Package ‘LCAextend’

January 20, 2025

Type Package

Title Latent Class Analysis (LCA) with Familial Dependence in Extended
Pedigrees

Version 1.3

Date 2018-07-05

Author Arafat TAYEB <arafat.tayeb@ircm.qc.ca>, Alexandre BUREAU
<alexandre.bureau@msp.ulaval.ca> and Aurelie Labbe
<aurelie.labbe@mcgill.ca>

Maintainer Alexandre BUREAU <alexandre.bureau@msp.ulaval.ca>

Depends R (>=2.1.0)

Imports boot, mvtnorm, rms, kinship2

Description Latent Class Analysis of
phenotypic measurements in pedigrees and model selection
based on one of two methods: likelihood-based cross-validation
and Bayesian Information Criterion. Computation of individual
and triplet child-parents weights in a pedigree is performed using an
upward-downward algorithm. The model takes into account the familial
dependence defined by the pedigree structure by considering
that a class of a child depends on his parents classes via
triplet-transition probabilities of the classes. The package
handles the case where measurements are available on all
subjects and the case where measurements are available only on
symptomatic (i.e. affected) subjects. Distributions for
discrete (or ordinal) and continuous data are currently
implemented. The package can deal with missing data.

License GPL
LazyLoad yes

URL https://CRAN.R-project.org/package=LCAextend
Repository CRAN

NeedsCompilation no

Date/Publication 2018-07-07 15:40:21 UTC

https://CRAN.R-project.org/package=LCAextend

2 alpha.compute

Contents
alpha.ccompute L e e e 2
attrib.dens L L L 3
dens.norm e e 4
dens.prod.ordi e e 5
downward 6
downward.connect e 8
ESIED ot e e e e e e e e e e e 10
INENOIM L L Lo e e e 12
nitordi e 13
INLPATANS L o e e e e e e e 14
lcamodel e 15
model.select e e 18
TLPATAITL .« o v v v v e 21
optim.const.ordi e e e e 22
optimdiffnorm oL 23
optimequal.norm e e e 25
OPtM.EENE.NOTII . .+ . v v v v v v e e e e e e e e e e e e e e e e 26
Optim.indep.norm e e e e e e 27
optim.noconst.ordi L. L. e 28
optim.probs L. e e 29
P-COMPULE . . o . o vttt et e et e e e e e e e e e e e e e 30
ppostchild 31
p.postfoundol 32
PaTamL.CONt L e e e e 33
param.ordi 34
ped.cont e 35
pediordi 35
peel .o 36
PIobS . . e 36
upward e 37
upward.Connect 39
weight.famdep L 41
weightnue o oL e 43

Index 46

alpha.compute computes cumulative logistic coefficients using probabilities
Description
computes cumulative logistic coefficients using probabilities.
Usage

alpha.compute(p)

attrib.dens 3

Arguments

p a vector of probabilities (positive entries summing to 1).

Details

If p has one value (equal to 1) alpha.compute returns NA, if it has S (S>=2) values, alpha. compute
returns S-1 coefficients alpha such that if Y is a random variable taking values in {1, ...,S} with
probabilities p, coefficients alpha[i] are given by:

) exp(aq + ... + ;)
+ ...+ P = P(Y S 1) = 5
P P () 1+exp(ag + ... + ;)

for all i<=S-1.

Value

The function returns alpha: a vector of S-1 cumulative logistic coefficients.

See Also

alpha.compute is the inverse function of p.compute

Examples

a vector of probability

p <- c(0,0.2,0,0,0.3,0.4,0.1,0,0)
alpha.compute(p)

#gives -Inf -1.38 @ @ 1.38 @ 2.19 Inf Inf
p.compute(alpha.compute(rep(1/5,5)))

attrib.dens associates to a function of density parameter optimization an attribute
to distinguish between ordinal and normal cases

Description

associates to a function of density parameter optimization an attribute to distinguish between ordinal
and normal cases. This is an internal function not meant to be called by the user.

Usage

attrib.dens(optim.param)

Arguments

optim.param the function used to estimate the parameters of the measurements.

dens.norm

Details

Available optim.param functions are optim.noconst.ordi, optim.const.ordi for ordinal mea-
surements and optim. indep.norm, optim.diff.norm, optim.equal.normand optim.gene.norm
for multinormal measurements. The attribution uses the internal function attr and the attribute
name used is type. The user can make his own optima.param function and has to associate an
attribute type to it to be used instead of the available ones.

Value

The function returns the same optim.param with an attribute type taking values in ordi or norm.

Examples

optim.param <- optim.indep.norm
optim.param <- attrib.dens(optim.param)

dens.norm computes the multinormal density of a given continuous measurement
vector for all classes

Description
computes the density of an individual’s continuous measurement vector for all latent classes, even-

tually taking covariates into account. This is an internal function not meant to be called by the
user.

Usage

dens.norm(y.x, param, var.list = NULL)

Arguments
y.X a vector y of values of the measurement followed by the values x of covariates,
if any,
param a list of the multinormal density parameters: means mu and variances-covariances
sigma,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement.
Details

For each class k, the function computes the multinormal density with means param$mul[k]] and
variances-covariances matrix param$sigmal[[k]] for the individual’s measurement vector. Treat-
ment of covariates is not yet implemented, and any provided covariate value will be ignored.

dens.prod.ordi 5

Value

The function returns a vector dens of length K, where dens[k] is the density of the measurements
if the individual belongs to class k.

Examples

#data

data(ped.cont)

status <- ped.cont[,6]

y <- ped.cont[status==2,7:ncol(ped.cont)]

#param

data(param.cont)

#the function applied for measurement of the first individual in the ped.ordi
dens.norm(y.x=y[1,],param.cont)

dens.prod.ordi computes the probability of a given discrete measurement vector for
all classes under a product of multinomial

Description

computes the probability of an individual’s discrete measurement vector for all latent classes under
a multinomial distribution product, eventually taking covariates into account. This is an internal
function not meant to be called by the user.

