Stream object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope dataselect web service:

https://service.earthscope.org/fdsnws/dataselect/1/

See Also

getDataselect, IrisClient-class

Examples

Not run:

Open a connection to EarthScope webservices
iris <- new("IrisClient")

Use getSNCL to request data for II.JTS.00.BHZ
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- as.POSIXct("2001-03-01",tz="GMT")

st <- getSNCL(iris, "II.JTS.00.BHZ",starttime, endtime, quality="M",
repository="primary”,inclusiveEnd=FALSE, ignoreEpoch=TRUE)

Display structure of trace(s)
str(st)

Plot trace
plot(st)

End(Not run)

https://service.earthscope.org/fdsnws/dataselect/1/

getStation 41

getStation Retrieve Station metadata from EarthScope

Description

The getStation method obtains station metadata from the EarthScope station web service and
returns it in a dataframe.

Usage

getStation(obj, network, station, location, channel,
starttime, endtime, includerestricted,
latitude, longitude, minradius, maxradius)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
includerestricted
optional logical identifying whether to report on restricted data
latitude optional latitude used when specifying a location and radius
longitude optional longitude used when specifying a location and radius
minradius optional minimum radius used when specifying a location and radius
maxradius optional maximum radius used when specifying a location and radius
Details

The getStation method utilizes the station web service to obtain data for all stations that meet the
criteria defined by the arguments and returns that data in a dataframe. Each row of the dataframe
represents a unique station.

Each of the arguments network, station, location or channel may contain a valid code or a
wildcard expression, e.g. "BH?" or "*". Empty strings are converted to "*". Otherwise, the ascii
string that is used for these values is simply inserted into the web service request URL.

For more details see the web service documentation.

https://service.earthscope.org/fdsnws/station/1/

42 getStation

Value

A dataframe with the following columns:
network, station, latitude, longitude, elevation, sitename, starttime, endtime
Rows are ordered by network-station.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope station web service:
https://service.earthscope.org/fdsnws/station/1/
This implementation was inspired by the functionality in the obspy get_stations() method.

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.
html

See Also

IrisClient-class

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

Date of Nisqually quake
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- starttime + 2%24%x3600

Use the getEvent web service to determine what events happened in this time period
result <- try(events <- getEvent(iris,starttime,endtime,6.0))
if (inherits(result,"try-error”)) {
message(geterrmessage())
} else {
events

biggest event is Nisqually
eIndex <- which(events$magnitude == max(events$magnitude))
e <- events[eIndex[1],]

Which stations in the US network are within 5 degrees of the quake epicenter?
result <- try(stations <- getStation(iris,"US","x","%" "BHZ",6starttime,endtime,
lat=e$latitude, long=e$longitude,maxradius=5))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {
stations

https://service.earthscope.org/fdsnws/station/1/
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html

getTimeseries 43

getTimeseries Retrieve seismic data from EarthScope

Description

The getTimeseries method makes a request of the EarthScope timeseries webservice and re-
turns a Stream object in which individual Traces have been sorted by start time.

Usage
getTimeseries(obj, network, station, location, channel,
starttime, endtime,...)
Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
optional arguments repository optional character string identifying whether to
exclusively search primary archive or realtime collection buffers. Acceptable
values are "primary" or "realtime". If not specified, IRIS webservices defaults
to both repositories. processing optional character string with processing com-
mands inclusiveEnd optional logical determining whether the endtime is in-
clusive (default = TRUE) ignoreEpoch optional logical defining behavior when
multiple epochs are encountered (default = FALSE)
Details

This is an alternative method for retreiving seismic data that accepts optional processing commands.
Data requests are made through the timeseries webservice and returned data are parsed using the
internal miniseed2Stream() function.

If the location argument contains an empty string to specify a *blank’ location code, a location code
of "--" will be used in the dataselect request URL.

The processing parameter can be used to specify any type of processing supported by the timeseries
webs service. This string must begin with an ampersand and be ready to be appended to the request
url, e.g. processing="8&demean=true&taper@.2,HANNING". This gives the user complete control
over the number and order of processing commands. (See timeseries documentation.)

https://service.earthscope.org/irisws/timeseries/1/

44 getTimeseries

If inclusiveEnd=FALSE, then getDataselect will subtract 0.000001 seconds from the endtime
before passing the value to the dataselect webservice. An endtime of, e.g., as.POSIXct("2016-01-03",
tz="GMT") will be passed into dataselect as end=2016-01-02T723:59:59.999999. A data sam-

ple at time 2016-01-03T00:00:00 will not be returned unless inclusiveEnd=TRUE.

Sometimes the station webservice will return multiple records for the same SNCL, each with a
different scale or starttime. These represent different epochs with potentially different metadata
parameters for the SNCL and, by default, will cause a "Multiple epochs’ error message to be gener-
ated.

Handling all possible metadata differences so that the data may be merged is beyond the scope of
this package. Instead, to avoid errors, users may specify ignoreEpoch=TRUE in which case the very
first SNCL-epoch encountered will be used and all others will be discarded.

For access to restricted data, getDataselect will look for a system environmental variable "IrisClient_passw"
which should be a string in the form "database_login:database_password". Alternatively,getDataselect

will look for system environmental variable "IrisClient_netrc" which should point to a .netrc authen-
tication file.

Error returns from the webservice will stop evaluation and generate an error message.

Value

A new Stream object is returned.

Author(s)

Jonathan Callahan <jonathan.s.callahan@gmail.com>

References

The EarthScope timeseries webservice:

https://service.earthscope.org/irisws/timeseries/1/

See Also

getDataselect, getSNCL, IrisClient-class

Examples

Not run:
Open a connection to EarthScope webservices (use debug=TRUE so we can see the URLs generated)
iris <- new("IrisClient"”,debug=TRUE)

starttime <- as.POSIXct("2013-06-01",tz="GMT")
endtime <- starttime + 24%3600

Get raw data and processed data
st1 <- getDataselect(iris,"IU","ANMO","00","LHZ", 6 starttime,endtime)
st2 <- getTimeseries(iris,"IU","ANMO","00@","LHZ",starttime,endtime, "&demean=true&taper=0.2,HANNING")

layout(matrix(seq(2)))
plot(st1)

https://service.earthscope.org/irisws/timeseries/1/

getTraveltime 45

plot(st2)

End(Not run)

getTraveltime Retrieve seismic traveltime information from EarthScope

Description
The getTraveltime method obtains seismic traveltime data from the EarthScope traveltime web
service and returns it in a dataframe.

Usage

getTraveltime(obj, latitude, longitude, depth, stalLatitude, stalongitude)

Arguments
obj an IrisClient object
latitude latitude of seismic event
longitude longitude of seismic event
depth depth of seismic event
stalLatitude latitude of seismic station

stalongitude longitude of seismic station

Details

The traveltime web service calculates travel-times for seismic phases using a 1-D spherical earth
model.

Value

A dataframe with the following columns:

distance, depth, phaseName, travelTime, rayParam, takeoff, incident
puristDistance, puristName

Rows are ordered by travelTime.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope traveltime web service:

https://service.earthscope.org/irisws/traveltime/1/

https://service.earthscope.org/irisws/traveltime/1/

46 getTraveltime

See Also

IrisClient-class

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

Two days around the "Nisqually Quake”
starttime <- as.POSIXct("2001-02-27", tz="GMT")
endtime <- starttime + 3600 * 24 x 2

Find biggest seismic event over these two days -- it's the "Nisqually”
events <- getEvent(iris, starttime, endtime, minmag=5.0)
bigOneIndex <- which(events$magnitude == max(events$magnitude))

bigOne <- events[bigOnelndex[1],]

Find US stations that are available within an hour of the event

start <- bigOne$time

end <- start + 3600

availability <- getAvailability(iris, "Us", "", "", "BHZ",
starttime=start, endtime=end,
latitude=bigOne$latitude, longitude=bigOne$longitude,
minradius=0, maxradius=10)

Get the station the furthest East
minLonIndex <- which(availability$longitude == max(availability$longitude))
snclE <- availability[minLonIndex,]

Plot the BHZ signal from this station
st <- getDataselect(iris,snclE$network,snclE$station,snclE$location,snclE$channel,
start,end)

Check that there is only a single trace and then plot it

length(st@traces)

tr <- st@traces[[1]]

plot(tr, subsampling=1) # need subsmpling=1 to add vertical lines with abline()

Find travel times to this station
traveltimes <- getTraveltime(iris, bigOne$latitude, bigOne$longitude, bigOne$depth,
snclE$latitude, snclE$longitude)

Look at the list
traveltimes

mark the P and S arrival times

pArrival <- start + traveltimes$travelTime[traveltimes$phaseName=="P"]
sArrival <- start + traveltimes$travelTime[traveltimes$phaseName=="S"]
abline(v=pArrival, col='red')

abline(v=sArrival, col='blue')

getUnavailability 47

End(Not run)

getUnavailability Retrieve Channel metadata from EarthScope

Description

The getUnavailability method obtains metadata for channels that are not available from the
EarthScope station web service and returns it in a dataframe.

Usage

getUnavailability(obj, network, station, location, channel,
starttime, endtime, includerestricted,
latitude, longitude, minradius, maxradius)

Arguments
obj IrisClient object
network character string with the two letter seismic network code
station character string with the station code
location character string with the location code
channel character string with the three letter channel code
starttime POSIXct class specifying the starttime (GMT)
endtime POSIXct class specifying the endtime (GMT)
includerestricted
optional logical identifying whether to report on restricted data (default=FALSE)
latitude optional latitude used when specifying a location and radius
longitude optional longitude used when specifying a location and radius
minradius optional minimum radius used when specifying a location and radius
maxradius optional maximum radius used when specifying a location and radius
Details

The getUnavailability method compares the results of the getAvailability and getChannel
methods and returns those records found only in the output of getChannel.

Each of the arguments network, station, location or channel may contain a valid code or a
wildcard expression, e.g. "BH?" or "*". Empty strings are converted to "*". Otherwise the ascii
string that is used for these values is simply inserted into the web service request URL.

