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JANE Fit JANE

Description

Fit a latent space cluster model, with or without noise edges, using an EM algorithm.

Usage

JANE(
A,
D = 2,
K = 2,
family = "bernoulli",
noise_weights = FALSE,
guess_noise_weights = NULL,
model,
initialization = "GNN",
case_control = FALSE,
DA_type = "none",
seed = NULL,
control = list()

)

Arguments

A A square matrix or sparse matrix of class ’dgCMatrix’ representing the adja-
cency matrix of the network of interest.

D Integer (scalar or vector) specifying the dimension of the latent space (default is
2).

K Integer (scalar or vector) specifying the number of clusters to consider (default
is 2).

family A character string specifying the distribution of the edge weights.

• ’bernoulli’: Expects an unweighted network; utilizes a Bernoulli distribu-
tion with a logit link (default)
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• ’lognormal’: Expects a weighted network with positive, non-zero, contin-
uous edge weights; utilizes a log-normal distribution with an identity link

• ’poisson’: Expects a weighted network with edge weights representing
non-zero counts; utilizes a zero-truncated Poisson distribution with a log
link

noise_weights A logical; if TRUE then a Hurdle model is used to account for noise weights, if
FALSE simply utilizes the supplied network (converted to an unweighted binary
network if a weighted network is supplied, i.e., (A > 0.0)*1.0) and fits a latent
space cluster model (default is FALSE).

guess_noise_weights

Only applicable if noise_weights = TRUE. A numeric value specifying the best
guess for the mean of the noise weight distribution for family %in% c('lognormal',
'poisson') (mean is on the log-scale for lognormal) OR proportion (i.e. in
(0,1)) of all edges that are noise edges for family = 'bernoulli'. If NULL
(i.e., default) and noise_weights = TRUE then the 1st percentile of the non-zero
weights will be used for family %in% c('lognormal', 'poisson') and 1%
will be used for family = 'bernoulli'.

model A character string specifying the model to fit:

• ’NDH’: undirected network with no degree heterogeneity
• ’RS’: undirected network with degree heterogeneity
• ’RSR’: directed network with degree heterogeneity

initialization A character string or a list to specify the initial values for the EM algorithm:

• ’GNN’: uses a type of graphical neural network approach to generate initial
values (default)

• ’random’: uses random initial values
• A user supplied list of initial values. See specify_initial_values on

how to specify initial values

case_control A logical; if TRUE then uses a case-control approximation approach (default is
FALSE).

DA_type (Experimental) A character string to specify the type of deterministic annealing
approach to use

• ’none’: does not employ a deterministic annealing approach (default)
• ’cooling’: (Experimental) employes a traditional deterministic annealing

approach where temperature decreases
• ’heating’: (Experimental) employes a deterministic anti-annealing approach

where temperature increases
• ’hybrid’: (Experimental) employes a combination of the ’cooling’ and ’heat-

ing’ approach

seed (optional) An integer value to specify the seed for reproducibility.

control A list of control parameters. See ’Details’.

Details

Isolates are removed from the adjacency matrix A. If an unsymmetric adjacency matrix A is sup-
plied for model %in% c('NDH', 'RS') the user will be asked if they would like to proceed with
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converting A to a symmetric matrix (i.e., A <- 1.0 * ( (A + t(A)) > 0.0 )); only able to do so if
family = 'bernoulli'. Additionally, if a weighted network is supplied and noise_weights =
FALSE, then the network will be converted to an unweighted binary network (i.e., (A > 0.0)*1.0)
and a latent space cluster model is fit.

control:
The control argument is a named list that the user can supply containing the following compo-
nents:

verbose A logical; if TRUE causes additional information to be printed out about the progress of
the EM algorithm (default is FALSE).

max_its An integer specifying the maximum number of iterations for the EM algorithm (default
is 1e3).

min_its An integer specifying the minimum number of iterations for the EM algorithm (default is
10).

priors A list of prior hyperparameters (default is NULL). See specify_priors on how to specify
the hyperparameters.

n_interior_knots (only relevant for model %in% c('RS', 'RSR')) An integer specifying the num-
ber of interior knots used in fitting a natural cubic spline for degree heterogeneity models
(default is 5).

termination_rule A character string to specify the termination rule to determine the convergence
of the EM algorithm:

• 'prob_mat': uses change in the absolute difference in ẐU (i.e., the N ×K cluster mem-
bership probability matrix) between subsequent iterations (default)

• 'Q': uses change in the absolute difference in the objective function of the E-step evalu-
ated using parameters from subsequent iterations

• 'ARI': comparing the classifications between subsequent iterations using adjusted Rand
index

• 'NMI': comparing the classifications between subsequent iterations using normalized mu-
tual information

• 'CER': comparing the classifications between subsequent iterations using classification
error rate

tolerance A numeric specifying the tolerance used for termination_rule %in% c('Q', 'prob_mat')
(default is 1e-3).

tolerance_ARI A numeric specifying the tolerance used for termination_rule = 'ARI' (default
is 0.999).

tolerance_NMI A numeric specifying the tolerance used for termination_rule = 'NMI' (default
is 0.999).

tolerance_CER A numeric specifying the tolerance used for termination_rule = 'CER' (default
is 0.01).

n_its_start_CA An integer specifying what iteration to start computing the change in cumulative
averages (note: the change in the cumulative average of Û , the latent position matrix, is not
tracked when termination_rule = 'Q') (default is 20).

tolerance_diff_CA A numeric specifying the tolerance used for the change in cumulative average
of termination_rule metric and Û (note: the change in the cumulative average of Û is not
tracked when termination_rule = 'Q') (default is 1e-3).
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consecutive_diff_CA An integer specifying the tolerance for the number of consecutive instances
where the change in cumulative average is less than tolerance_diff_CA (default is 5).

quantile_diff A numeric in [0,1] specifying the quantile used in computing the change in the
absolute difference of ẐU and Û between subsequent iterations (default is 1, i.e., max).

beta_temp_schedule (Experimental) A numeric vector specifying the temperature schedule for
deterministic annealing (default is 1, i.e., deterministic annealing not utilized).

n_control An integer specifying the fixed number of controls (i.e., non-links) sampled for each
actor; only relevant when case_control = TRUE (default is 100 when case_control = TRUE
and NULL when case_control = FALSE).

n_start An integer specifying the maximum number of starts for the EM algorithm (default is 5).

max_retry An integer specifying the maximum number of re-attempts if starting values cause
issues with EM algorithm (default is 5).