Usage

dens.prod.ordi(y.x, param, var.list = NULL)

Arguments
y.X a vector y of values of the ordinal variables (measurements) followed by the
values x of covariates, if any,
param a list of the parameters alpha (cumulative logistic coefficients), see init.ordi,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement.
Details

If there are K latent classes, d measurements and each measurement has S[j] possible values, alpha
is a list of d elements, each is a K times S[j]+length{var.list[[j]]} matrix. For a class C=k,

d
dens[k]=H P(Y; = y;|C =k, X; = x;), where P(Y; = y;|C = k, X; = x;) is computed from
j=1
the cumulative logistic coefficients alphal[j1]1[k,] and covariates x[var.list[[j1]],

6 downward
Value
The function returns a vector dens of length K, where dens[k] is the probability of measurement
vector y with covariates X, if the individual belongs to class k.
See Also
See Also init.ordi,
Examples
#data
data(ped.ordi)
status <- ped.ordi[,6]
y <- ped.ordi[status==2,7:ncol(ped.ordi)]
#param
data(param.ordi)
#the function applied for measurement of the first individual in the ped.ordi
dens.prod.ordi(y.x=y[1,],param.ordi)
downward performs the downward step of the peeling algorithm and computes
unnormalized triplet and individual weights
Description
computes the probability of measurements above connectors and their classes given the model pa-
rameters, and returns the unnormalized triplet and individual weights. This is an internal function
not meant to be called by the user.
Usage
downward(id, dad, mom, status, probs, fyc, peel, res.upward)
Arguments
id individual ID of the pedigree,
dad dad 1D,
mom mom ID,
status symptom status: (2: symptomatic, 1: without symptoms, 0: missing),
probs a list of probability parameters of the model,
fyc a matrix of n times K+1 given the density of observations of each individual
if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model,
peel a list of pedigree peeling containing connectors by peeling order and couples of
parents,
res.upward result of the upward step of the peeling algorithm, see upward.

downward 7

Details

This function computes the probability of observations above connectors and their classes using
the function downward.connect, for each connector, if Y_above(i) is the observations above
connector i and S_i and C_i are his status and his class respectively, the functions computes
P(Y_above(i),S_i,C_i) by computing a downward step for the parent of connector i who is also
a connector. These quantities are used by the function weight.nuc to compute the unnormalized
triplet weights ww and the unnormalized individual weights w.

Value

The function returns a list of 2 elements:

ww unnormalized triplet weights, an array of n times 2 times K+1 times K+1 times
K+1, where n is the number of individulas and K is the total number of latent
classes in the model, see e. step for more details,

w unnormalized individual weights, an array of n times 2 times K+1, see e. step.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See Also

See also downward. connect.

Examples

#data

data(ped.cont)

data(peel)

fam <- ped.cont[,1]

id <- ped.cont[fam==1,2]

dad <- ped.cont[fam==1,3]

mom <- ped.cont[fam==1,4]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

peel <- peel[[1]]

#standardize id to be 1, 2, 3,

id.origin <- id

standard <- function(vec) ifelse(vec%in%id.origin,which(id.origin==vec),0)

id <- apply(t(id),2,standard)

dad <- apply(t(dad),2,standard)

mom <- apply(t(mom),2,standard)

peel$couple <- cbind(apply(t(peel$couplel,1]),2,standard),

apply(t(peel$couple[,2]),2,standard))

for(generat in 1:peel$generation)
peel$peel.connect[generat,] <- apply(t(peel$peel.connect[generat,]),2,standard)

#probs and param

data(probs)

data(param.cont)

8 downward.connect

#densities of the observations

fyc <- matrix(1,nrow=length(id),ncol=length(probs$p)+1)
fyc[status==2,1:1length(probs$p)] <- t(apply(y[status==2,],1,dens.norm,param.cont,NULL))
#the upward step

res.upward <- upward(id,dad,mom,status,probs,fyc,peel)

#the function

downward(id, dad,mom,status, probs, fyc,peel, res.upward)

downward. connect performs a downward step for a connector

Description
computes the probability of the measurements above a connector and the connector latent class
given the model parameters. This is an internal function not meant to be called by the user.

Usage

downward.connect(connect, parentl, parent2, bro.connect, status,
probs, fyc, p.ybarF.c, res.upward)

Arguments
connect a connector in the pedigree (individual with parents and children in the pedi-
gree),
parent1 one of the connector parent who is also a connector,
parent2 the other parent of the connector (not a connector),
bro.connect siblings of the connector,
status a vector of symptom status,
probs a list of all probability parameters of the model,
fyc a matrix of n times K+1 given the density of observations of each individual
if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model. the K+1 corresponds to the unaffected
class,
p.ybarF.c a array of dimension n times 2 times K+1 giving the probability of observations
above the individual, depending on his status and his class and conditionally to
his class,
res.upward the result of the upward step of the peeling algorithm, see upward.
Details

If Y_above (i) is the measurements above connector i and S_i and C_i are his status and his class
respectively, the function computes P(Y_above(i),S_i,C_i) by computing a downward step for
the parent of connector i who is also a connector.

downward.connect 9

Value

The function returns p. ybarF . c updated for connector i.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See Also

See also downward

Examples

#data

data(ped.cont)

data(peel)

fam <- ped.cont[,1]

id <- ped.cont[fam==1,2]

dad <- ped.cont[fam==1,3]

mom <- ped.cont[fam==1,4]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

peel <- peel[[1]1]