For more details see the webservice documentation.

https://service.earthscope.org/fdsnws/station/1/

48 getUnavailability

Value

A dataframe with the following columns:

network, station, location, channel, latitude, longitude, elevation, depth,
azimuth, dip, instrument, scale, scalefreq, scaleunits, samplerate,
starttime, endtime

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

The EarthScope station webservice:
https://service.earthscope.org/fdsnws/station/1/
This implementation was inspired by the functionality in the obspy get_stations() method.

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.
html

See Also

IrisClient-class, getAvailability, getChannel

Examples

Open a connection to EarthScope webservices
iris <- new("IrisClient")

Date of Nisqually quake
starttime <- as.POSIXct("2001-02-28",tz="GMT")
endtime <- starttime + 2%24%*3600

Use the getEvent web service to determine what events happened in this time period
result <- try(events <- getEvent(iris,starttime,endtime,6.0))
if (inherits(result,"try-error”)) {
message(geterrmessage())
} else {
events

biggest event is Nisqually
eIndex <- which(events$magnitude == max(events$magnitude))
e <- events[eIndex[1],]

Find all BHZ channels that were NOT collecting data at the time of the quake
and within 5 degrees of the quake epicenter (or are otherwise unavailable from IRIS).
result <- try(channels <- getUnavailability(iris,"*","*" "x" "BHZ" starttime,endtime,
lat=e$latitude,long=e$longitude,maxradius=5))
if (inherits(result,”try-error”)) {
message(geterrmessage())
} else {

https://service.earthscope.org/fdsnws/station/1/
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.get_stations.html

getUpDownTimes 49

channels

getUpDownTimes Determine times when a channel starts/stops collecting data

Description

The getUpDownTimes method determines the on/off times for data collection within a Stream and
returns a list containing these times, ignoring Traces with a duration less than min_signal as well
as data dropouts that are less than min_gap.

Usage

getUpDownTimes(x, min_signal, min_gap)

Arguments
X Stream object
min_signal minimum Trace duration in seconds (default=30)
min_gap minimum gap in seconds (default=60)

Details

A Stream object returned by getDataselect contains a list of individual Trace objects, each of
which is guaranteed to contain a continuous array of data in the Trace@data slot. Each Trace
also contains a starttime and an endtime representing a period of uninterrupted data collection.
Data dropouts are determined by first rejecting any Traces of duration less than min_signal. The
temporal spacing between Traces is then analyzed, ignoring spaces shorter than min_gap.

This method first checks the SNCL id of each Trace to make sure they are identical and throws an
error if they are not.

The first element returned is always the starttime associated the first Trace. The last element is
always the endtime associated with the last trace. Thus, when the first element is identical to the
starttime of the web services data request this does not necessarily mean that the channel was
down before this.

NOTE: Even when data are complete for the duration of the requested timespan, the last element
returned may be earlier than the endtime of the web services data request by up to a second.

Value

A vector of POSIXct datetimes associated with on/off transitions.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

50 hilbert

See Also

plotUpDownTimes

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,"AK","PIN","" "BHZ",K starttime,endtime)

Determine up/down transitions, ignoring Traces < 3 min and gaps < 5 min
upDownTimes <- getUpDownTimes(st, min_signal=180, min_gap=300)

Or just plot them directly
plotUpDownTimes(st, min_signal=180, min_gap=300)

End(Not run)

hilbert Hilbert of a seismic signal

Description
The hilbert method of Trace objects returns a Trace whose data have been replaced with the
Hilbert transform of the seismic signal.

Usage
hilbert(x)

Arguments

X a Trace object

Details
Before calculating the Hilbert transform, the seismic trace is ’cleaned up’ by removing the mean,
the trend and by applying a cosine taper. See DDT for more details.

Value

A Trace whose data have been replaced with the Hilbert transform of the seismic signal.

hilbertFFT 51

Note

This algorithm is adapted from code in the seewave package.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2010-02-27 06:00:00", tz="GMT")
endtime <- as.POSIXct("2010-02-27 09:00:00", tz="GMT")

Get the waveform
st <- getDataselect(iris,”IU","ANMO","00","BHZ",fstarttime,endtime)
tr <- st@traces[[1]]

Create Hilbert transform of the trace
trh <- hilbert(tr)

Plot signal data and hilbert data
plot(tr@data, type='l', col='gray80')
points(trh@data, type='l', col='blue')

End(Not run)

hilbertFFT Hilbert FFT

Description

The hilbertFFT function returns the complex Hilbert FFT of a timeseries signal.

Usage
hilbertFFT(x)

Arguments

X a numeric vector

Details

This function is intended for internal use by the hilbert() and envelope() methods of Trace objects.

52 hilbertFFT

Value

A complex vector containing the Hilbert FFT of x.

Note

This algorithm is adapted from code in the seewave package.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2010-02-27 06:00:00", tz="GMT")
endtime <- as.POSIXct("2010-02-27 09:00:00", tz="GMT")

Get the waveform
st <- getDataselect(iris,"IU","ANMO","0@0","BHZ", 6 starttime,endtime)
tr <- st@traces[[1]]

Demean, detrend, cosine taper
tr <- DDT(tr)

Calculate Hilbert FFT of the trace data
hfft <- hilbertFFT(tr@data)

Plot signal, with Hilbert envelope

layout (1)

plot(tr@data, type='l', col='gray80', main="Signal and Envelope")
points(Mod(hfft), type='l"', col='blue')

2 rows
layout(matrix(seq(2)))

Show that Imaginary component of Hilbert transform has the

original signal shifted by 90 degrees

ccf(tr@data, tr@data, lag.max=200,main="Auto-correlation of signal data")
ccf(tr@data,Im(hfft),lag.max=200,main="90 deg phase shift with Hilber transform")

Restore default layout
layout (1)

End(Not run)

IrisClient-class 53

IrisClient-class Class "IrisClient”

Description

A class for making data and metadata requests from EarthScope web services.

Slots
site: Object of class "character”: this is the first part of the url that the web service will be
pointed to, defaults to "https://service.earthscope.org"

service_type: Object of class "character”: defaults to fdsnws; for data retrieval from the IRIS
PHS repository, set this to ph5ws;

debug: Object of class "logical”: when set to TRUE will cause any web service requestURL to
be printed

useragent: Object of class "character”: client identification string

event_site: Object of class "character”: this is the first part of the url that the event web service
will be pointed to, defaults to site or if site=https://service.earthscope.org, defaults
to https://earthquake.usgs.gov

retries: Object of class "numeric”: set the number of retries for API calls when receiving a
server error response, must be 5 or fewer

Methods
getAvailability makes a channel request of the station web service and returns the result as a
dataframe; see getAvailability

getChannel makes a channel request of the station web service and returns the result as a dataframe;
see getChannel

getDataAvailability makes a channel request of the irisws availability web service and returns the
result as a dataframe; see getDataAvailability

getDataselect makes a request of the dataselect web service and returns a Stream object; see
getDataselect

getDistaz makes a request of the distaz web service and returns a the information as a dataframe;
see getDistaz

getEvalresp makes a request of the instrument response web service and returns the information
as a dataframe; see getEvalresp

getEvent makes a request of the event web service and returns the information as a dataframe;
getEvent

getNetwork makes a network request of the station web service and returns the result as a dataframe;
see getNetwork

getSNCL: calls the getDataselect method and returns a Stream object; see getSNCL

getStation makes a station request of the station web service and returns the result as a dataframe;
see getStation

54 McNamaraBins

getTraveltime makes a request of the traveltime web service and returns the information as a
dataframe; see getTraveltime

getUnavailability makes a channel request of the station web service and returns the result as a
dataframe; see getUnavailability
Note

The IrisClient objectis inspired by the clients.fdsn.client.Client class found in the python
ObsPy package (https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.
Client.html).

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient”, debug=TRUE)

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,”AK","PIN","" "BHZ",6starttime,endtime)

mean(st)

End(Not run)

McNamaraBins McNamara Binning

Description

The McNamaraBins() function implements the binning algorithm specified in the "Data Preparation
and Processing" section of Seismic Noise Analysis System Using Power Spectral Density Probabil-
ity Density Functions.

Usage

McNamaraBins(df, loFreq, hiFreq, alignFreq)

Arguments
df an R dataframe object
loFreq optional lo end of frequency binning range (default=.005)
hiFreq optional hi end of frequency binning range (default=10)

alignFreq optional alignment frequency for determining frequency bins (default=0.1)

https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.html
https://docs.obspy.org/packages/autogen/obspy.clients.fdsn.client.Client.html
https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf
https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

McNamaraPSD 55

Details

The McNamaraBins() function accepts a dataframe with an arbitrary number of columns. At least
one of the columns must be named ’freq’” and must contain frequency values. These frequencies will
be used to assign all associated values into appropriate bins according to the McNamara algorithm:

Frequencies for binning are generated at 1/8 octave intervals aligned to alignFreq. Binned values
associated with each frequency bin are calculated by averaging incoming values over an entire
octave centered on that frequency.

Value
A dataframe containing binned values is returned with the same column names as the incoming df
argument.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References
Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraPSD

McNamaraPSD Power Spectral Density

Description

The McNamaraPSD() function implements the spectral density algorithm specified in the "Data
Preparation and Processing" section of Seismic Noise Analysis System Using Power Spectral Den-
sity Probability Density Functions.

Usage

McNamaraPSD(tr, loFreq=.005, hiFreg=10, alignFreg=0.1, binned=TRUE)

Arguments
tr a Trace object
loFreq optional lo end of frequency binning range
hiFreq optional hi end of frequency binning range
alignFreq optional alignment frequency for determining frequency bins

binned logical determining whether the return spectrum is binned

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf
https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf
https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

56

Details

McNamaraPSD

This PSD algorithm is designed to be used on one to three hour segments of seismic data and will
return a PSD object containing the (potentially binned) spectrum for that segment. See the psdList
function for automatic segmenting of longer Stream objects.