IC_selection A character string to specify the information criteria used to select the optimal fit
based on the combinations of K, D, and n_start considered:

• 'BIC_model': BIC computed from logistic regression or Hurdle model component
• 'BIC_mbc': BIC computed from model based clustering component
• 'ICL_mbc': ICL computed from model based clustering component
• 'Total_BIC': sum of 'BIC_model' and 'BIC_mbc'

• 'Total_ICL': sum of 'BIC_model' and 'ICL_mbc' (default)

sd_random_U_GNN (only relevant when initialization = 'GNN') A positive numeric value spec-
ifying the standard deviation for the random draws from a normal distribution to initialize U
(default is 1).

max_retry_GNN (only relevant when initialization = 'GNN') An integer specifying the maxi-
mum number of re-attempts for the GNN approach before switching to random starting values
(default is 10).

n_its_GNN (only relevant when initialization = 'GNN') An integer specifying the maximum
number of iterations for the GNN approach (default is 10).

downsampling_GNN (only relevant when initialization = 'GNN') A logical; if TRUE employs
downsampling s.t. the number of links and non-links are balanced for the GNN approach (de-
fault is TRUE).

Running JANE in parallel:
JANE integrates the future and future.apply packages to fit the various combinations of K, D, and
n_start in parallel. The ’Examples’ section below provides an example of how to run JANE in
parallel. See plan and future.apply for more details.

Choosing the number of clusters:
JANE allows for the following model selection criteria to choose the number of clusters (smaller
values are favored):

• 'BIC_model': BIC computed from logistic regression or Hurdle model component

• 'BIC_mbc': BIC computed from model based clustering component

• 'ICL_mbc': ICL (Biernacki et al. (2000)) computed from model based clustering component

• 'Total_BIC': Sum of 'BIC_model' and 'BIC_mbc', this is the model selection criterion
proposed by Handcock et al. (2007)
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• 'Total_ICL': (default) sum of 'BIC_model' and 'ICL_mbc', this criterion is similar to
'Total_BIC', but uses ICL for the model based clustering component, which tends to favor
more well-separated clusters.

Based on simulation studies, Biernacki et al. (2000) recommends that when the interest in mixture
modeling is cluster analysis, instead of density estimation, the ICLmbc criterion should be favored
over the BICmbc criterion, as the BICmbc criterion tends to overestimate the number of clusters.
The BICmbc criterion is designed to choose the number of components in a mixture model rather
than the number of clusters.

Warning: It is not certain whether it is appropriate to use the model selection criterion above to
select D.

Value

A list of S3 class "JANE" containing the following components:

input_params A list containing the input parameters for IC_selection, case_control, DA_type,
model, family, and noise_weights used in the function call.

A The square sparse adjacency matrix of class ’dgCMatrix’ used in fitting the latent
space cluster model. This matrix can be different than the input A matrix as
isolates are removed.

IC_out A matrix containing the relevant information criteria for all combinations of K,
D, and n_start considered. The ’selected’ column indicates the chosen optimal
fit.

all_convergence_ind

A matrix containing the convergence information (i.e., 1 = converged, 0 = did
not converge) and number of iterations for all combinations of K, D, n_start,
and beta_temperature considered.

optimal_res A list containing the estimated parameters of interest based on the optimal fit se-
lected. It is recommended to use summary() to extract the parameters of interest.
See summary.JANE for more details.

optimal_starting

A list containing the starting parameters used in the EM algorithm that resulted
in the optimal fit selected. It is recommended to use summary() to extract the
parameters of interest. See summary.JANE for more details.

References

Biernacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence
22, 719–725.

Handcock, M.S., Raftery, A.E., Tantrum, J.M., 2007. Model-based clustering for social networks.
Journal of the Royal Statistical Society Series A: Statistics in Society 170, 301–354.

Examples

# Simulate network
mus <- matrix(c(-1,-1,1,-1,1,1),
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nrow = 3,
ncol = 2,
byrow = TRUE)

omegas <- array(c(diag(rep(7,2)),
diag(rep(7,2)),
diag(rep(7,2))),
dim = c(2,2,3))

p <- rep(1/3, 3)
beta0 <- 1.0
sim_data <- JANE::sim_A(N = 100L,

model = "NDH",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
remove_isolates = TRUE)

# Run JANE on simulated data
res <- JANE::JANE(A = sim_data$A,

D = 2L,
K = 3L,
initialization = "GNN",
model = "NDH",
case_control = FALSE,
DA_type = "none")

# Run JANE on simulated data - consider multiple D and K
res <- JANE::JANE(A = sim_data$A,

D = 2:5,
K = 2:10,
initialization = "GNN",
model = "NDH",
case_control = FALSE,
DA_type = "none")

# Run JANE on simulated data - parallel with 5 cores
# future::plan(future::multisession, workers = 5)
# res <- JANE::JANE(A = sim_data$A,
# D = 2L,
# K = 3L,
# initialization = "GNN",
# model = "NDH",
# case_control = FALSE,
# DA_type = "none")
# future::plan(future::sequential)

# Run JANE on simulated data - case/control approach with 20 controls sampled for each actor
res <- JANE::JANE(A = sim_data$A,

D = 2L,
K = 3L,
initialization = "GNN",
model = "NDH",
case_control = TRUE,
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DA_type = "none",
control = list(n_control = 20))