#standardize id to be 1, 2, 3,

id.origin <- id

standard <- function(vec) ifelse(vec%in%id.origin,which(id.origin==vec),0)

id <- apply(t(id),2,standard)

dad <- apply(t(dad),2,standard)

mom <- apply(t(mom),2,standard)

peel$couple <- cbind(apply(t(peel$couplel,1]),2,standard),

apply(t(peel$couple[,2]),2,standard))

for(generat in 1:peel$generation)

peel$peel.connect[generat,] <- apply(t(peel$peel.connect[generat,]),2,standard)

#the 2nd connector

generat <- peel$generation-1

connect <- peel$peel.connect[generat,]

connect <- connect[connect>0][1]

parentl.connect <- intersect(peel$peel.connect[generat+1,],c(dad[id==connect],
mom[id==connect]))

parent2.connect <- setdiff(c(dad[id==connect],mom[id==connect]),parentl.connect)

bro.connect <- union(id[dad==parentl.connect],id[mom==parentl.connect])

bro.connect <- setdiff(bro.connect,connect)

#probs and param

data(probs)

data(param.cont)

#densities of the observations

fyc <- matrix(1,nrow=length(id),ncol=1length(probs$p)+1)

fyc[status==2,1:1length(probs$p)] <- t(apply(y[status==2,]1,1,dens.norm,param.cont,NULL))

#probability of the observations below

p.ybarF.c <- array(1,dim=c(length(id),2,length(probs$p)+1))

#the upward step

10

e.step

res.upward <- upward(id,dad,mom,status,probs,fyc,peel)

#the function

downward.connect(connect,parentl.connect,parent2.connect,bro.connect,status,

probs, fyc,p.ybarF.c,res.upward)

e.step

performs the E step of the EM algorithm for a single pedigree for both
cases with and without familial dependence

Description

computes triplet and individual weights the E step of the EM algorithm for all pedigrees in the data,
in both cases with and without familial dependence. This is an internal function not meant to be

called by the user.

Usage

e.step(ped, probs, param, dens, peel, x = NULL, var.list = NULL,
famdep = TRUE)

Arguments

ped

probs

param

dens

peel

X

var.list

famdep

a matrix representing pedigrees and measurements: ped[, 1] family ID, ped[, 2]
subjects ID, ped[, 3] dad ID, ped[,4] mom ID, ped[,5] sex, ped[, 6] symp-

tom status: (2: symptomatic, 1: without symptoms, 0: missing), ped[, 7:ncol(ped)]
measurements, each column corresponds to a phenotypic measurement,

a list of probability parameters of the model, see below for more details,

a list of measurement distribution parameters of the model, see below for more
details,

distribution of the mesurements, used in the model (multinormal, multinomial,...)

a list of pedigree peeling containing connectors by peeling order and couples of
parents,

covariates, if any. Default is NULL,

a list of integers indicating which covariates (taken from x) are used for a given
type of measurement. Default is NULL,

a logical variable indicating if familial dependence model is used or not. De-
fault is TRUE. In models without familial dependence, individuals are treated
as independent and pedigree structure is meaningless. In models with familial
dependence, a child class depends in his parents classes via a triplet-transition
probability,

e.step 11

Details

probs is a list of initial probability parameters:

For models with familial dependence:

p a probability vector, each p[c] is the probability that an symptomatic founder is in class ¢ for
c>=1,

p@ the probability that a founder without symptoms is in class 0,

p.trans an array of dimension K times K+1 times K+1, where K is the number of latent classes
of the model, and is such that p.trans[c_i,c_1,c_2] is the conditional probability that a
symptomatic individual i is in class c_i given that his parents are in classes c_1 and c_2,

p@connect a vector of length K, where p@connect[c] is the probability that a connector without
symptoms is in class @, given that one of his parents is in class c>=1 and the other in class 0,

p.found the probability that a founder is symptomatic,
p.child the probability that a child is symptomatic,

For models without familial dependence, all individuals are independent:

p a probability vector, each p[c] is the probability that an symptomatic individual is in class ¢ for
c>=1,

p@ the probability that an individual without symptoms is in class 0,

p.aff the probability that an individual is symptomatic,

param is a list of measurement density parameters: the coefficients alpha (cumulative logistic
coefficients see alpha. compute) in the case of discrete or ordinal data, and means mu and variances-
covariances matrices sigma in the case of continuous data,

Value

The function returns a list of 3 elements:

ww triplet posterior probabilities, an array of n (the number of individuals) times 2
times K+1 times K+1 times K+1, where K is the total number of latent classes of
the model. For an individual i, the triplet probability ww[i,s,c,c_1,c_2] is
the posterior probability that individual i belongs to class ¢ when his symptom
status is s and given that his parents classes are c_1 and c_2, where s takes
two values 1 for affected and 2 for unaffected. In particular, all ww[,2,,,]
are zeros for affected individuals and all ww[,1,,,] are zeros for unaffected
individuals. For missing individuals (unkown symptom status), both ww[, 1, ,,]
and ww[, 2, ,,] are full,

w individual posterior probabilities, an array of n times 2 times K+1 , where n is
the number of individuals and is such that w[i, s, c] is the posterior probability
that individual i belongs to class ¢ when his symptom status is s, where s takes
two values 1 for affected and 2 for unaffected. In particular, all w[, 2,] are zeros
for affected individuals and all w[, 1,] are zeros for unaffected individuals. For
missing individuals (unkown symptom status), bothw[,1,] and w[, 2,] are full,

11 log-likelihood of the considered model and parameters.

12 init.norm

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See Also

See also weight . famdep, 1ca.model.

Examples

#data

data(ped.cont)

data(peel)

#probs and probs

data(probs)

data(param.cont)

#the function

e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,var.list=NULL,
famdep=TRUE)

init.norm computes initial values for the EM algorithm in the case of continuous
measurements

Description
computes initial values of means and variance-covariance matrices for the EM algorithm in the case
of continuous measurements and multinormal model.