The McNamara PSD algorithm is similar to MATLAB’s pwelch() function and has the following

steps:

1. Calculate averaged spectrum

#
#
#
#
#
#
#
#
#
#
#
#
#
#

Truncate incoming segment of trace data to nearest power of 2 samples.
Divide each truncated segment into 13 chunks with 75% overlap. The first
chunk begins at 0/16 and ends at 4/16. The 13'th chunk begins at 12/16
and ends at 16/16. The chunks overlap like this:

1---5---9---3---
2---6---0---

Deman, detrend and taper the chunk.
Calculate the 'one-sided' spectrum for the chunk.

Average together all 13 spectra to get an averaged spectrum.

2. Create smoothed version of spectrum with binning

When binned=TRUE, McNamara style binning is turned on and a smoothed spectrum is re-
turned that contains many fewer points than the full spectrum. When these arguments are not
specified, binning is automatically turned off and the full spectrum is returned.

Frequencies for binning are generated at 1/8 octave intervals aligned to alignFreq. The
power (dB) associated with each frequency bin is calculated by averaging over an entire octave
centered on that frequency.

Note: The spectra returned by McNamaraPSD() have not had instrument correction applied.
Use getEvalresp to get instrument correction values for specific frequencies.

3. convert binned spectra to decibels

Value

An R list object with the following named elements:

freq, spec, snclq, starttime, endtime

Elements freq and spec are numeric vectors while snclq, starttime and endtime are single

values.

Note

During the binning process, an arithmetic mean is used to average together power levels in decibels.
This is equivalent to averaging of power levels before conversion to dB using a geometric mean.

mergeTraces 57

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References
Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraBins, psdList

mergeTraces Merge multiple traces into a single trace

Description

The mergeTraces method of Stream objects returns a new Stream where all Traces have been
merged into a single Trace. Gaps between traces are replaced with values determined by the
fillMethod parameter.

Usage

mergeTraces(x, fillMethod)

Arguments

X Stream object

fillMethod method to use when filling gaps between Traces (default="fil1NA")
Details

Available values for fillMethod include:
o fillNA — gaps are filled with NA (R’s missing value flag)

* fillZero — gaps are filled with 0.0

Value

A new Stream object containing a single Trace is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

58 mergeUpDownTimes

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient”)

starttime <- as.POSIXct("2002-04-20", tz="GMT")

endtime <- as.POSIXct("2002-04-21", tz="GMT")

st4 <- getDataselect(iris,"US","OXF","" 6 "BHZ", starttime,endtime)
stm4 <- mergeTraces(st4)

plot merged trace
plot(stm4@traces[[1]])
mtext (paste(length(st4@traces), "traces”), side=3, line=0.5, adj=0.05, cex=1.5)

End(Not run)

mergeUpDownTimes Determine overlaps in two sets of upDownTimes.

Description

The mergeUpDownTimes function determines the overlaps in two sets of times representing up/down
(on/off) periods for a single or a set of channels. This function can be used to determine overall
station up/down periods.

Usage

mergeUpDownTimes(udt1, udt2, bothOn)

Arguments
udt1 vector of POSIXct times representing up/down transitions
udt2 vector of POSIXct times representing up/down transitions
bothOn logical specifying whether overlaps are determined with AND or OR (default=FALSE:
udt1 OR udt2)
Details

When bothOn=FALSE, the default, this function returns the times of transitions from "either to nei-
ther" and back. When bothOn=TRUE, this function returns the times of transitions from "both to
either" and back.

If an empty vector is passed in for udt1 or udt2 then the other vector is returned unchanged. This
can be useful when merging the upDownTimes for multiple channels. See the example below.

Value

A vector of POSIXct datetimes associated with on/off transitions.

mergeUpDownTimes 59

Note

The vector of times in udt1 and udt2 has no information on the values of min_signal or min_gap
that were used to generate the timeseries. It is up to the user to make sure that the incoming vectors
are appropriate for comparison. See getUpDownTimes.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

See Also

getUpDownTimes, plotUpDownTimes

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

Three Streams, each with different upDownTimes

starttime <- as.POSIXct("2012-07-01", tz="GMT")

endtime <- as.POSIXct("2012-07-02", tz="GMT")

stE <- getDataselect(iris,"IU","XMAS","10","BHE",starttime,endtime)
stN <- getDataselect(iris,"IU","XMAS","10","BHN",starttime,endtime)
stZ <- getDataselect(iris,"IU","XMAS","10","BHZ",starttime,endtime)
udtE <- getUpDownTimes(stE)

udtN <- getUpDownTimes(stN)

udtZ <- getUpDownTimes(stZ)

udtAll <- c()
udtAny <- c()
for (udt in list(udtE, udtN, udtz)) {
udtAll <- mergeUpDownTimes(udtAll,udt,bothOn=TRUE)
udtAny <- mergeUpDownTimes(udtAny,udt,bothOn=FALSE)
3

5 rows
layout(matrix(seq(5)))

Plot the results

par(mar=c(3,4,3,2)) # adjust margins
plotUpDownTimes(udtE); title("BHE")
plotUpDownTimes (udtN); title("”BHN")
plotUpDownTimes(udtz); title("BHZ")
plotUpDownTimes(udtAll); title("ALL channels up")
plotUpDownTimes(udtAny); title("ANY channel up")

Restore default layout
layout (1)

End(Not run)

60 miniseed2Stream

miniseed2Stream Convert miniSEED bytes to Stream object

Description

The miniseed2Stream function converts raw miniSEED bytes into a Stream object.

Usage

miniseed2Stream(miniseed,url,requestedStarttime,requestedEndtime,
sensor,scale,scalefreq,scaleunits,latitude,longitude,
elevation, depth, azimuth,dip)

Arguments

miniseed a vector of raw bytes read from a miniSEED file

url character source location (see getDataselect)

requestedStarttime
POSIXct time associated with the requested starttime (see getDataselect)

requestedEndtime
POSIXct time associated with the requested endtime (see getDataselect)

sensor character description of the Sensor type associated with this Station-Network-
Channel-Location (SNCL) (see Trace)

scale character description of the InstrumentSensitivity associated with this SNCL
(see Trace)

scalefreq numeric description of frequency at which the InstrumentSensitivity is correct,
the SensitivityFrequency (see Trace)

scaleunits character description of the InputUnits associated with this SNCL (see Trace)

latitude numeric latitude associated with this SNCL (see Trace)

longitude numeric longitude associated with this SNCL (see Trace)

elevation numeric elevation associated with this SNCL (see Trace)

depth numeric depth associated with this SNCL (see Trace)

azimuth numeric channel azimuth associated with this SNCL (see Trace)

dip numeric channel dip associated with this SNCL (see Trace)

Details

This function takes raw bytes read in from a file or URL and converts them to a Stream object.
Metadata information is optional. This function is primarily for internal use.

Value

A Stream object.

multiplyBy 61

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

See Also

readMiniseedFile

multiplyBy Multiplication by a constant

Description
The multiplyBy methods of Trace and Stream objects return like objects where all @data slots
have been multiplied by a constant.

Usage
multiplyBy(x, y)

Arguments
X a Trace or Stream object
y a numeric multiplier
Value

A new Trace or Stream object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2011-01-24", tz="GMT")
endtime <- as.POSIXct("2011-01-25", tz="GMT")

Get the waveform
stRaw <- getDataselect(iris,”AK","PIN","" "BHZ",6 starttime,endtime)

obtain an instrument sensitivity value with getChannel metadata)
c <- getChannel(iris, "AK",6"PIN",6"" "BHZ",6starttime, endtime)
sensitivityValue <- c$scale

62 noiseMatrix2PdfMatrix

convert raw data
st <- multiplyBy(stRaw, 1/sensitivityValue)
rmsVariance(st)

plot trace
plot(st, ylab=c$scaleunits)

End(Not run)

noiseMatrix2PdfMatrix Convert matrix of PSDs to matrix of Probability Density Functions

Description
This function converts a noiseMatrix returned by either psdList2NoiseMatrix or psdDF2NoiseMatrix
into a matrix of Probability Density values as defined by McNamara and Boaz 2005.

Usage

noiseMatrix2PdfMatrix(noiseMatrix, lo, hi, binSize)

Arguments
noiseMatrix anoiseMatrx returned from either psdList2NoiseMatrix or psdDF2NoiseMatrix
lo lowest frequency bin (power level in dB) for the PDF y-axis (default=-200)
hi highest frequency bin (power level in dB) for the PDF y-axis (default=-50)
binSize size in dB of each bin (default=1)

Details

The McNamara and Boaz paper describes creating histograms of the discretized power levels at
each frequency bin associated with a set of PSDs. The value in each cell of the PDF matrix is the
fraction of the corrected PSDs that have that power level at that frequency bin.

To return a PDF matrix that matches those in the McNamara paper, use the default settings.

Value
A matrix is returned with one row for each power level (-250:-50 dB) and one column for each
frequency bin.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

noiseModels 63

See Also

McNamaraPSD, psdDF2NoiseMatrix, psdList, psdPlot, psdStatistics

Examples

Not run:
Create a new IrisClient
iris <- new("IrisClient"”, debug=TRUE)

Get seismic data

starttime <- as.POSIXct("2011-05-05", tz="GMT") # 2011.125
endtime <- starttime + 1%24%x3600

st <- getDataselect(iris,"IU","GRFO","--" "BHE",starttime,endtime)

Generate power spectral density for each hour long segment
psdList <- psdList(st)

Convert into corrected "noiseMatrix”
noiseMatrix <- psdList2NoiseMatrix(psdList)

Convert into McNamara "pdfMatrix”
pdfMatrix <- noiseMatrix2PdfMatrix(noiseMatrix)

NOTE: Data need to be flipped and tranposed for the XY axes in the
NOTE: image() function to match rows and columns in our pdfMatrix
Plot pdfMatrix
image (t(pdfMatrix[,ncol(pdfMatrix):1]),

col=c('gray9e',rainbow(9)),

axes=FALSE)

End(Not run)

noiseModels Generate NHNM and NLNM noise models

Description

The noiseModels function returns the New High Noise Model and New Low Noise Model from
the Peterson paper referenced below. Values are returned for the specific frequencies specified in
the freq argument.