# Reproducibility
res1 <- JANE::JANE(A = sim_data$A,

D = 2L,
K = 3L,
initialization = "GNN",
seed = 1234,
model = "NDH",
case_control = FALSE,
DA_type = "none")

res2 <- JANE::JANE(A = sim_data$A,
D = 2L,
K = 3L,
initialization = "GNN",
seed = 1234,
model = "NDH",
case_control = FALSE,
DA_type = "none")

## Check if results match
all.equal(res1, res2)

# Another reproducibility example where the seed was not set.
# It is possible to replicate the results using the starting values due to
# the nature of EM algorithms
res3 <- JANE::JANE(A = sim_data$A,

D = 2L,
K = 3L,
initialization = "GNN",
model = "NDH",
case_control = FALSE,
DA_type = "none")

## Extract starting values
start_vals <- res3$optimal_start

## Run JANE using extracted starting values, no need to specify D and K
## below as function will determine those values from start_vals
res4 <- JANE::JANE(A = sim_data$A,

initialization = start_vals,
model = "NDH",
case_control = FALSE,
DA_type = "none")

## Check if optimal_res are identical
all.equal(res3$optimal_res, res4$optimal_res)

plot.JANE Plot JANE fits
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Description

S3 plot method for object of class "JANE".

Usage

## S3 method for class 'JANE'
plot(
x,
type = "lsnc",
true_labels,
initial_values = FALSE,
zoom = 100,
density_type = "contour",
rotation_angle = 0,
alpha_edge = 0.1,
alpha_node = 1,
swap_axes = FALSE,
main,
xlab,
ylab,
cluster_cols,
remove_noise_edges = FALSE,
...

)

Arguments

x An object of S3 class "JANE", a result of a call to JANE.
type A character string to select the type of plot:

• ’lsnc’: plot the network using the estimated latent positions and color-code
actors by cluster (default)

• ’misclassified’: (can only be used if true_labels is !NULL) similar to
’lsnc’, but will color misclassified actors in black

• ’uncertainty’: similar to ’lsnc’, but here the color gradient applied repre-
sents the actor-specific classification uncertainty

• ’trace_plot’: presents various trace plots across the iterations of the EM
algorithm

true_labels (optional) A numeric, character, or factor vector of known true cluster labels.
Must have the same length as number of actors in the fitted network. Need to
account for potential isolates removed.

initial_values A logical; if TRUE then plots fit using the starting parameters used in the EM
algorithm (default is FALSE, i.e., the results after the EM algorithm is run are
plotted).

zoom A numeric value > 0 that controls the % magnification of the plot (default is
100%).

density_type Choose from one of the following three options: ’contour’ (default), ’hdr’, ’im-
age’, and ’persp’ indicating the density plot type.
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rotation_angle A numeric value that rotates the estimated latent positions and contours of the
multivariate normal distributions clockwise (or counterclockwise if swap_axes
= TRUE) through the specified angle about the origin (default is 0 degrees). Only
relevant when D (i.e., dimension of the latent space) >= 2 and type != 'trace_plot'.

alpha_edge A numeric value in [0,1] that controls the transparency of the network edges
(default is 0.1).

alpha_node A numeric value in [0,1] that controls the transparency of the actors in the
network (default is 1).

swap_axes A logical; if TRUE will swap the x and y axes (default is FALSE).
main An optional overall title for the plot.
xlab An optional title for the x axis.
ylab An optional title for the y axis.
cluster_cols An optional vector of colors for the clusters. Must have a length of at least K.
remove_noise_edges

(only applicable if JANE was run with noise_weights = TRUE) A logical; if TRUE
will remove noise edges based on hard clustering rule of {h|ẐW

eh = max(ẐW
e1 , Ẑ

W
e2 )}

for e = 1, . . . , |E|, where ẐW
e1 and ẐW

e2 are the estimated conditional probabil-
ities that the eth edge is a non-noise and noise edge, respectively (default is
FALSE).

... Unused.

Details

The classification of actors into specific clusters is based on a hard clustering rule of {h|ẐU
ih =

maxkẐ
U
ik}. Additionally, the actor-specific classification uncertainty is derived as 1 - maxkẐ

U
ik.

The trace plot contains up to five unique plots tracking various metrics across the iterations of the
EM algorithm, depending on the JANE control parameter termination_rule:

• termination_rule = 'prob_mat': Five plots will be presented. Specifically, in the top panel,
the plot on the left presents the change in the absolute difference in ẐU (i.e., the N ×K clus-
ter membership probability matrix) between subsequent iterations and, if noise_weights =
TRUE, the change in the absolute difference in ẐW (i.e., the |E| × 2 edge weight cluster mem-
bership probability matrix) between subsequent iterations. The exact quantile of the absolute
difference plotted are presented in parentheses and determined by the JANE control parame-
ter quantile_diff. For example, the default control parameter quantile_diff = 1, so the
values being plotted are the max absolute difference in ẐU (and potentially ẐW ) between sub-
sequent iterations. The plot on the right of the top panel presents the absolute difference in the
cumulative average of the absolute change in ẐU (and potentially ẐW ) and Û (i.e., the N×D
matrix of latent positions) across subsequent iterations (absolute change in ẐU , ẐW , and Û are
computed in an identical manner as described previously). This metric is only tracked begin-
ning at an iteration determined by the n_its_start_CA control parameter in JANE. Note, this
plot may be empty if the EM algorithm converges before the n_its_start_CA-th iteration.
Finally, the bottom panel presents ARI, NMI, and CER values comparing the classifications
between subsequent iterations, respectively. Specifically, at a given iteration we determine the
classification of actors in clusters based on a hard clustering rule of {h|ẐU

ih = maxkẐ
U
ik} and

given these labels from two subsequent iterations, we compute and plot the ARI, NMI and
CER.
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• termination_rule = 'Q': Plots generated are similar to those described in the previous bullet
point. However, instead of tracking the change in ẐU (and potentially ẐW ) over iterations,
here the absolute difference in the objective function of the E-step evaluated using parameters
from subsequent iterations is tracked. Furthermore, the cumulative average of the absolute
change in Û is no longer tracked.