Usage

init.norm(y, K, x = NULL, var.list = NULL)

Arguments
y a n times d matrix of continuous measurements, where n is the number of indiv-
duals and d is the number of measurements. All entries must be finite, if not an
error is produced,
K number of latent classes of the model,
X a matrix of covariates if any, default is NULL (no covariates),
var.list a list of integers indicating which covariates (taken from x) are used for a given
measurement (a column of y).
Details

The function allocates every individual to a class by a simple clustering of the data and evaluates the
means and variance-covariance matrices of measurements in each class. Treatment of covariates is
not yet implemented, and any provided covariate value will be ignored.

init.ordi 13

Value

The function returns a list of 2 elements mu and sigma of length K each, mu[k] is the means vector
(of length d) of measurements in class k and sigmal[k] is the variances-covariances matrix (of
dimension d times d) of measurements in class k.

Examples

#data

data(ped.cont)

status <- ped.cont[,6]

y <- ped.cont[status==2,7:ncol(ped.cont)]
#the function

init.norm(y,K=3)

init.ordi computes the initial values for EM algorithm in the case of ordinal
measurements

Description
computes the initial values of cumulative logistic coefficients alpha for the EM algorithm in the case
of ordinal measurements and a product multinomial model.

Usage
init.ordi(y, K, x = NULL, var.list = NULL)

Arguments
y a n times d matrix of ordinal (or discrete) measurements, where n is the number
of individuals and d is the number of measurements. All entries must be finite,
if not an error is produced,
K number of latent classes of the model,
X a matrix of covariates if any, default is NULL (no covariates),
var.list list of integers indicating which covariates (taken from x) are used for a given
measurement (a column of y).
Details

The function allocates every individual to a class and evaluates the cumulative logistic coefficients
for each measurement and each class. Regression coefficients for the covariates are set to 0.

Value

The function returns a list of one element alpha which is a list of d elements, each element
alpha[[j]] is a K times S-1 matrix, where S is the number of values of the measurement y[, jJ,
arow alphal[j]1[k,] gives the the camulative logistic coefficients of class k and measurement j
using alpha.compute.

14 init.p.trans

See Also

alpha.compute

Examples

#data

data(ped.ordi)

status <- ped.ordi[,6]

y <- ped.ordi[,7:ncol(ped.ordi)]
#the function
init.ordi(y[status==2,],K=3)

init.p.trans initializes the transition probabilities

Description

initializes the marginal transition probabilities with or without parental constraint.

Usage

init.p.trans(K, trans.const = TRUE)

Arguments
K number of latent classes,
trans.const a logical variable indicating if the parental constraint is used. Parental constraint
means that the class of a subject can be only one of his parents classes. Default
is TRUE.
Details

All non-zero transition probabilities are set to be equal. The parental constraint indicator determines
which transition probabilities are non-zero.

Value

the function returns p. trans an array of dimension K times K+1 times K+1: p.trans[c_i,c_1,c_2]
is the probability that the subject i is assigned to class c_i and his parents to classes c_1 and c_2.

Examples

init.p.trans(3) #parental constraint is TRUE,
init.p.trans(3,trans.const=FALSE) #parental constraint is FALSE.

Ica.model 15

lca.model fits latent class models for phenotypic measurements in pedigrees with
or without familial dependence using an Expectation-Maximization
(EM) algorithm
Description

This is the main function for fitting latent class models. It performs some checks of the pedigrees
(it exits if an individual has only one parent in the pedigree, if no children is in the pedigree or
if there are not enough individuals for parameters estimation) and of the initial values (positivity
of probabilites and their summation to one). For models with familial dependence, the child latent
class depends on his parents classes via triplet-transition probabilities. In the case of models without
familial dependence, it performs the classical Latent Class Analysis (LCA) where all individuals are
supposed independent and the pedigree structure is meaningless. The EM algorithm stops when the
difference between log-likelihood is smaller then tol that is fixed by the user.

Usage

lca.model(ped, probs, param, optim.param, fit = TRUE,
optim.probs.indic = c(TRUE, TRUE, TRUE, TRUE), tol = 0.001,
x = NULL, var.list = NULL, famdep = TRUE, modify.init = NULL)

Arguments

ped a matrix or data frame representing pedigrees and measurements: ped[, 1] fam-
ily ID, ped[, 2] subjects ID, ped[, 3] dad ID, ped[,4] mom ID, ped[, 5] sex,
ped[, 6] symptom status (2: symptomatic, 1: without symptoms, 0: missing),
ped[,7:ncol(ped)] measurements, each column corresponds to a phenotypic
measurement. If the measurement distribution specified with optim.param is
multinomial, then these columns must either be of type integer of factor,

probs a list of initial probability parameters (see below for more details). The func-
tion init.p.trans can be used to compute an initial value of the component
p.trans of probs,

param a list of initial measurement distribution parameters (see below for more de-
tails). The function init.ordi can be used to compute an initial value of param
in the case of discrete or ordinal data (product multinomial distribution) and
init.norm in the case of continous data (mutivariate normal distribution),

optim.param a variable indicating how measurement distribution parameter optimization is
performed (see below for more details),

fit a logical variable, if TRUE, the EM algorithm is performed, if FALSE, only com-
putation of weights and log-likelihood are performed with the initial parameter
values without log-likelihood maximization,

optim.probs.indic
a vector of logical values indicating which probability parameters to estimate,

tol a small number governing the stopping rule of the EM algorithm. Default is
0.001,

16 Ica.model

X a matrix of covariates (optional), default is NULL,

var.list a list of integers indicating the columns of x containing the covariates to use for
a given phenotypic measurement, default is NULL,

famdep a logical variable indicating if familial dependence model is used or not. De-
fault is TRUE. In models without familial dependence, individuals are treated
as independent and pedigree structure is meaningless. In models with familial
dependence, a child class depends in his parents classes via a triplet-transition
probability,

modify.init a function to modify initial values of the EM algorithm, or NULL, default is NULL.