Usage

noiseModels(freq)

Arguments

freq a vector of frequencies at which to generate noise model values

64 psdDF2NoiseMatrix

Value
A list is returned with elements nhnm and nlnm containing the high and low noise models, respec-
tively.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Observations of Modeling and Seismic Background Noise (Peterson 1993) Seismic Noise Analysis
System Using Power Spectral Density Probability Density Functions (McNamara and Boaz 2005)

See Also

psdStatistics,

psdDF2NoiseMatrix Apply instrument correction to PSDs

Description

The psdDF2NoiseMatrix function uses the snclq identifier associated with the first PSD in the
dataframe to obtain instrument correction information at the specified frequencies from the getEvalresp
web service if instrumentation correction information is not supplied as an argument. This correc-
tion is applied to every PSD in the dataframe and the now corrected PSD values are returned as a
matrix.

Usage

psdDF2NoiseMatrix (DF, evalresp=NULL)

Arguments
DF a dataframe of PSDs obtained from the getPSDMeasurements method of IrisClient.
evalresp dataframe of freq, amp, phase information matching output of getEvalresp,
optional.
Details

This function is identical in behavior to psdList2NoiseMatrix except that the input object is a
dataframe of PSD values obtained from the MUSTANG Backend Storage System.
Value

A matrix is returned with one row for each instrument-corrected PSD and one column for each
frequency bin.

https://pubs.usgs.gov/publication/ofr93322
https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf
https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

psdList 65

Note

The incoming dataframe is checked to make sure that it represents only a single SNCL (Station-
Network-Channel-Location). An error is generated if more than one is found. However, the psdDF
is not checked to make sure that no changes to the instrument correction happened during the time
period covered by the psdDF. This occurs at an ’epoch’ boundary when an instrument is replaced.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraPSD, psdList, psdList2NoiseMatrix, psdPlot, psdStatistics

psdList Apply McNamara PSD algorithm to a seismic signal

Description

The psdList function subsets a seismic Stream object into a series of shorter segments with 50%
overlap and uses the McNamaraPSD method to return a smoothed (aka binned) Power Spectral Den-
sity (PSD) for each segment.

Usage

psdList(st)

Arguments

st a Stream object

Details

A Stream will be subset into segments depending upon the channel identifier (@stats @channel) as-
sociated with this seismic data. The binning frequencies are also channel dependent as exemplified
in this code extract where Z is the segment length in seconds:

alignFreq <- 0.1
if (stringr::str_detect(channel,”*L")) {

Z <- 3 *x 3600
loFreq <- 0.001

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

66 psdList

hiFreq <- 0.5 * tr_merged@stats@sampling_rate
} else if (stringr::str_detect(channel,”"*M")) {

Z <- 2 *x 3600

loFreq <- 0.0025

hiFreq <- 0.5 * tr_merged@stats@sampling_rate
} else {

Z <- 3600

loFreq <- 0.005

hiFreq <- 0.5 * tr_merged@stats@sampling_rate

Each new segment starts half way through the previous segment. (50% overlap)

Value
A list of PSD objects is returned. Each element of the list is an R 1ist object with the following
elements:
freq, spec, snclqg, starttime, endtime

Note: Individual PSDs have not had instrument correction applied.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraPSD, psdList2NoiseMatrix, psdPlot, psdStatistics,

Examples

Not run:
Create a new IrisClient
iris <- new("IrisClient"”, debug=TRUE)

Get seismic data

starttime <- as.POSIXct("2011-05-05", tz="GMT") # 2011.125
endtime <- starttime + 1%24%3600

st <- getDataselect(iris,"IU","GRFQ","--" "BHE",6starttime,endtime)

Generate power spectral density for each hour long segment
psdList <- psdList(st)

Plot uncorrected PSDs

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

psdList2NoiseMatrix 67

period <- 1/psdList[[1]]1$freq

plot(period, psdList[[1]]$spec, log='x', type='l",
xlab="Period (Sec)", ylab="Power (dB)",
main="Uncorrected PSDs")

for (i in seq(2:1length(psdList))) {
points(period, psdList[[i]]$spec, type='l")
3

End(Not run)

psdList2NoiseMatrix Apply instrument correction to PSDs

Description

The psdList2NoiseMatrix function uses the snclq identifier associated with the first PSD in the
list to obtain instrument correction information at the specified frequencies from the getEvalresp
web service if instrumentation correction information is not supplied as an argument. This correc-
tion is applied to every PSD in the list and the now corrected PSD values are returned as a matrix.

Usage

psdList2NoiseMatrix(psdList, evalresp=NULL)

Arguments
psdList a list of PSDs generated by the psdList function
evalresp dataframe of freq, amp, phase information matching output of getEvalresp,
optional
Value

A matrix is returned with one row for each instrument-corrected PSD and one column for each
frequency bin.

Note

The psdList function generates a psdList from a single Stream of data and should thus only
contain data for a single SNCL (Station-Network-Channel-Location). However, the psdList is not
checked to make sure that no changes to the instrument correction happened during the time period
covered by the psdList. This occurs at an ’epoch’ boundary when an instrument is replaced.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

68 psdPlot

References

Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraPSD, psdDF2NoiseMatrix, psdList, psdPlot, psdStatistics,

Examples

Not run:
Create a new IrisClient
iris <- new("IrisClient"”, debug=TRUE)

Get seismic data

starttime <- as.POSIXct("2011-05-05", tz="GMT") # 2011.125
endtime <- starttime + 1%24%3600

st <- getDataselect(iris,"”IU","GRFQO","-=","BHE",starttime,endtime)

Generate power spectral density for each hour long segment
psdList <- psdList(st)

Convert into corrected "noiseMatrix”
noiseMatrix <- psdList2NoiseMatrix(psdList)

Plot corrected PSDs

period <- 1/psdList[[1]1]$freq

plot(period, noiseMatrix[1,], log='x"', type='l",
ylim=c(-200,-50),
xlab="Period (Sec)", ylab="Power (dB)",
main="Corrected PSDs")

for (i in seq(2:nrow(noiseMatrix))) {
points(period, noiseMatrix[i,], type='l")

3

End(Not run)

psdPlot Generate plots from a set of PSDs

Description

The psdPlot function is used to generate plots from the data in a psdList or psdDF dataframe.

Usage

psdPlot(PSDs, style='psd', evalresp=NULL, ylo=-200, yhi=-50, showNoiseModel=TRUE,
showMaxMin=TRUE, showMode=TRUE, showMean=FALSE, showMedian=FALSE, ...)

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

psdPlot

Arguments

PSDs

style

evalresp

ylo

yhi
showNoiseModel
showMaxMin
showMode
showMean

showMedian

Details

69

either a list as returned by psdList or a dataframe of PSD values obtained from
the BSS

character identifier of plot type: 'psd’' plots PSD lines, 'pdf ' plots the pdfMatrix

dataframe of freq, amp, phase information matching output of getEvalresp,
optional

numeric setting lower limit of plot y-axis (default=-200)

numeric setting upper limit of plot y-axis (default=-50)

logical controlling plotting of noise model lines (default=TRUE)
logical controlling plotting of PSD max and min lines (default=TRUE)
logical controlling plotting of PDF mode line (default=TRUE)

logical controlling plotting of PSD mean line (default=FALSE)
logical controlling plotting of PSD median line (default=FALSE)

arguments to be passed to plotting methods

The psdPlot function creates visualizations for sets of PSDs. Plots generated with style="pdf"'
mimic the plots presented in the McNamara paper.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraPSD, psdList, psdStatistics

Examples

Not run:

Create a new IrisClient
iris <- new("IrisClient”, debug=TRUE)

Get seismic data

starttime <- as.POSIXct("2011-05-05", tz="GMT") # 2011.125
endtime <- starttime + 1x24*x3600

st <- getDataselect(iris,"IU","GRFQ","--","BHE",6 starttime,endtime)

Generate power spectral density for each hour long segment
psdList <- psdList(st)

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

70

psdStatistics

'psd' line plot
psdPlot(psdList,style="psd',type='1l",col=adjustcolor('black',®.3))

McNamara 'pdf' plot
psdPlot(psdList,style="pdf")

End(Not run)

psdStatistics Return statistics for a set of PSDs

Description

The psdStatistics function calculates a variety of information associated with the incoming set
of PSDs.