• termination_rule %in% c('ARI', 'NMI', 'CER'): Four plots will be presented. Specifi-
cally, the top left panel presents a plot of the absolute difference in the cumulative average of
the absolute change in the specific termination_rule employed and Û across iterations. As
previously mentioned, if the EM algorithm converges before the n_its_start_CA-th iteration
then this will be an empty plot. Furthermore, the other three plots present ARI, NMI, and CER
values comparing the classifications between subsequent iterations, respectively.

Value

A plot of the network or trace plot of the EM run.

Note

If an error interrupts the plotting process, the graphics device may be left in a state where par("new")
= TRUE. This can cause subsequent plots to be overlaid. To reset the graphics state, call plot.new()
or close and reopen the device with dev.off(); dev.new().

See Also

surfacePlot, adjustedRandIndex, classError, NMI

Examples

# Simulate network
mus <- matrix(c(-1,-1,1,-1,1,1),

nrow = 3,
ncol = 2,
byrow = TRUE)

omegas <- array(c(diag(rep(7,2)),
diag(rep(7,2)),
diag(rep(7,2))),
dim = c(2,2,3))

p <- rep(1/3, 3)
beta0 <- 1.0
sim_data <- JANE::sim_A(N = 100L,

model = "NDH",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
remove_isolates = TRUE)

# Run JANE on simulated data
res <- JANE::JANE(A = sim_data$A,

D = 2L,
K = 3L,
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initialization = "GNN",
model = "NDH",
case_control = FALSE,
DA_type = "none")

# plot trace plot
plot(res, type = "trace_plot")

# plot network
plot(res)

# plot network - misclassified
plot(res, type = "misclassified", true_labels = apply(sim_data$Z_U, 1, which.max))

# plot network - uncertainty and swap axes
plot(res, type = "uncertainty", swap_axes = TRUE)

# plot network - but only show contours of MVNs
plot(res, swap_axes = TRUE, alpha_edge = 0, alpha_node = 0)

# plot using starting values of EM algorithm
plot(res, initial_values = TRUE)

sim_A Simulate unweighted or weighted networks, with or without noise
edges, from latent space cluster models

Description

Simulate an unweighted or weighted network, with or without noise edges, from a D-dimensional
latent space cluster model with K clusters and N actors. The squared euclidean distance is used
(i.e., dist(Ui, Uj)

2), where Ui and Uj are the respective actor’s positions in a D-dimensional social
space.

Usage

sim_A(
N,
mus,
omegas,
p,
model = "NDH",
family = "bernoulli",
params_LR,
params_weights = NULL,
noise_weights_prob = 0,
mean_noise_weights,
precision_noise_weights,
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remove_isolates = TRUE
)

Arguments

N An integer specifying the number of actors in the network.

mus A numeric K×D matrix specifying the mean vectors of the K D-variate normal
distributions for the latent positions.

omegas A numeric D×D×K array specifying the precision matrices of the K D-variate
normal distributions for the latent positions.

p A numeric vector of length K specifying the mixture weights of the finite mul-
tivariate normal mixture distribution for the latent positions.

model A character string specifying the type of model used to simulate the network:

• ’NDH’: generates an undirected network with no degree heterogeneity
• ’RS’: generates an undirected network with degree heterogeneity, specifi-

cally by including actor specific random sociality effects
• ’RSR’: generates a directed network with degree heterogeneity, specifi-

cally by including actor specific random sender and receiver effects

family A character string specifying the distribution of the edge weights.

• ’bernoulli’: generates an unweighted network from a latent space cluster
model

• ’lognormal’: generates a weighted network by first simulating an unweighted
network using a latent space cluster model, and then assigning edge weights
based on a log-normal GLM utilizing an identity link

• ’poisson’: generates a weighted network by first simulating an unweighted
network using a latent space cluster model, and then assigning edge weights
based on a zero-truncated Poisson GLM utilizing a log link

params_LR A list containing the parameters of the logistic regression model to simulate the
unweighted network, including:

• ’beta0’: a numeric value specifying the intercept parameter for the logistic
regression model

• ’precision_R_effects’: precision parameters for random degree heterogene-
ity effects, specific to the logistic regression model:

– ’NDH’: does not apply, can leave as missing
– ’RS’: a numeric value specifying the precision parameter of the normal

distribution of the random sociality effect, if missing will generate from
a gamma(shape = 1, rate = 1)

– ’RSR’: a numeric matrix specifying the precision matrix of the multi-
variate normal distribution of the random sender and receiver effects, if
missing will generate from a Wishart(df = 3, Sigma = I2)

params_weights Only relevant when family %in% c('lognormal', 'poisson'). A list con-
taining the parameters of the GLMs for the edge weights, including:

• ’beta0’: a numeric value specifying the intercept parameter for the zero-
truncated Poisson or log-normal GLM
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• ’precision_R_effects’: precision parameters for random degree heterogene-
ity effects, specific to the zero-truncated Poisson or log-normal GLM:

– ’NDH’: does not apply, can leave as missing
– ’RS’: a numeric value specifying the precision parameter of the normal

distribution of the random sociality effect, if missing will generate from
a gamma(shape = 1, rate = 1)

– ’RSR’: a numeric matrix specifying the precision matrix of the multi-
variate normal distribution of the random sender and receiver effects, if
missing will generate from a Wishart(df = 3, Sigma = I2)

• ’precision_weights’: a positive, non-zero, numeric representing the preci-
sion (on the log scale) of the log-normal weight distribution. Only relevant
when family = 'lognormal'

noise_weights_prob

A numeric in [0,1] representing the proportion of all edges in the simulated
network that are noise edges (default is 0.0).

mean_noise_weights

A numeric representing the mean of the noise weight distribution. Only relevant
when family %in% c('lognormal', 'poisson') and noise_weights_prob>0.0.
For family = ’poisson’ value has to be > 0.0, for family = "lognormal" the mean
is on the log scale.

precision_noise_weights

A positive, non-zero, numeric representing the precision (on the log scale) of the
log-normal noise weight distribution. Only relevant when family = 'lognormal'
and noise_weights_prob>0.0.

remove_isolates

A logical; if TRUE then isolates from the network are removed (default is TRUE).