Details

The symptom status vector (column 6 of ped) takes value 1 for subjects that have been examined
and show no symptoms (i.e. completely unaffected subjects). When applying the LCA to measure-
ments available on all subjects, the status vector must take the value of 2 for every individual with
measurements.

probs is a list of initial probability parameters:

For models with familial dependence:

p a probability vector, each p[c] is the probability that an symptomatic founder is in class c for
c>=1,

p@ the probability that a founder without symptoms is in class O,

p.trans an array of dimension K times K+1 times K+1, where K is the number of latent classes
of the model, and is such that p.trans[c_i,c_1,c_2] is the conditional probability that a
symptomatic individual i is in class c_i given that his parents are in classes c_1 and c_2,

poconnect a vector of length K, where p@connect[c] is the probability that a connector without
symptoms is in class @, given that one of his parents is in class c>=1 and the other in class 0,

p.found the probability that a founder is symptomatic,
p.child the probability that a child is symptomatic,

For models without familial dependence, all individuals are independent:

p a probability vector, each p[c] is the probability that an symptomatic individual is in class ¢ for
c>=1,

p@ the probability that an individual without symptoms is in class 0,

p.aff the probability that an individual is symptomatic,

param is a list of measurement distribution parameters: the coefficients alpha (cumulative logistic
coefficients see alpha.compute) in the case of discrete or ordinal data, and means mu and variances-
covariances matrices sigma in the case of continuous data,

optim.paramis a variable indicating how the measurement distribution parameter estimation of the
M step is performed. Two possibilities, optim.noconst.ordi and optim.const.ordi, are now
available in the case of discrete or ordinal measurements, and four possibilities optim.indep.norm
(measurements are independent, diagonal variance-covariance matrix), optim.diff.norm (gen-
eral variance-covariance matrix but equal for all classes), optim.equal.norm (variance-covariance
matrices are different for each class but equal variance and equal covariance for a class) and

Ica.model 17

optim.gene.norm (general variance-covariance matrices for all classes), are now available in the
case of continuous measurements, One of the allowed values of optim.param must be entered
without quotes.

optim.probs.indic is a vector of logical values of length 4 for models with familial dependence
and 2 for models without familial dependence.

For models with familial dependence:

optim.probs.indic[1] indicates whether p@ will be estimated or not,
optim.probs.indic[2] indicates whether p@connect will be estimated or not,
optim.probs.indic[3] indicates whether p.found will be estimated or not,

optim.probs.indic[4] indicates whether p.connect will be estimated or not.
For models without familial dependence:

optim.probs.indic[1] indicates whether p@ will be estimated or not,

optim.probs.indic[2] indicates whether p.aff will be estimated or not.

All defaults are TRUE. If the dataset contains only nuclear families, there is no information to es-
timate pOconnect and p.connect, and these parameters will not be estimated, irrespective of the
indicator value.

Value

The function returns a list of 4 elements:

param the Maximum Likelihood Estimator (MLE) of the measurement distribution pa-
rameters if fit=TRUE or the input param if fit=FALSE,

probs the MLE of probability parameters if fit=TRUE or the input probs if fit=FALSE,

When measurements are available on all subjects, the probability parameters p@ and p@connect are
degenerated to 0 and p.afound, p.child and p.aff to 1 in the output.

weight an array of dimension n (the number of individuals) times 2 times K+1 (K being
the number of latent classes in the selected model and the K+1th class being the
unaffected class) giving the individual posterior probabilities. weight[i,s,c]
is the posterior probability that individual i belongs to class ¢ when his symp-
tom status is s, where s takes two values: 1 for symptomatic and 2 for without
symptom. In particular, all weight[,2,] are O for symptomatic individuals and
all weight[,1,] are O for individuals without symptoms. For missing individ-
uals (unkown symptom status), both weight[,1,] and weight[,2,] may be
greater than 0.

11 the maximum log-likelihood value (log-ML) if fit=TRUE or the log-likelihood
computed with the input values of param and probs if fit=FALSE,

18 model.select

References

TAYEB, A. LABBE, A., BUREAU, A. and MERETTE, C. (2011) Solving Genetic Heterogene-
ity in Extended Families by Identifying Sub-types of Complex Diseases. Computational Statistics,
26(3): 539-560. DOI: 10.1007/s00180-010-0224-2,

LABBE, A., BUREAU, A. et MERETTE, C. (2009) Integration of Genetic Familial Dependence
Structure in Latent Class Models. The International Journal of Biostatistics, 5(1): Article 6.

Examples

#data

data(ped.ordi)

fam <- ped.ordi[,1]

#probs and param

data(param.ordi)

data(probs)

#the function applied only to two first families of ped.ordi

lca.model (ped.ordi[fam%in%1:2,],probs,param.ordi,optim.noconst.ordi,
fit=TRUE,optim.probs.indic=c(TRUE, TRUE, TRUE,TRUE),tol=0.001,x=NULL,
var.list=NULL, famdep=TRUE,modify.init=NULL)

model.select selects a latent class model for pedigree data

Description

Performs selection of a latent class model for phenotypic measurements in pedigrees based on one
of two possible methods: likelihood-based cross-validation or Bayesian Information Criterion (BIC)
selection. This is the top-level function to perform a Latent Class Analysis (LCA), which calls the
model fitting function 1ca.model. Model selection is performed among models within one of two
types: with and without familial dependence. Two families of distributions are currently imple-
mented: product multinomial for discrete (or ordinal) data and mutivariate normal for continuous
data.