Usage

psdStatistics(PSDs, evalresp=NULL)

Arguments
PSDs either a list as returned by psdList or a dataframe of PSD values obtained from
the BSS
evalresp dataframe of freq, amp, phase information matching output of getEvalresp,
optional
Value

A list of elements:

noiseMatrix — matrix of corrected power levels; rows=PSDs, columns=frequencies
pdfMatrix — matrix of probability density values; rows=dB level, columns=frequencies
freq — vector of frequencies associated statistics vectors and with matrix columns
pdfBins — vector of power values (dB) associated with pdfMatrix rows

max — maximum power level at each frequency

min — minimum power level at each frequency

mean — mean power level at each frequency

median — median power level at each frequency

mode — mode of power level at each frequency (obtained from pdfMatrix)

nlnm —low noise model power level at each frequency

nhnm — high noise model power level at each frequency

pct_above — percent of PSDs above the high noise model at each frequency

pct_below — percent of PSDS below the low noise model at each frequency

A variety of plots can be generated form the information in this list.

psdStatistics 71

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

Seismic Noise Analysis System Using Power Spectral Density Probability Density Functions (Mc-
Namara and Boaz 2005)

See Also

McNamaraPSD, psdList, psdPlot

Examples

Not run:
Create a new IrisClient
iris <- new("IrisClient”, debug=TRUE)

Get seismic data

starttime <- as.POSIXct("2011-05-05", tz="GMT") # 2011.125
endtime <- starttime + 1%24*3600

st <- getDataselect(iris,"IU","GRFQ","--" "BHE",6 starttime,endtime)

Generate power spectral density for each hour long segment
psdList <- psdList(st)

Generate Statistics
stats <- psdStatistics(psdList)

Just for fun plot
logPeriod <- logl@(1/stats$freq)
plot(logPeriod, stats$max,ylim=c(-200,-50), las=1,
xlab="1log10@(period)"”, ylab="Power (dB)",
main="Model 'normal background noise' area and area of seismic signal."”)
points(logPeriod,stats$min)

Overlay a polygon showing the range between the noise models
x <- c(logPeriod,rev(logPeriod),logPeriod[1])

y <- c(stats$nhnm,rev(stats$nlnm),stats$nhnm[1])
transparentBlack <- adjustcolor('black',0.4)
polygon(x,y,col=transparentBlack)

Overlay a polygon showing the range of measured values
y <- c(stats$max,rev(stats$min),stats$max[1])
transparentBlue <- adjustcolor('blue',9.6)
polygon(x,y,col=transparentBlue)

End(Not run)

https://pubs.usgs.gov/of/2005/1438/pdf/OFR-1438.pdf

72

readMiniseedFile

readMiniseedFile

Convert miniSEED file to Stream object

Description

The readMiniseedFile function converts a raw miniSEED file into a Stream object.

Usage

readMiniseedFile(file,sensor,scale,scalefreq,scaleunits,

Arguments
file

sensor

scale

scalefreq

scaleunits
latitude
longitude
elevation
depth
azimuth

dip

Details

latitude,longitude,elevation,depth,azimuth,dip)

character path of a miniSEED file

character description of the Sensor associated with this Station-Network-Channel-
Location (SNCL) (see Trace)

numeric description of the InstrumentSensitivity associated with this SNCL (see
Trace)

numeric description of frequency at which the InstrumentSensitivity is correct,
the SensitivityFrequency (see Trace)

character description of the InputUnits associated with this SNCL (see Trace)
numeric latitude associated with this SNCL (see Trace)

numeric longitude associated with this SNCL (see Trace)

numeric elevation associated with this SNCL (see Trace)

numeric depth associated with this SNCL (see Trace)

numeric channel azimuth associated with this SNCL (see Trace)

numeric channel dip associated with this SNCL (see Trace)

This function reads in a raw miniSEED file and converts it to a Stream object. Metadata information

is optional.

Value

A Stream object.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

See Also

miniseed2Stream

rms 73

rms Root Mean Square and RMS Variance

Description

The rms and rmsVariance methods of Trace and Stream objects compute the Root Mean Square
(RMS) amplitude or RMS variance of the associated data in each object. RMS variance removes
the DC level from the seismic signal so that the zero line is consistent.

Usage

rms(x, na.rm)

parallelRms(x, na.rm)
rmsVariance(x, na.rm)
parallelRmsVariance(x, na.rm)

Arguments

X a Trace or Stream object

na.rm a logical specifying whether missing values should be removed
Details

Trace method

The RMS amplitude of a single Trace is calculated as:

The RMS variance of a single Trace is calculated as:

> (@ — 7)?

rmsVariance(x) =
n

where x is the vector of data values and n is the length of that vector.
Stream methods

For Stream objects, data from all Traces in the stream are first extracted and concatenated into a
single numeric vector after which the algorithm is applied.

The parallel~ version of this method is only available on Stream objects and returns a vector of
values, one for each Trace.

By default, the Stream versions of these methods use na.rm=FALSE as there should be no missing
datapoints in each Trace. The Trace methods default to na.rm=TRUE to accommodate merged
traces where gaps between traces have been filled with NAs.

74 rotate2D

Value

A single numeric value is returned or NA if the trace has no data.

A numeric vector is returned for parallelRmsVariance.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:

Open a connection to EarthScope webservices
iris <- new("IrisClient”)

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,”AK","PIN","" "BHZ", 6 starttime,endtime)

Get the first trace and generate some statistics
tr <- st@traces[[1]]

rmsVariance(tr)

End(Not run)

rotate2D Rotate horizontal components of a seismic signal

Description
The rotate2D() function rotates the two horizontal components of a seismic signal into Radial and
Transverse components returned as a list of 2 Stream objects.

Usage

rotate2D(st1, st2, angle)

Arguments
st horizontal Stream from a channel set (channel name usually ending in "N", "E",
" 1 ||, Or IIZVY)
st2 horizontal Stream from a channel set, complementary to stl

angle angle (degrees) of the rotation

rotate2D 75

Details

The rotation web service returns Radial and Transverse seismic Streams, generated by rotating
st1 and st2 by angle degrees.

The rotation service uses the following transformation matrix to change the output vectors for 2-D
horizontal transformations

cosa sino
Map — [}

—sina cosa

HE®H

where :

N and E represent data from the original (horizontal) orientations.
R and T represent the Radial and Transverse components.
\egn{\alpha} is the azimuth angle measured clockwise from north.

Value

A list of two Stream objects stR and stT is returned.

Note
N and E are determined by the Stream @stats@azimuth values. If Stream @stats @azimuth values

are not defined, stl is assumed to be N and st2 is assumed to be E. Orthogonality is also assumed
to be correct.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

EarthScope rotation web service:

https://service.earthscope.org/irisws/rotation/1/

https://service.earthscope.org/irisws/rotation/1/

76 slice

slice Slice a section out of a Trace or Stream

Description

The slice methods of Trace and Stream objects return like objects that are subsets of the original.

Usage

slice(x, starttime, endtime)

Arguments
X a Trace or Stream object
starttime time at which the slice should begin
endtime time at which the slice should end
Details

The returned object will always be a subset of the x argument whose time range is the intersection of
the original time range and the requested range. When there is no intersection or when starttime
> endtime an error is generated.

All metadata associated with the returned Trace or Stream will reflect the new object, rather than
the original.
Value

A new Trace or Stream object is returned.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient”)

starttime <- as.POSIXct("2002-04-20", tz="GMT")
endtime <- as.POSIXct("2002-04-21", tz="GMT")

Get the waveform
st <- getDataselect(iris,"US","OXF","","BHZ", 6 starttime,endtime)

This Stream object consists of 5 Traces
length(st@traces)

STALTA

77

Plotting the third trace shows a small quake
plot(st@traces[[3]1])

We can slice out the hour that has the quake signal
sliceStart <- as.POSIXct("2002-04-20 10:30:00", tz="GMT")
sliceEnd <- as.POSIXct("2002-04-20 11:30:00", tz="GMT")
stSlice <- slice(st, sliceStart, sliceEnd)

Now we only have one Trace of an hour duration
length(stSlice@traces)

stSlice@traces[[1]]@stats

And a better look at the quake signal
plot(stSlice@traces[[1]])

End(Not run)

STALTA

STA/LTA

Description

The STALTA method of Trace objects applies one of several STA/LTA "first break picking" algo-
rithms to Trace data in order to automatically detect seismic events.

Usage

STALTA(x, staSecs, ltaSecs, algorithm, demean, detrend, taper, increment)

Arguments

X
staSecs
1taSecs
algorithm

demean

detrend

taper

increment

a Trace object

length of the Short averaging window in secs (default=3)
length of the Long averaging windowin secs (default=30)
algorithm to be used (default="classic_LLR")

boolean flag determining whether to demean the data before applying the algo-
rithm (default=TRUE)

boolean flag determining whether to detrend the data before applying the algo-
rithm (default=TRUE)

proportion of the signal to be tapered at each end before applying the algorithm
(default=0.0)

the increment to use when sliding the averaging windows to the next location
(default=1).

78 STALTA

Details

By default, this method uses the "classic_LR" algorithm which calculates the average power in the
Trace data over a short window (STA) and a long window (LTA). With this algorithm, windows
are "left/right aligned" meaning that the point for which STA/LTA is calculated is at the lefttmost
edge of the STA window and the rightmost edge of the LTA window. The resulting STA/LTA ratio
thus has the same number of points as the original data. This is a standard method of "first break
picking" and can be used to identify the onset of a seismic event.

Three different algorithms are currently available:
1) algorithm="classic_RR" This is the original STA/LTA algorithm with "right alignment".

STA(x;) = % Z z?

j=i—ns
%

1
LTA(z;) =] Z 7
n

j=i—nl
- STA,
" T ITA,
T ——— LTA =======m- *]
[-- STA -x]

2) algorithm="classic_LR" (default) This algorithm has the index at the left edge of the STA
window and the right edge of the LTA window

STA(x Z 2

LTA(z;) = Z a:
j i—nl
_ STA;
" ITA,
[--—------- LTA ------—- *]
[x- STA --]

3) algorithm="EarleAndShearer_envelope”

i+ns

STA(x Z Mod(H

LTA(:ci):% Z Mod(H (z))
j=i—nl

STA,;

LTA,;

r, =

STALTA 79

where H (x) is the Hilbert transform of the data and Mod(H (z)) is the ’envelope’ of the seismic
signal. Note that because the Hilbert transform involves performing an FFT of the data it can take
significantly longer than the "classic" algorithms for longer seismic signals (>500K pts).

Value

A vector of values is returned of the same length as the data in the Trace.

Note

The returned vector will contain NA near the edges of the trace where insufficient data are available
to fill the windows. Additional NA values will appear for every index that is skipped over when the
increment parameter is greater than one.