Details

The returned scalar q_prob represents the proportion of non-edges in the simulated network to be
converted to noise edges, computed as pnoise×DA

(1−DA)×(1−pnoise)
, where DA is the density of the simulated

network without noise and pnoise is the inputted noise_weights_prob.

Value

A list containing the following components:

A A sparse adjacency matrix of class ’dgCMatrix’ representing the "true" underly-
ing unweighted network with no noise edges.

W A sparse adjacency matrix of class ’dgCMatrix’ representing the unweighted or
weighted network, with or without noise. Note, if family = 'bernoulli' and
noise_weights_prob = 0, then A = W.

q_prob A numeric scalar representing the proportion of non-edges in the "true" under-
lying network converted to noise edges. See ’Details’ for how this value is
computed.

Z_U A numeric N ×K cluster assignment matrix with rows representing the cluster
an actor belongs to (i.e., indicated by a value of 1.0).
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Z_W A numeric |E|×4 edge weight cluster assignment matrix, with |E| representing
the total number of edges in the network (for undirected networks, only the up-
per diagonal edges are retained). The first two columns (i.e., ’i’ and ’j’) contains
the specific indices of the edge between the ith and jth actors, the third column
(i.e., ’weight’) contains the specific edge weight, and the fourth column (i.e.,
’Z_W’) represents a noise-cluster label, where 1 denotes a non-noise edge and
2 denotes a noise edge. Will be NULL if noise_weights_prob = 0.

U A numeric N × D matrix with rows representing an actor’s position in a D-
dimensional social space.

mus The inputted numeric K ×D mus matrix.

omegas The inputted numeric D ×D ×K omegas array.

p The inputted numeric vector p of length K.
noise_weights_prob

The inputted numeric scalar noise_weights_prob.
mean_noise_weights

The inputted numeric scalar mean_noise_weights. Will be NULL if noise_weights_prob
= 0.

precision_noise_weights

The inputted numeric scalar precision_noise_weights. Will be NULL if noise_weights_prob
= 0.

model The inputted model character string.

family The inputted family character string.

params_LR The inputted params_LR list. If model != "NDH", will have an additional element
"RE" containing a numeric N × 1 matrix representing the actor specific random
sociality effect (i.e., s) OR a N×2 matrix representing the actor specific random
sender and receiver effects (i.e., s and r, respectively).

params_weights The inputted params_weights list. If model != "NDH", will have an additional
element "RE" containing a numeric N ×1 matrix representing the actor specific
random sociality effect (i.e., s) OR a N×2 matrix representing the actor specific
random sender and receiver effects (i.e., s and r, respectively).

Examples

mus <- matrix(c(-1,-1,1,-1,1,1),
nrow = 3,
ncol = 2,
byrow = TRUE)

omegas <- array(c(diag(rep(7,2)),
diag(rep(7,2)),
diag(rep(7,2))),

dim = c(2,2,3))
p <- rep(1/3, 3)
beta0 <- 1.0

# Simulate an undirected, unweighted network, with no noise and no degree heterogeneity
JANE::sim_A(N = 100L,
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model = "NDH",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
remove_isolates = TRUE)

# Simulate a directed, weighted network, with no noise and degree heterogeneity
JANE::sim_A(N = 100L,

model = "RSR",
family = "lognormal",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
params_weights = list(beta0 = 2,

precision_weights = 1),
remove_isolates = TRUE)

# Simulate an undirected, weighted network, with noise and degree heterogeneity
JANE::sim_A(N = 100L,

model = "RS",
family = "poisson",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
params_weights = list(beta0 = 2),
noise_weights_prob = 0.1,
mean_noise_weights = 1,
remove_isolates = TRUE)

specify_initial_values

Specify starting values for EM algorithm

Description

A function that allows the user to specify starting values for the EM algorithm in a structure accepted
by JANE.

Usage

specify_initial_values(
A,
D,
K,
model,
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family = "bernoulli",
noise_weights = FALSE,
n_interior_knots = NULL,
U,
omegas,
mus,
p,
Z,
beta,
beta2,
precision_weights,
precision_noise_weights

)

Arguments

A A square matrix or sparse matrix of class ’dgCMatrix’ representing the adja-
cency matrix of the network of interest.

D An integer specifying the dimension of the latent positions.

K An integer specifying the total number of clusters.

model A character string specifying the model:

• ’NDH’: undirected network with no degree heterogeneity
• ’RS’: undirected network with degree heterogeneity
• ’RSR’: directed network with degree heterogeneity

family A character string specifying the distribution of the edge weights.

• ’bernoulli’: for unweighted networks; utilizes a Bernoulli distribution with
a logit link (default)

• ’lognormal’: for weighted networks with positive, non-zero, continuous
edge weights; utilizes a log-normal distribution with an identity link

• ’poisson’: for weighted networks with edge weights representing non-zero
counts; utilizes a zero-truncated Poisson distribution with a log link

noise_weights A logical; if TRUE then a Hurdle model is used to account for noise weights, if
FALSE simply utilizes the supplied network (converted to an unweighted binary
network if a weighted network is supplied, i.e., (A > 0.0)*1.0) and fits a latent
space cluster model (default is FALSE).

n_interior_knots

An integer specifying the number of interior knots used in fitting a natural cubic
spline for degree heterogeneity models (i.e., ’RS’ and ’RSR’ only; default is
NULL).

U A numeric N × D matrix with rows specifying an actor’s position in a D-
dimensional social space.

omegas A numeric D×D×K array specifying the precision matrices of the K D-variate
normal distributions for the latent positions.

mus A numeric K×D matrix specifying the mean vectors of the K D-variate normal
distributions for the latent positions.
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p A numeric vector of length K specifying the mixture weights of the finite mul-
tivariate normal mixture distribution for the latent positions.