Usage

model.select(ped, distribution, trans.const = TRUE, optim.param,
optim.probs.indic = c(TRUE, TRUE, TRUE, TRUE),
famdep = TRUE, selec = "bic", H =5, K.vec = 1:7,
tol = 0.001, x = NULL, var.list = NULL)

Arguments

ped a matrix containing variables coding the pedigree structure and the phenotype
measurements: ped[,1] family ID, ped[, 2] subjects ID, ped[,3] dad ID,
ped[,4] mom ID, ped[, 5] sex, ped[, 6] symptom status (2: symptomatic, 1:

model.select 19

without symptoms, 0: missing), ped[, 7:ncol(ped)] measurements, each col-
umn corresponds to a phenotypic measurement. If the argument distribution
is "multinomial”, then these columns must either be of type integer of factor,

distribution a character variable taking the value "normal” for multivariate normal measure-
ments and "multinomial” for ordinal or discrete multinomial measurements,

trans.const a logical variable indicating if the parental constraint is used. Parental constraint
means that the class of a subject must be one of his parents classes. Default is
TRUE,

optim.param a variable indicating how the measurement distribution parameter optimization

is performed (see below for more details),

optim.probs.indic
a vector of logical values indicating which probability parameters to estimate
(see below for more details),

famdep a logical variable indicating if the familial dependence model is used or not.
Default is TRUE. In models without familial dependence, individuals are treated
as independent and pedigree structure is meaningless. In models with familial
dependence, a child class depends in his parents classes via a triplet transition

probability,

selec a character variables taking the value bic if BIC selection is used and the value
cross if cross-validation is used,

H an integer giving the number of equal parts into which data will be splitted for
the likelihood-based cross-validation model selection (see below for more de-
tails),

K.vec a vector of integers, the number of latent classes of candidate models, if K. vec
has one value, only models with that number of classes will be fitted,

tol a small number governing the stopping rule of the EM algorithm. Default is
0.001,

X a matrix of covariates (optional), default is NULL,

var.list a list of integers indicating the columns of x containing the covariates to use for

a given phenotypic measurement, default is NULL.

Details

In the case of cross-validation based-likelihood method, data is splitted into H parts: H-1 parts as
a training set and one part as a test set. For each model, a validation log-likelihood is obtained by
evaluating the log-likelihood of the test set data using the parameter values estimated in the training
set. This is repeated H times using a different part as training set each time, and a total validation
log-likelihood is obtained by summation over the H test sets. The best model is the one having the
largest validation log-likelihood. In the case of BIC selection method, the BIC is computed for each
candidate model. The model with the smallest BIC is selected.

The symptom status vector (column 6 of ped) takes value 1 for subjects that have been examined
and show no symptoms (i.e. completely unaffected subjects). When applying the LCA to measure-
ments available on all subjects, the status vector must take the value of 2 for every individual with
measurements. If covariates are used, covariate values must be provided for subjects with symptom
status 0 (missing) but not for subjects with symptom status 1 (if covariate values are provided, they
will be ignored).

20

model.select

optim.param is a variable indicating how the measurement distribution parameter optimization of
the M step is performed. Two possibilities, optim.noconst.ordi and optim. const.ordi, are now
available in the case of discrete or ordinal measurements, and four possibilities, optim.indep.norm
(measurements are independent, diagonal variance-covariance matrix), optim.diff.norm (gen-
eral variance-covariance matrix but equal for all classes), optim.equal.norm (variance-covariance
matrices are different for each class but equal variance and equal covariance for a class) and
optim.gene.norm (general variance-covariance matrices for all classes), in the case of continu-
ous measurements. One of the allowed values of optim.param must be entered without quotes.

optim.probs.indic is a vector of logical values of length 4 for models with familial dependence
and 2 for models without familial dependence indicating which probability parameters to estimate.
See the help page for 1ca.model for a definition of the parameters.

For models with familial dependence:

optim.probs.indic[1] indicates whether p@ will be estimated or not,
optim.probs.indic[2] indicates whether p@connect will be estimated or not,
optim.probs.indic[3] indicates whether p.found will be estimated or not,

optim.probs.indic[4] indicates whether p.connect will be estimated or not.
For models without familial dependence:

optim.probs.indic[1] indicates whether p@ will be estimated or not,

optim.probs.indic[2] indicates whether p.aff will be estimated or not.

All defaults are TRUE.

Value

The function returns a list of 5 elements, the first 3 elements are common for BIC and cross-
validation model selection methods and are:

param the Maximum Likelihood Estimator (MLE) of the measurement distribution pa-
rameters of the selected model,

probs the Maximum Likelihood Estimator (MLE) of the probability parameters of the
selected model,

weight an array of dimension n (the number of individuals) times 2 times K+1 (K being
the number of latent classes in the selected model and the K+1th class being the
unaffected class) giving the individual posterior probabilities. weight[i,s,c]
is the posterior probability that individual i belongs to class ¢ when his affection
status is s, where s takes two values: 1 for symptomatic and 2 for without symp-
tom. In particular, all weight[,2,] are O for symptomatic individuals and all
weight[,1,] are O for individuals without symptoms. For missing individuals
(unkown symptom status), both weight[,1,] and weight[, 2,] may be greater
than 0.

If the cross-validation selection method is used, the function returns also

11 the value of the maximum log-likelihood (log-ML) of the selected model,

11.valid the total cross-validation log-likelihood of all candidate models,

n.param 21

and if the Bayesian Information Criterion selection method is used, the function returns also

11 the value of maximum log-likelihood (log-ML) of all candidate models,

bic the Bayesian Information Criterion BIC=-2x1og(11)+m*1log(n) of all candidate
models, where m is the number of free parameters of the model and n the total
number of individuals.

References

TAYEB, A. LABBE, A., BUREAU, A. and MERETTE, C. (2011) Solving Genetic Heterogene-
ity in Extended Families by Identifying Sub-types of Complex Diseases. Computational Statistics,
26(3): 539-560. DOI: 10.1007/s00180-010-0224-2,

LABBE, A., BUREAU, A. et MERETTE, C. (2009) Integration of Genetic Familial Dependence
Structure in Latent Class Models. The International Journal of Biostatistics, 5(1): Article 6.