For higher resolution channels, picking an increment of 2/sampling_rate can greatly speed up
processing times and still generate reasonable results.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References
First break picking (Wikipedia)
Automatic time-picking of first arrivals on large seismic datasets
Automatic first-breaks picking: New strategies and algorithms (Sabbione and Velis 2010)
Adaptive microseismic event detection and automatic time picking (Akram and Eaton 2012)

"Characterization of Global Seismograms Using an Automatic-Picking Algorithm" Bulletin of the
Seismological Society of America, Vol. 84, No. 2, pp. 366-376, April 1994 (Earle and Shearer)

See Also

triggerOnset

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2010-02-27",tz="GMT")
endtime <- as.POSIXct("2010-02-28",tz="GMT")

Get the waveform

st <- getDataselect(iris,"IU","ANMO","0@Q","BHZ",6 starttime,endtime)
tr <- st@traces[[1]]

picker <- STALTA(tr,3,30)

https://en.wikipedia.org/wiki/First_break_picking
https://www.crewes.org/Documents/ResearchReports/2014/CRR201476.pdf
https://web.archive.org/web/20170809102808/https://www.fcaglp.unlp.edu.ar/~velis/papers/PickingGeop10.pdf
https://geoconvention.com/wp-content/uploads/abstracts/2012/279_GC2012_Adaptive_Microseismic_Event_Detection.pdf

80 Stream-class

Plot the trace and overlay the picker

plot(tr)

par (new=TRUE)

plot(picker, type='l"', col='red', axes=FALSE, xlab="", ylab="")
mtext("Picker”, side=1, line=-8, adj=0.05, col='red')

par (new=FALSE)

End(Not run)

Stream-class Class "Stream”

Description

A Stream object containing a list of Trace objects.

Objects from the Class

Objects are typically created by calls to getDataselect.

Slots

url: Object of class "character”: URL request used to generate this Stream.
requestedStarttime: Objectof class "POSIXct”: starttime used when requesting data with getDataselect.
requestedEndtime: Object of class "POSIXct"”: endtime used when requesting data with getDataselect.

act_flags: Object of class "integer”: Accumulators for the act_flags bits in each miniSEED
record.

io_flags: Object of class "integer”: Accumulators for the io_flags bits in each miniSEED
record.

dg_flags: Object of class "integer”: Accumulators for the dq_flags bits in each miniSEED
record.

timing_qual: Object of class "numeric”: Average timing quality associated with miniSEED
records.

traces: Object of class "1ist": List of Trace objects.

Methods

getGaps signature(x="Stream"): returns information on data dropouts between Traces; see
getGaps

getUpDownTimes signature(x="Stream”, min_signal="numeric", min_gap="numeric"): re-
turns a vector of datetimes associated with channel up/down transitions; see getUpDownTimes

length signature(x="Stream"): returns the total number of data points in all Traces

max signature(x="Stream"): returns the overall data maximum for all data in all Traces

Stream-class 81

median signature(x="Stream”, na.rm= "logical”): returns the overall data median for all
data in all Traces

mean signature(x="Stream"): returns the overall data mean for all data in all Traces

mergeTraces signature(x="Stream”, fillMethod="fillNA"): returns a new Stream object
where all Traces have been merged into a single Trace mergeTraces

min signature(x="Stream"): returns the overall data minimum for all data in all Traces

multiplyBy signature(x="Stream”, y="numeric"): returns a new Stream object where the
data in every Trace have been multiplied by y; see multiplyBy

parallelLength signature(x="Stream"): returns a vector of data lengths, one for each Trace
parallelMax signature(x="Stream"): returns a vector of data maxima, one for each Trace

parallelMedian signature(x="Stream”, na.rm="logical"): returns a vector of data medians,
one for each Trace

parallelMean signature(x="Stream"): returns a vector of data means, one for each Trace
parallelMin signature(x="Stream"): returns a vector of data minima, one for each Trace

parallelRms signature(x="Stream"): returns a vector of RMS calculations, one for each Trace;
see rmsVariance

parallelRmsVariance signature(x="Stream"): returns a vector of RMS variance calculations,
one for each Trace; see rmsVariance

parallelSd signature(x="Stream”, na.rm="logical"): returns a vector of standard deviation
calculations, one for each Trace

plot signature(x="Stream"): default plot of the merged Traces in a Stream with appropriate
labeling

plotUpDownTimes signature(x="Stream”, min_signal="numeric”, min_gap="numeric"): plots

the times at which a Stream transitions from data collection to non-collection (on/off); see
getUpDownTimes

rms signature(x="Stream"): returns the overall Root Mean Square amplitude for all data in all
Traces; see rmsVariance

rmsVariance signature(x="Stream"): returns the overall RMS variance for all data in all Traces;
see rms Variance

sd signature(x="Stream”, na.rm="logical"): returns the overall standard deviations for all
data in all Traces

slice signature(x="Stream”, starttime="P0OSIXct", endtime="POSIXct"): returns a new Stream

sliced out of an existing Stream (see slice)
uniquelds signature(x="Stream"): returns a vector of SNCLQ identifiers, one for each Trace

Note

The Stream object is inspired by the Stream class found in the python ObsPy package (https:
//docs.obspy.org/packages/autogen/obspy.core.stream.Stream.html).

The miniSEED flags and timing_qual values are described in the SEED manual (http://www.
fdsn.org/seed_manual/SEEDManual_V2.4.pdf). The "accumulators" contain counts of the num-
ber of times each bit flag was set during the parsing of a miniSEED file. These attributes are retained
primarily for assessing data quality issues within the EarthScope.

The following code documentation describes how each of the flags is used within miniSEED files:

https://docs.obspy.org/packages/autogen/obspy.core.stream.Stream.html
https://docs.obspy.org/packages/autogen/obspy.core.stream.Stream.html
http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf
http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf

82

(1]
[21]
[3]
[4]
[5]
(6]
[71]
8l

HOoH OH OH OH K B HE H

(1]
[2]
[3]
[4]
[5]
[6]
[71]
8l

HOoH H H HHFHF HEH

(1]
[21]
[3]
[4]
[5]
6]
[71]
L8]

HOoH H H H HF R

Author(s)

Stream-class

act_flags

Calibration signals present

Time correction applied

Beginning of an event, station trigger

End of an event, station detrigger

A positive leap second happened in this record
A negative leap second happened in this record
Event in progress

Undefined bit set

io_flags

Station volume parity error possibly present
Long record read (possibly no problem)

Short record read (record padded)

Start of time series

End of time series

Clock locked

Undefined bit set

Undefined bit set

dg_flags

Amplifier saturation detected
Digitizer clipping detected
Spikes detected

Glitches detected

Missing/padded data present
Telemetry synchronization error
A digital filter may be charging
Time tag is questionable

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,"AK"”,"PIN",6"" "BHZ",K starttime,endtime)

min(st)

median(st)

mean(st)

max(st)
sd(st)

surfaceDistance

rms(st)
rmsVariance(st)

End(Not run)

83

surfaceDistance

Earth surface distance between two points

Description

The surfaceDistance() function calculates the distance in kilometers between any two lat-lon pairs
using the Haversine equation.

Usage

surfaceDistance(lati_deg, lonl_deg, lat2_deg, lon2_deg)

Arguments

lat1_deg
lon1_deg
lat2_deg

lon2_deg

Value

latitude 1 (degrees)
longitude 1 (degrees)
latitude 2 (degrees)

longitude 2 (degrees)

Distance in kilometers

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

References

https://en.wikipedia.org/wiki/Haversine_formula

https://en.wikipedia.org/wiki/Haversine_formula

84 Trace-class

Trace-class Class "Trace”

Description

A Trace object containing a seismic trace — a continuous timeseries.

Objects from the Class

Objects occupy the traces slot of a Stream-class object and are typically populated by calls to
getDataselect.

Slots

id: Object of class "character”: Unique "SNCL" identifier specifying the Network, Station, Lo-
cation, Channel and Quality factor associated with this trace: eg. AK.PIN..VEA.M. The id is
generated automatically when the trace is first created and is intended for read only.

Sensor: Object of class "character”: Instrument name.

InstrumentSensitivity: Object of class "numeric”: The total sensitivity for a channel, repre-
senting the complete acquisition system expressed as a scalar. Equivalent to SEED stage 0
gain.

SensitivityFrequency: Object of class "numeric”: The frequency at which the total sensitivity
is correct.

InputUnits: Object of class "character”: The units of the data as input from the perspective of
data acquisition. After correcting data for this response, these would be the resulting units.

stats: Object of class "TraceHeader": Container with metadata information describing the trace.
(see TraceHeader-class)

data: Object of class "numeric”: Vector of data values.

Methods

as.vector signature(x="Trace"): returns the data slot; equivalent to x@data

DDT signature(x="Trace"”, demean="logical"”, detrend="logical"”, taper="numeric"): re-

turns a new trace that has been ’cleaned up’ for further processing by applying demean, de-
trend, and taper techniques (see DDT)

envelope signature(x="Trace"): returns the envelope of the seismic signal (see envelope)
isDC signature(x="Trace"): returns TRUE if trace data consist of a DC signal

length signature(x="Trace"): returns the length of the data; equivalent to length(x@data)
max signature(x="Trace"): returns the maximum value of the data; equivalent to max (x@data)

median signature(x="Trace", na.rm="logical"): returns the median value of the data; equiv-
alent to median(x@data)

mean signature(x="Trace"): returns the mean value of the data; equivalent to mean(x@data)

min signature(x="Trace"): returns the minimum value of the data; equivalent to min(x@data)

Trace-class 85

multiplyBy signature(x="Trace"”, y="numeric”): returns a new Trace where the data have
been multiplied by y (see multiplyBy)

plot signature(x="Trace"): default plot of the Trace data with appropriate labeling
rms signature(x="Trace"): returns the Root Mean Square amplitude of the data (see rms)
rmsVariance signature(x="Trace"): returns the RMS variance of the data (see rmsVariance)

sd signature(x="Trace"”, na.rm="logical"): returns the standard deviation of the data; equiv-
alent to sd(x@data)

slice signature(x="Trace", starttime="P0OSIXct", endtime="POSIXct"): returns anew Trace
subset of an existing Trace (see slice)

STALTA signature(x="Trace",staSecs="numeric”,1taSecs="numeric”,algorithm="character”,
...): returns the STALTA picker result (see STALTA)

triggerOnset signature(x="Trace", picker="numeric”, threshold="numeric”, ...): returns
the time or index of an event onset as determined by the STALTA picker (see triggerOnset)

Note

The Trace object is inspired by the Trace class found in the python ObsPy package (https://
docs.obspy.org/packages/autogen/obspy.core.trace.Trace.html).