Z A numeric N×K matrix with rows representing the conditional probability that
an actor belongs to the cluster K = k for k = 1, . . . ,K.

beta A numeric vector specifying the regression coefficients for the logistic regres-
sion model. Specifically, a vector of length
1 + (model =="RS")*(n_interior_knots + 1) +
(model =="RSR")*2*(n_interior_knots + 1).

beta2 A numeric vector specifying the regression coefficients for the zero-truncated
Poisson or log-normal GLM. Specifically, a vector of length
1 + (model =="RS")*(n_interior_knots + 1) +
(model =="RSR")*2*(n_interior_knots + 1).
Only relevant when noise_weights = TRUE & family != 'bernoulli'.

precision_weights

A positive numeric scalar specifying the precision (on the log scale) of the
log-normal weight distribution. Only relevant when noise_weights = TRUE &
family = 'lognormal'.

precision_noise_weights

A positive numeric scalar specifying the precision (on the log scale) of the log-
normal noise weight distribution. Only relevant when noise_weights = TRUE &
family = 'lognormal'.

Details

To match JANE, this function will remove isolates from the adjacency matrix A and determine the
total number of actors after excluding isolates. If this is not done, errors with respect to incorrect
dimensions in the starting values will be generated when executing JANE.

Similarly to match JANE, if an unsymmetric adjacency matrix A is supplied for model %in% c('NDH',
'RS') the user will be asked if they would like to proceed with converting A to a symmetric ma-
trix (i.e., A <- 1.0 * ( (A + t(A)) > 0.0 )). Additionally, if a weighted network is supplied and
noise_weights = FALSE, then the network will be converted to an unweighted binary network (i.e.,
(A > 0.0)*1.0).

Value

A list of starting values for the EM algorithm generated from the input values in a structure accepted
by JANE.

Examples

# Simulate network
mus <- matrix(c(-1,-1,1,-1,1,1),

nrow = 3,
ncol = 2,
byrow = TRUE)

omegas <- array(c(diag(rep(7,2)),
diag(rep(7,2)),
diag(rep(7,2))),
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dim = c(2,2,3))
p <- rep(1/3, 3)
beta0 <- -1
sim_data <- JANE::sim_A(N = 100L,

model = "RSR",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
remove_isolates = TRUE)

# Specify starting values
D <- 3L
K <- 5L
N <- nrow(sim_data$A)
n_interior_knots <- 5L

U <- matrix(stats::rnorm(N*D), nrow = N, ncol = D)
omegas <- stats::rWishart(n = K, df = D+1, Sigma = diag(D))
mus <- matrix(stats::rnorm(K*D), nrow = K, ncol = D)
p <- extraDistr::rdirichlet(n = 1, rep(3,K))[1,]
Z <- extraDistr::rdirichlet(n = N, alpha = rep(1, K))
beta <- stats::rnorm(n = 1 + 2*(1 + n_interior_knots))

my_starting_values <- JANE::specify_initial_values(A = sim_data$A,
D = D,
K = K,
model = "RSR",
n_interior_knots = n_interior_knots,
U = U,
omegas = omegas,
mus = mus,
p = p,
Z = Z,
beta = beta)

# Run JANE using my_starting_values (no need to specify D and K as function will
# determine those values from my_starting_values)
res <- JANE::JANE(A = sim_data$A,

initialization = my_starting_values,
model = "RSR")

specify_priors Specify prior hyperparameters for EM algorithm

Description

A function that allows the user to specify the prior hyperparameters for the EM algorithm in a
structure accepted by JANE.
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Usage

specify_priors(
D,
K,
model,
family = "bernoulli",
noise_weights = FALSE,
n_interior_knots = NULL,
a,
b,
c,
G,
nu,
e,
f,
h,
l,
e_2,
f_2,
m_1,
o_1,
m_2,
o_2

)

Arguments

D An integer specifying the dimension of the latent positions.

K An integer specifying the total number of clusters.

model A character string specifying the model:

• ’NDH’: undirected network with no degree heterogeneity
• ’RS’: undirected network with degree heterogeneity
• ’RSR’: directed network with degree heterogeneity

family A character string specifying the distribution of the edge weights.

• ’bernoulli’: for unweighted networks; utilizes a Bernoulli distribution with
a logit link (default)

• ’lognormal’: for weighted networks with positive, non-zero, continuous
edge weights; utilizes a log-normal distribution with an identity link

• ’poisson’: for weighted networks with edge weights representing non-zero
counts; utilizes a zero-truncated Poisson distribution with a log link

noise_weights A logical; if TRUE then a Hurdle model is used to account for noise weights, if
FALSE simply utilizes the supplied network (converted to an unweighted binary
network if a weighted network is supplied, i.e., (A > 0.0)*1.0) and fits a latent
space cluster model (default is FALSE).
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n_interior_knots

An integer specifying the number of interior knots used in fitting a natural cubic
spline for degree heterogeneity models (i.e., ’RS’ and ’RSR’ only; default is
NULL).

a A numeric vector of length D specifying the mean of the multivariate normal
prior on µk for k = 1, . . . ,K, where µk represents the mean of the multivariate
normal distribution for the latent positions of the kth cluster.

b A positive numeric scalar specifying the scaling factor on the precision of the
multivariate normal prior on µk for k = 1, . . . ,K, where µk represents the mean
of the multivariate normal distribution for the latent positions of the kth cluster.

c A numeric scalar ≥ D specifying the degrees of freedom of the Wishart prior
on Ωk for k = 1, . . . ,K, where Ωk represents the precision of the multivariate
normal distribution for the latent positions of the kth cluster.