See Also

See also 1ca.model.

Examples

#data

data(ped.cont)

fam <- ped.cont[,1]

#the function applied for the two first families of ped.cont

model.select(ped.cont[fam%in%1:2,],distribution="normal"”, trans.const=TRUE,
optim.indep.norm,optim.probs.indic=c(TRUE, TRUE, TRUE, TRUE),
famdep=TRUE, selec="bic",K.vec=1:3,t01=0.001,x=NULL,var.list=NULL)

n.param computes the number of parameters of a model

Description

computes the number of free parameters of a model, depending in the number of classes, the type
of parameter optimization and the used of familial dependence, to be used in BIC model selection.
This is an internal function not meant to be called by the user.

Usage

n.param(y, K, trans.const
optim.probs.indic

TRUE, optim.param,
c(TRUE, TRUE, TRUE, TRUE), famdep = TRUE)

22 optim.const.ordi

Arguments
y a matrix of measurements,
K an integer, the number of latent classes of a candiate model,
trans.const a logical variable indicating if the parental constraint is used. Parental constraint
means that the class of a subject can be only one of his parents classes. Default
is TRUE,
optim.param a function used for parameter optimization, see 1ca.model for more details,

optim.probs.indic
a vector of logical values indicating which probability parameters to be updated,
see 1ca.model for more details,

famdep a logical variable indicating if familial dependence model is used or not. Default
is TRUE.

Value

The function returns the number of free parameters (of the measurement distribution and the prob-
abilities of the latent classes).

See Also

See also model . select.

Examples

data(ped.cont)

y <- ped.cont[,7:ncol(ped.cont)]

n.param(y,K=3, trans.const=TRUE,optim.indep.norm,
optim.probs.indic=c(TRUE, TRUE, TRUE, TRUE) , famdep=TRUE)

optim.const.ordi performs the M step for the measurement distribution parameters in
multinomial case, with an ordinal constraint on the parameters

Description
Estimates the cumulative logistic coefficients alpha in the case of multinomial (or ordinal) data
with an ordinal constraint on the parameters.

Usage

optim.const.ordi(y, status, weight, param, x = NULL, var.list = NULL)

optim.diff.norm 23
Arguments
y a matrix of discrete (or ordinal) measurements (only for symptomatic subjects),
status symptom status of all individuals,
weight a matrix of n times K of individual weights, where n is the number of individuals
and K is the total number of latent classes in the model,
param a list of measurement density parameters, here is a list of alpha,
X a matrix of covariates (optional). Default id NULL,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement
Details

the constraint on the parameters is that, for a symptom j, the rows alphal[j]1[k,] are equal for
all classes k except the first values. Therefore, maximum likelihood estimators are not explicit and
the function 1rm of the package rms is used to perform a numerical optimization.

Value

The function returns a list of estimated parameters param satisfying the constraint.

Examples

#data
data(ped.ordi)

status <- ped.ordi[,6]

y <- ped.ordi[,7:ncol(ped.ordi)]

data(peel)

#probs and param

data(probs)

data(param.ordi)

#e step

weight <- e.step(ped.ordi,probs,param.ordi,dens.prod.ordi,peel,x=NULL,
var.list=NULL, famdep=TRUE) $w

weight <- matrix(weight[,1,1:1length(probs$p)],nrow=nrow(ped.ordi),
ncol=length(probs$p))

#the function

optim.const.ordi(y[status==2,],status,weight,param.ordi,x=NULL,
var.list=NULL)

optim.diff.norm

performs the M step for measurement density parameters in multinor-
mal case

Description

Estimates the mean mu and parameters of the variance-covariance matrix sigma of a multinormal
distribution for the measurements with a general variance-covariance matrix identical for all classes.

24 optim.diff.norm

Usage

optim.diff.norm(y, status, weight, param, x = NULL, var.list = NULL)

Arguments
y a matrix of continuous measurements (only for symptomatic subjects),
status symptom status of all individuals,
weight a matrix of n times K of individual weights, where n is the number of individuals
and K is the total number of latent classes in the model,
param a list of measurement density parameters, here is a list of mu and sigma,
X a matrix of covariates (optional). Default id NULL,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement.
Details

The values of explicit estimators are computed for both mu and sigma. The variance-covariance
matrices sigma are identical for all classes. Treatment of covariates is not yet implemented, and
any provided covariate value will be ignored.

Value

The function returns a list of estimated parameters param.

Examples

#data

data(ped.cont)

status <- ped.cont[,6]

y <- ped.cont[,7:ncol(ped.cont)]

data(peel)

#probs and param

data(probs)

data(param.cont)

#e step

weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL, famdep=TRUE)$w

weight <- matrix(weight[,1,1:1length(probs$p)],nrow=nrow(ped.cont),
ncol=length(probs$p))

#the function

optim.diff.norm(y[status==2,],status,weight,param.cont,x=NULL,
var.list=NULL)

optim.equal.norm 25

optim.equal.norm performs the M step for measurement density parameters in multinor-
mal case

Description

Estimates the mean mu and parameters of the variance-covariance matrix sigma of a multinormal
distribution for the measurements with equal variance for all measurements and equal covariance
between all pairs of measurements within each class. The variance and covariance parameters are
however distinct for each class.

Usage

optim.equal.norm(y, status, weight, param, x = NULL, var.list = NULL)

Arguments
y a matrix of continuous measurements (only for symptomatic subjects),
status symptom status of all individuals,
weight a matrix of n times K of individual weights, where n is the number of individuals
and K is the total number of latent classes in the model,
param a list of measurement density parameters, here is a list of mu and sigma,
X a matrix of covariates (optional). Default id NULL,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement.
Details

The values of explicit estimators are computed for both mu and sigma. The variance-covariance
matrices sigma are distinct for each class. Treatment of covariates is not yet implemented, and any
provided covariate value will be ignored.