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

Set the starttime and endtime
starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,"AK"”,"PIN",6"" "BHZ",K starttime,endtime)

Get the first trace and generate some statistics
tr1 <- st@traces[[1]]

min(tr1)

median(tr1)

mean(tr1)

max(tr1)

sd(tr1)

rms(tr1)

rmsVariance(tr1)

End(Not run)

https://docs.obspy.org/packages/autogen/obspy.core.trace.Trace.html
https://docs.obspy.org/packages/autogen/obspy.core.trace.Trace.html

86 TraceHeader-class

TraceHeader-class Class "TraceHeader"”

Description

A container for metadata associated with a Trace object. Originally populated by information in the
miniseed trace header; it now has the option of including additional station and channel metadata.

Objects from the Class

Objects can be created by calls of the form new("TraceHeader"”, headerList, headerLine,
...). The stats slot of a Trace object will contain a TraceHeader object, typically populated
by a webservice request. (see IrisClient-class)

Slots

sampling_rate: Object of class "numeric”: Sampling rate in hertz.
delta: Object of class "numeric”: Sample interval in seconds.
calib: Object of class "numeric”: Calibration factor.

npts: Object of class "integer”: Number of sample points.
network: Object of class "character”: Seismic network name.
location: Object of class "character”: Location code.
station: Object of class "character”: Station name.
channel: Object of class "character”: Channel code.
quality: Object of class "character”: Data quality code.
starttime: Object of class "POSIXct": Start time.

endtime: Object of class "POSIXct"”: End time.

latitude: Object of class "numeric"”: Latitude.

longitude: Object of class "numeric”: Longitude.
elevation: Object of class "numeric”: Elevation.

depth: Object of class "numeric”: Depth.

azimuth: Object of class "numeric”: Azimuth.

dip: Object of class "numeric”: Dip.

processing: Object of class "list": Information strings describing processing applied to this
trace.

Methods

as.headerLine signature(obj = "TraceHeader"): Prints out the information in the TraceHeader
as an ascii header line, not including any station and channel metadata not found in the
miniseed trace header, e.g.,

TIMESERIES LD_POTS__HHZ_M, 351 samples, 100.503 sps, \
2012-01-29T00:00:00.006000, SLIST, INTEGER, COUNTS

show signature(object = "TraceHeader"): Prettyprints the information in the TraceHeader

transferFunctionSpectra 87

Note

The TraceHeader object is inspired by the Stats class found in the python ObsPy package (https:
//docs.obspy.org/packages/autogen/obspy.core. trace.Stats.html).

Retaining the ObsPy class name Stats would have generated a tremendous amount of confusion in
the context of R. Instead, the name TraceHeader has been adopted. Nevertheless, the TraceHeader
object still lives in the Trace@stats slot to retain as much similarity to ObsPy as possible.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2012-01-24", tz="GMT")
endtime <- as.POSIXct("2012-01-25", tz="GMT")

Get the waveform
st <- getDataselect(iris,"AK","PIN","" "BHZ",Kstarttime,endtime)

Get the first trace and show the associated metadata
tr1 <- st@traces[[1]]
show(tri@stats)

End(Not run)

transferFunctionSpectra

function to retrieve response values to use for input to the IRISMus-
tangMetrics: :transferFunctionMetric

Description

The transferFunctionSpectra function returns a frequency-amplitude-phase response from the
service.earthscope.org/iris/ws/evalresp web service for a seismic Stream object using sampling_rate
to determine frequency limits. The IRISMustangMetrics::transferFunctionMetric expects this out-
put as evalresp input.

Usage

transferFunctionSpectra(st,sampling_rate)

Arguments

st a Stream object
sampling_rate sample rate

https://docs.obspy.org/packages/autogen/obspy.core.trace.Stats.html
https://docs.obspy.org/packages/autogen/obspy.core.trace.Stats.html

88 triggerOnset

Details

The transferFunctionSpectra /determines the minfreq, maxfreq, and nfreq for input to the
getEvalresp function based on input sample rate. Other getEvalresp inputs are units="def” (de-
fault) and output="fap’ (frequency-amplitude-phase).

transferFunctionSpectra will always call getEvalresp using the service.earthscope.org/irisws/evalresp
web service. The IRISMustangMetrics::transferFunctionMetric expects this output as evalresp in-
put.

Value

Output is a dataframe with columns named:
freq, amp, phase

Author(s)

Mary Templeton <mary . templeton@earthscope.org>

See Also

getEvalresp,

Examples

Not run:
Create a new IrisClient
iris <- new("IrisClient”, debug=TRUE)

Get seismic data

starttime <- as.POSIXct("2011-05-05", tz="GMT")

endtime <- starttime + 1x24*x3600

st <- getDataselect(iris,”IU","GRFQO","--" "BHE",starttime,endtime)
sampling_rate <- 20

Generate power spectral density for each hour long segment
evalresp <- transferFunctionSpectra(st,sampling_rate)

End(Not run)

triggerOnset Event onset triggering

Description

The triggerOnset method of Trace objects uses the numeric vector returned by the STALTA "first
break picking" method and a user selected threshold to determine the arrival time of a seismic event.

triggerOnset 89

Usage

triggerOnset(x, picker, threshold, index)

Arguments
X a Trace object
picker results from applying the STALTA method to this trace
threshold optional numeric value of the threshold at which triggering should occur
index optional logical to return the index (rather than the time) of event onset (de-
fault=FALSE)
Details

This method simply identifies the point at which the picker first rises above the threshold.
When no threshold is supplied, an appropriate value is calculated from the picker with:
threshold <- quantile(picker,©.999,na.rm=TRUE).

Value
A single value is returned identifying the onset of the seismic event or NA if none is detected. The
returned value wil be a POSIXct time by defult or a numeric index if index=TRUE.

Note
The appropriate value for the threshold will depend upon the exact STA/LTA algorithm used and
the noise level in the signal.

Author(s)

Jonathan Callahan <jonathan@mazamascience.com>

See Also
STALTA

Examples

Not run:
Open a connection to EarthScope webservices
iris <- new("IrisClient")

starttime <- as.POSIXct("2010-02-27 06:00:00",tz="GMT")
endtime <- as.POSIXct("2010-02-27 09:00:00",tz="GMT")

Get the waveform

st <- getDataselect(iris,”IU","ANMO","00","BHZ", 6 starttime,endtime)
tr <- st@traces[[1]]

picker <- STALTA(tr,3,30)

90 unHistogram

Identify the onset of the event
to <- triggerOnset(tr,picker)

plot(tr)
abline(v=to, col='red',6 1lwd=2)

End(Not run)

unHistogram Histogram to Vector

Description
If vec represents a set of binned counts of incrementing values (ascending) return a vector of asso-
ciated bin values with the proper count of each value. Intended for internal use.

Usage

unHistogram(vec, startVal, incr)

Arguments
vec a histogram vector or ordered set of binned counts
startVal the initial value of the first bin element
incr the increment rate of each subsequent bin value
Value

A vector of bin values with appropriate counts of each.

Author(s)

Rob Casey <rob.casey@earthscope.org>

Index

x classes

IrisClient-class, 53
Stream-class, 80
Trace-class, 84
TraceHeader-class, 86

* methods

basicStats, 11
butterworth, 13
DDT, 17
envelope, 18
eventWindow, 20
getGaps, 34
getUpDownTimes, 49
hilbert, 50
hilbertFFT, 51
mergeTraces, 57
multiplyBy, 61
rms, 73

slice, 76
STALTA, 77
triggerOnset, 88
unHistogram, 90

* spectra

crossSpectrum, 14
McNamaraBins, 54
McNamaraPSD, 55

noiseMatrix2PdfMatrix, 62

noiseModels, 63
psdDF2NoiseMatrix, 64
psdList, 65

psdList2NoiseMatrix, 67

psdPlot, 68
psdStatistics, 70

transferFunctionSpectra, 87
* webservices

getAvailability, 21
getChannel, 23

getDataAvailability, 26

getDataselect, 28

91

getDistaz, 30
getEvalresp, 31
getEvent, 33
getNetwork, 36
getRotation, 38
getSNCL, 39
getStation, 41
getTimeseries, 43
getTraveltime, 45
getUnavailability, 47