G A numeric D×D matrix specifying the inverse of the scale matrix of the Wishart
prior on Ωk for k = 1, . . . ,K, where Ωk represents the precision of the multi-
variate normal distribution for the latent positions of the kth cluster.

nu A positive numeric vector of length K specifying the concentration parameters
of the Dirichlet prior on p, where p represents the mixture weights of the finite
multivariate normal mixture distribution for the latent positions.

e A numeric vector of length 1 + (model =='RS')*(n_interior_knots + 1) +
(model =='RSR')*2*(n_interior_knots + 1) specifying the mean of the mul-
tivariate normal prior on βLR, where βLR represents the coefficients of the lo-
gistic regression model.

f A numeric p.s.d square matrix of dimension 1 + (model =='RS')*(n_interior_knots
+ 1) + (model =='RSR')*2*(n_interior_knots + 1) specifying the precision
of the multivariate normal prior on βLR, where βLR represents the coefficients
of the logistic regression model.

h A positive numeric scalar specifying the first shape parameter for the Beta prior
on q, where q is the proportion of non-edges in the "true" underlying network
converted to noise edges. Only relevant when noise_weights = TRUE.

l A positive numeric scalar specifying the second shape parameter for the Beta
prior on q, where q is the proportion of non-edges in the "true" underlying net-
work converted to noise edges. Only relevant when noise_weights = TRUE.

e_2 A numeric vector of length 1 + (model =='RS')*(n_interior_knots + 1) +
(model =='RSR')*2*(n_interior_knots + 1) specifying the mean of the mul-
tivariate normal prior on βGLM , where βGLM represents the coefficients of the
zero-truncated Poisson or log-normal GLM. Only relevant when noise_weights
= TRUE & family != 'bernoulli'.

f_2 A numeric p.s.d square matrix of dimension 1 + (model =='RS')*(n_interior_knots
+ 1) + (model =='RSR')*2*(n_interior_knots + 1) specifying the precision
of the multivariate normal prior on βGLM , where βGLM represents the coeffi-
cients of the zero-truncated Poisson or log-normal GLM. Only relevant when
noise_weights = TRUE & family != 'bernoulli'.

m_1 A positive numeric scalar specifying the shape parameter for the Gamma prior
on τ2weights, where τ2weights is the precision (on the log scale) of the log-normal
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weight distribution. Note, this value is scaled by 0.5, see ’Details’. Only relevant
when noise_weights = TRUE & family = 'lognormal'.

o_1 A positive numeric scalar specifying the rate parameter for the Gamma prior
on τ2weights, where τ2weights is the precision (on the log scale) of the log-normal
weight distribution. Note, this value is scaled by 0.5, see ’Details’. Only relevant
when noise_weights = TRUE & family = 'lognormal'.

m_2 A positive numeric scalar specifying the shape parameter for the Gamma prior
on τ2noise weights, where τ2noise weights is the precision (on the log scale) of the
log-normal noise weight distribution. Note, this value is scaled by 0.5, see ’De-
tails’. Only relevant when noise_weights = TRUE & family = 'lognormal'.

o_2 A positive numeric scalar specifying the rate parameter for the Gamma prior on
τ2noise weights, where τ2noise weights is the precision (on the log scale) of the log-
normal noise weight distribution. Note, this value is scaled by 0.5, see ’Details’.
Only relevant when noise_weights = TRUE & family = 'lognormal'.

Details

Prior on µk and Ωk (note: the same prior is used for k = 1, . . . ,K) :

π(µk,Ωk) = π(µk|Ωk)π(Ωk), thus

µk|Ωk ∼ MVN(a, (bΩk)
−1)

Ωk ∼ Wishart(c,G−1)

Prior on p:

For the current implementation we require that all elements of the nu vector be ≥ 1 to prevent
against negative mixture weights for empty clusters.

p ∼ Dirichlet(ν1, . . . , νK)

Prior on βLR:
βLR ∼ MVN(e, f−1)

Prior on βGLM :
βGLM ∼ MVN(e2, f

−1
2 )

Prior on q:
q ∼ Beta(h, l)

Prior on τ2weights:

τ2weights ∼ Gamma(
m1

2
,
o1
2
)

Prior on τ2noise weights:

τ2noise weights ∼ Gamma(
m2

2
,
o2
2
)

Value

A list of prior hyperparameters for the EM algorithm generated from the input values in a structure
accepted by JANE.
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Examples

# Simulate network
mus <- matrix(c(-1,-1,1,-1,1,1),

nrow = 3,
ncol = 2,
byrow = TRUE)

omegas <- array(c(diag(rep(7,2)),
diag(rep(7,2)),
diag(rep(7,2))),
dim = c(2,2,3))

p <- rep(1/3, 3)
beta0 <- 1.0
sim_data <- JANE::sim_A(N = 100L,

model = "RS",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
remove_isolates = TRUE)

# Specify prior hyperparameters
D <- 3L
K <- 5L
n_interior_knots <- 5L

a <- rep(1, D)
b <- 3
c <- 4
G <- 10*diag(D)
nu <- rep(2, K)
e <- rep(0.5, 1 + (n_interior_knots + 1))
f <- diag(c(0.1, rep(0.5, n_interior_knots + 1)))

my_prior_hyperparameters <- specify_priors(D = D,
K = K,
model = "RS",
n_interior_knots = n_interior_knots,
a = a,
b = b,
c = c,
G = G,
nu = nu,
e = e,
f = f)

# Run JANE on simulated data using supplied prior hyperparameters
res <- JANE::JANE(A = sim_data$A,

D = D,
K = K,
initialization = "GNN",
model = "RS",
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case_control = FALSE,
DA_type = "none",
control = list(priors = my_prior_hyperparameters))

summary.JANE Summarizing JANE fits

Description

S3 summary method for object of class "JANE".

Usage

## S3 method for class 'JANE'
summary(object, true_labels = NULL, initial_values = FALSE, ...)

Arguments

object An object of S3 class "JANE", a result of a call to JANE.

true_labels (optional) A numeric, character, or factor vector of known true cluster labels.
Must have the same length as number of actors in the fitted network. Need to
account for potential isolates removed (default is NULL).

initial_values A logical; if TRUE then summarize fit using the starting parameters used in the
EM algorithm (default is FALSE, i.e., the results after the EM algorithm is run
are summarized).

... Unused.

Value

A list of S3 class "summary.JANE" containing the following components (Note: N is the number
of actors in the network, K is the number of clusters, and D is the dimension of the latent space):

coefficients A list containing the estimated coefficients from the logistic regression model
(i.e., ’beta_LR’) and, if relevant, the estimated coefficients from the zero- trun-
cated Poisson or log-normal GLM (i.e., ’beta_GLM’).

U A numeric N ×D matrix with rows containing an actor’s estimated latent posi-
tion in a D-dimensional social space.

p A numeric vector of length K containing the estimated mixture weights of the
finite multivariate normal mixture distribution for the latent positions.

mus A numeric K × D matrix containing the estimated mean vectors of the K D-
variate normal distributions for the latent positions.

omegas A numeric D×D×K array containing the estimated precision matrices of the
K D-variate normal distributions for the latent positions.
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Z_U A numeric N ×K matrix with rows containing the estimated conditional prob-
ability that an actor belongs to the cluster K = k for k = 1, . . . ,K.

uncertainty A numeric vector of length N containing the uncertainty of the ith actor’s clas-
sification, derived as 1 - maxkẐ

U
ik.

cluster_labels A numeric vector of length N containing the cluster assignment of each actor
based on a hard clustering rule of {h|ẐU

ih = maxkẐ
U
ik}.

Z_W A numeric |E|×6 matrix, with |E| representing the total number of edges in the
network (for undirected networks, only the upper diagonal edges are retained).
The first two columns (i.e., ’i’ and ’j’) contains the specific indices of the edge
between the ith and jth actors, the third column (i.e., ’weight’) contains the spe-
cific edge weight, the fourth column (i.e., ’hat_zij1’) contains the estimated con-
ditional probability that the specific edge is a non-noise edge, the fifth column
(i.e., ’hat_zij2’) contains the estimated conditional probability that the specific
edge is a noise edge, and the sixth column (i.e., ’noise_edge_cluster_labels’)
contains the noise-edge cluster assignment of each edge based on a hard clus-
tering rule of {h|ẐW

eh = max(ẐW
e1 , Ẑ

W
e2 )} for e = 1, . . . , |E|, where ẐW

e1 and
ẐW
e2 are the estimated conditional probabilities that the eth edge is a non-noise

and noise edge, respectively (labels defined as, 1: non-noise edge and 2: noise
edge). Will be NULL if noise_weights = FALSE or initial_values = TRUE.

q_prob A numeric scalar representing the estimated proportion of non-edges in the
"true" unobserved network that were converted to noise edges.

precision_weights

A numeric scalar representing the estimated precision (on the log scale) of
the log-normal weight distribution. Only relevant for family = 'lognormal'
& noise_weights = TRUE.

precision_noise_weights

A numeric scalar representing the estimated precision (on the log scale) of the
log-normal noise weight distribution. Only relevant for family = 'lognormal'
& noise_weights = TRUE.

IC Information criteria values of the optimal fit selected, including
• 'BIC_model': BIC computed from logistic regression or Hurdle model

component
• 'BIC_mbc': BIC computed from model based clustering component
• 'ICL_mbc': ICL computed from model based clustering component
• 'Total_BIC': sum of 'BIC_model' and 'BIC_mbc'

• 'Total_ICL': sum of 'BIC_model' and 'ICL_mbc'

input_params A list with the following components:
• model: A character string containing the specific model used (i.e., ’NDH’,

’RS’, or ’RSR’)
• family: A character string containing the specific family used (i.e., ’bernoulli’,

’poisson’, or ’lognormal’)
• noise_weights: A logical; if TRUE then the approach utilizing a Hurdle

model accounting for noise edges was utilized
• IC_selection: A character string containing the specific information crite-

ria used to select the optimal fit (i.e., ’BIC_model’, ’BIC_mbc’, ’ICL_mbc’,
’Total_BIC’, or ’Total_ICL’)
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• case_control: A logical; if TRUE then the case/control approach was uti-
lized

• DA_type: A character string containing the specific deterministic annealing
approach utilized (i.e., ’none’, ’cooling’, ’heating’, or ’hybrid’)

• priors: A list of the prior hyperparameters used. See specify_priors for
definitions.

clustering_performance

(only if true_labels is !NULL) A list with the following components:

• CER: A list with two components: (i) misclassified: The indices of the
misclassified actors in a minimum error mapping between the cluster labels
and the known true cluster labels (i.e., true_labels) and (ii) errorRate:
The error rate corresponding to a minimum error mapping between the clus-
ter labels and the known true cluster labels (see classError for details)

• ARI: A numeric value containing the adjusted Rand index comparing the
cluster labels and the known true cluster labels (see adjustedRandIndex
for details)

• NMI: A numeric value containing the normalized mutual information com-
paring the cluster labels and the known true cluster labels (see NMI for de-
tails)

• confusion_matrix: A numeric table containing the confusion matrix com-
paring the cluster labels and the known true cluster labels.

Examples

# Simulate network
mus <- matrix(c(-1,-1,1,-1,1,1),

nrow = 3,
ncol = 2,
byrow = TRUE)

omegas <- array(c(diag(rep(7,2)),
diag(rep(7,2)),
diag(rep(7,2))),
dim = c(2,2,3))

p <- rep(1/3, 3)
beta0 <- 1.0
sim_data <- JANE::sim_A(N = 100L,

model = "NDH",
mus = mus,
omegas = omegas,
p = p,
params_LR = list(beta0 = beta0),
remove_isolates = TRUE)

# Run JANE on simulated data
res <- JANE::JANE(A = sim_data$A,

D = 2L,
K = 3L,
initialization = "GNN",
model = "NDH",
case_control = FALSE,
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DA_type = "none")

# Summarize fit
summary(res)

# Summarize fit and compare to true cluster labels
summary(res, true_labels = apply(sim_data$Z_U, 1, which.max))

# Summarize fit using starting values of EM algorithm
summary(res, initial_values = TRUE)
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