as.headerLine (TraceHeader-class), 86

as.headerlLine, TraceHeader-method
(TraceHeader-class), 86

as.vector,Trace-method (Trace-class), 84

basicStats, 11

butterworth, 13

butterworth,Trace,numeric,missing,numeric,missing-method
(butterworth), 13

butterworth,Trace,numeric,numeric,missing,missing-method
(butterworth), 13

butterworth,Trace,numeric,numeric,numeric,character-method
(butterworth), 13

butterworth,Trace,numeric,numeric,numeric,missing-method
(butterworth), 13

crossSpectrum, 14

DDT, 17, 19, 50, 84

DDT,Trace,logical,logical,numeric-method
(DDT), 17

DDT,Trace,missing,missing,missing-method
(DDT), 17

envelope, 18, 84

envelope, Trace-method (envelope), 18

eventWindow, 20

eventWindow, Trace,numeric,missing,missing-method
(eventWindow), 20

92 INDEX

eventWindow, Trace,numeric,missing,numeric-metpet'Station, 41, 53

(eventWindow), 20 getStation,IrisClient,character,character,character,charac
eventWindow, Trace,numeric,numeric,missing-method (getStation), 41
(eventWindow), 20 getStation,IrisClient,character,character,character,charac
eventWindow, Trace,numeric,numeric,numeric-method (getStation), 41
(eventWindow), 20 getTimeseries, 43
getTimeseries,IrisClient,character,character,character,cha
getAvailability, 21, 25, 48, 53 (getTimeseries), 43
getAvailability,IrisClient,character,charactege ehpsastermehasasyer,POSIXct,POSIXct, logical-method
(getAvailability), 21 getTraveltime,IrisClient,numeric,numeric,numeric,numeric,n
getAvailability,IrisClient,character,character, charactasGharaatare PQsIXct, POSIXct,, missing-method
(getAvailability), 21 getUnavailability, 22, 23, 25, 47, 54
getChannel, 23,23, 48, 53 getUnavailability,IrisClient,character,character,character
getChannel, IrisClient,character,character,character, chamasi/a PGt)0g9FXct , logical -method
(getChannel), 23 getUnavailability,IrisClient,character,character,character
getChannel, IrisClient,character,character,character, chamasi®/a PGt NOGFXct , missing-method
(getChannel), 23 getUpDownTimes, 49, 59, 80, 81
getDataAvailability, 26, 53 getUpDownTimes, Stream,missing,missing-method
getDataAvailability,IrisClient,character,character,ch@gggﬁﬁﬁwﬁhqmﬁgggagPOSIXct,POSIXct—method
(getDataAvailability), 26 getUpDownTimes, Stream, numeric, numeric-method
getDataselect, 28, 35, 40, 44, 49, 53, 60, 80, (getUpDownTimes), 49
84
getDataselect,IrisClient,character,character,ghasgaetesgcharacter,POSIXct,POSIXct-method
(getDataselect), 28 hilbert,Trace-method (hilbert), 50
getDistaz, 30, 53 hilbertFFT, 51
getDistaz,IrisClient,numeric,numeric,numeric,numeric-method
(getDistaz), 30 initialize,IrisClient-method
getEvalresp, 31, 53, 56, 64, 67, 88 (IrisClient-class), 53
getEvalresp,IrisClient,character,character,chanattielizbaTastern@Obdd¢traethedass),
(getEvalresp), 31 84
getEvent, 33, 53 initialize,TraceHeader-method
getEvent,IrisClient,POSIXct,POSIXct-method (TraceHeader-class), 86
(getEvent), 33 IrisClient-class, 53, 86
getGaps, 34, 80 IRISSeismic (IRISSeismic-package), 3
getGaps,Stream,missing-method IRISSeismic-package, 3
(getGaps), 34 isDC (Trace-class), 84
getGaps, Stream, numeric-method isDC,Trace-method (Trace-class), 84
(getGaps), 34
getNetwork, 36, 53 length (basicStats), 11
getNetwork,IrisClient,character,character, chatangelr, SbecanteetROSTKasjEO8aXs],, Ibgical-method
(getNetwork), 36 length,Trace-method (basicStats), 11
getNetwork,IrisClient,character,character,character,character,POSIXct,POSIXct,missing-method
(getNetwork), 36 max (basicStats), 11
getRotation, 38 max,Stream-method (basicStats), 11
getRotation,IrisClient,character,character, chaaacteagehnetictd hBOSEXtatBASIKct, character-method
(getRotation), 38 McNamaraBins, 54, 57
getSNCL, 30, 39,44, 53 McNamaraPSD, 16, 55, 55, 63, 65, 66, 68, 69, 71

getSNCL, IrisClient,character,POSIXct,POSIXct-medhgHasicStats), 11
(getSNCL), 39 mean, Stream-method (basicStats), 11

INDEX

mean, Trace-method (basicStats), 11
median (basicStats), 11
median, Stream, logical-method
(basicStats), 11
median, Stream,missing-method
(basicStats), 11
median,Trace,logical-method
(basicStats), 11
median,Trace,missing-method
(basicStats), 11
mergeTraces, 57, 81

mergeTraces,Stream, character-method

(mergeTraces), 57
mergeTraces, Stream,missing-method

(mergeTraces), 57
mergeUpDownTimes, 58

mergeUpDownTimes,NULL,POSIXct,logical-method

(mergeUpDownTimes), 58

mergeUpDownTimes,NULL,POSIXct,missing-method

(mergeUpDownTimes), 58

mergeUpDownTimes,POSIXct,NULL,logical-method

(mergeUpDownTimes), 58

mergeUpDownTimes,POSIXct,NULL,missing-method

(mergeUpDownTimes), 58

93

parallelMean (basicStats), 11
parallelMean,Stream, logical-method
(basicStats), 11
parallelMean,Stream,missing-method
(basicStats), 11
parallelMedian (basicStats), 11
parallelMedian,Stream,logical-method
(basicStats), 11
parallelMedian,Stream,missing-method
(basicStats), 11
parallelMin (basicStats), 11
parallelMin,Stream, logical-method
(basicStats), 11
parallelMin,Stream,missing-method
(basicStats), 11
parallelRms (rms), 73
parallelRmsVariance (rms), 73
parallelRmsVariance,Stream,logical-method
(basicStats), 11
parallelRmsVariance,Stream,missing-method
(basicStats), 11
parallelSd (basicStats), 11
parallelSd,Stream,logical-method
(basicStats), 11

mergeUpDownTimes,POSIXct,POSIXct,logical—methsgrallelsd Stream, missing-method

(mergeUpDownTimes), 58

(basicStats), 11

mergeUpDownTlmes’POSIXCt’POSIXCt’mISSIng_mEtthot,Stream—method(Stream—class),80

(mergeUpDownTimes), 58
min (basicStats), 11
min,Stream-method (basicStats), 11
min, Trace-method (basicStats), 11
miniseed2Stream, 60, 72
multiplyBy, 61, 81, 85
multiplyBy,Stream,numeric-method

(multiplyBy), 61
multiplyBy,Trace,numeric-method

(multiplyBy), 61

noiseMatrix2PdfMatrix, 62
noiseModels, 63

parallellLength (basicStats), 11
parallellLength,Stream-method
(basicStats), 11
parallelMax (basicStats), 11
parallelMax,Stream,logical-method
(basicStats), 11
parallelMax,Stream,missing-method
(basicStats), 11

plot,Trace-method (Trace-class), 84

plotUpDownTimes, 50, 59

plotUpDownTimes (Stream-class), 80

plotUpDownTimes,POSIXct,missing,missing-method
(Stream-class), 80

plotUpDownTimes,POSIXct,missing,numeric-method
(Stream-class), 80

plotUpDownTimes,POSIXct,numeric,missing-method
(Stream-class), 80

plotUpDownTimes,POSIXct,numeric, numeric-method
(Stream-class), 80

plotUpDownTimes,Stream,missing,missing-method
(Stream-class), 80

plotUpDownTimes,Stream,missing,numeric-method
(Stream-class), 80

plotUpDownTimes, Stream,numeric,missing-method
(Stream-class), 80

plotUpDownTimes, Stream,numeric, numeric-method
(Stream-class), 80

psdDF2NoiseMatrix, 63, 64, 68

psdList, 56, 57, 63, 65, 65, 68, 69, 71

94

psdList2NoiseMatrix, 64-66, 67
psdPlot, 63, 65, 66, 68, 68, 71
psdStatistics, 63-66, 68, 69, 70

readMiniseedFile, 61, 72

rms, 73, 85

rms,Stream,logical-method (basicStats),
11

rms,Stream,missing-method (basicStats),
11

rms,Trace,logical-method (rms), 73

rms,Trace,missing-method (rms), 73

rmsVariance, 81, 85

rmsVariance (rms), 73

rmsVariance,Stream,logical-method
(basicStats), 11

rmsVariance,Stream,missing-method
(basicStats), 11

rmsVariance,Trace, logical-method (rms),
73

rmsVariance,Trace,missing-method (rms),
73

rotate2D, 74

sd (basicStats), 11

sd, Stream,logical-method (basicStats),
11

sd,Stream,missing-method (basicStats),
11

sd,Trace, logical-method (basicStats), 11
sd,Trace,missing-method (basicStats), 11

show, TraceHeader-method
(TraceHeader-class), 86
slice, 76, 81, 85
slice,Stream,P0SIXct,POSIXct-method
(Stream-class), 80
slice,Trace,POSIXct,POSIXct-method
(slice), 76
STALTA, 20, 77, 85, 89

INDEX

surfaceDistance, 83

Trace, 60, 72

Trace (Trace-class), 84

Trace-class, 84

TraceHeader (TraceHeader-class), 86

TraceHeader-class, 84, 86

transferFunctionSpectra, 87

triggerOnset, 20, 79, 85, 88

triggerOnset,Trace,numeric-method
(triggerOnset), 88

unHistogram, 90

uniquelds (Stream-class), 80

uniquelds,Stream-method (Stream-class),
80

STALTA,Trace,missing,missing,missing,missing,missing,missing,missing-method

(STALTA), 77

STALTA,Trace,numeric,numeric,character,logical,logical,numeric,numeric-method

(STALTA), 77

STALTA,Trace,numeric,numeric,character,missing,missing,missing,missing-method

(STALTA), 77

STALTA, Trace,numeric,numeric,missing,missing,missing,missing,missing-method

(STALTA), 77
Stream (Stream-class), 80
Stream-class, 80, 84

	IRISSeismic-package
	basicStats
	butterworth
	crossSpectrum
	DDT
	envelope
	eventWindow
	getAvailability
	getChannel
	getDataAvailability
	getDataselect
	getDistaz
	getEvalresp
	getEvent
	getGaps
	getNetwork
	getRotation
	getSNCL
	getStation
	getTimeseries
	getTraveltime
	getUnavailability
	getUpDownTimes
	hilbert
	hilbertFFT
	IrisClient-class
	McNamaraBins
	McNamaraPSD
	mergeTraces
	mergeUpDownTimes
	miniseed2Stream
	multiplyBy
	noiseMatrix2PdfMatrix
	noiseModels
	psdDF2NoiseMatrix
	psdList
	psdList2NoiseMatrix
	psdPlot
	psdStatistics
	readMiniseedFile
	rms
	rotate2D
	slice
	STALTA
	Stream-class
	surfaceDistance
	Trace-class
	TraceHeader-class
	transferFunctionSpectra
	triggerOnset
	unHistogram
	Index