Value

The function returns a list of estimated parameters param.

Examples

#data

data(ped.cont)

status <- ped.cont[,6]

y <- ped.cont[,7:ncol(ped.cont)]
data(peel)

#probs and param

data(probs)

data(param.cont)

#e step

26 optim.gene.norm

weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL, famdep=TRUE) $w

weight <- matrix(weight[,1,1:1length(probs$p)],nrow=nrow(ped.cont),
ncol=length(probs$p))

#the function

optim.equal.norm(y[status==2,],status,weight,param.cont,x=NULL,
var.list=NULL)

optim.gene.norm performs the M step for measurement density parameters in multinor-
mal case

Description

Estimates the mean mu and parameters of the variance-covariance matrix sigma of a multinormal
distribution for the measurements with general variance-covariance matrices distinct for each class.

Usage

optim.gene.norm(y, status, weight, param, x = NULL, var.list = NULL)

Arguments
y a matrix of continuous measurements (only for symptomatic subjects),
status symptom status of all individuals,
weight a matrix of n times K of individual weights, where n is the number of individuals
and K is the total number of latent classes in the model,
param a list of measurement density parameters, here is a list of mu and sigma,
X a matrix of covariates (optional). Default id NULL,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement.
Details

The values of explicit estimators are computed for both mu and sigma. This is the general case, the
variance-covariance matrices sigma of the different classes are distinct and unconstrained. Treat-
ment of covariates is not yet implemented, and any provided covariate value will be ignored.

Value

The function returns a list of estimated parameters param.

optim.indep.norm 27

Examples

#data

data(ped.cont)

status <- ped.cont[,6]

y <- ped.cont[,7:ncol(ped.cont)]

data(peel)

#probs and param

data(probs)

data(param.cont)

#e step

weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL, famdep=TRUE) $w

weight <- matrix(weight[,1,1:1length(probs$p)],nrow=nrow(ped.cont),
ncol=length(probs$p))

#the function

optim.gene.norm(y[status==2,],status,weight,param.cont,x=NULL,
var.list=NULL)

optim.indep.norm performs the M step for measurement density parameters in multinor-
mal case

Description

Estimates the mean mu and parameters of the variance-covariance matrix sigma of a multinormal
distribution for the measurements with diagonal variance-covariance matrices for each class, i.e.
measurements are supposed independent.

Usage

optim.indep.norm(y, status, weight, param, x = NULL, var.list = NULL)

Arguments
y a matrix of continuous measurements (only for symptomatic subjects),
status symptom status of all individuals,
weight a matrix of n times K of individual weights, where n is the number of individuals
and K is the total number of latent classes in the model,
param a list of measurement density parameters, here is a list of mu and sigma,
X a matrix of covariates (optional). Default id NULL,
var.list a list of integers indicating which covariates (taken from x) are used for a given
type of measurement.
Details

The values of explicit estimators are computed for both mu and sigma. All variance-covariance
matrices sigma are diagonal, i.e. measurements are supposed independent. Treatment of covariates
is not yet implemented, and any provided covariate value will be ignored.

28 optim.noconst.ordi

Value

The function returns a list of estimated parameters param.

Examples

#data

data(ped.cont)

status <- ped.cont[,6]

y <- ped.cont[,7:ncol(ped.cont)]

data(peel)

#probs and param

data(probs)

data(param.cont)

#e step

weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL, famdep=TRUE) $w

weight <- matrix(weight[,1,1:1length(probs$p)],nrow=nrow(ped.cont),
ncol=length(probs$p))

#the function

optim.indep.norm(y[status==2,],status,weight,param.cont,x=NULL,
var.list=NULL)

optim.noconst.ordi performs the M step for the measurement distribution parameters in
multinomial case without constraint on the parameters

Description
Estimates the cumulative logistic coefficients alpha in the case of multinomial (or ordinal) data
without constraint on the coefficients.

Usage

optim.noconst.ordi(y, status, weight, param, x = NULL, var.list = NULL)

Arguments

y a matrix of discrete (or ordinal) measurements (only for symptomatic subjects),

status symptom status of all individuals,

weight a matrix of n times K of individual weights, where n is the number of individuals
and K is the total number of latent classes in the model,

param a list of measurement distribution parameters, here is a list alpha of cumulative
logistic coefficients,

X a matrix of covariates (optional). Default is NULL,

var.list a list of integers indicating which covariates (taken from x) are used for a given

type of measurment.

optim.probs 29

Details

The values of explicit estimators are computed by logistic transformation of weighted empirical
frequencies.

Value

the function returns a list of estimated parameters param.

Examples

#data

data(ped.ordi)

status <- ped.ordi[,6]

y <- ped.ordi[,7:ncol(ped.ordi)]

data(peel)

#probs and param

data(probs)

data(param.ordi)

#e step

weight <- e.step(ped.ordi,probs,param.ordi,dens.prod.ordi,peel,x=NULL,
var.list=NULL, famdep=TRUE)$w

weight <- matrix(weight[,1,1:1length(probs$p)],nrow=nrow(ped.ordi),
ncol=length(probs$p))

#the function

optim.noconst.ordi(y[status==2,],status,weight,param.ordi,x=NULL,

var.list=NULL)

optim.probs performs the M step of the EM algorithm for the probability parame-
ters

Description

estimates the probability parameters (p, p. trans, po,...) in the M step of the EM algorithm in both
cases with and without familial dependence. This is an internal function not meant to be called by
the user.

Usage

optim.probs(ped, probs, optim.probs.indic = c(TRUE, TRUE, TRUE, TRUE),
res.weight, famdep = TRUE)

Arguments
ped a matrix of pedigrees data, see e.step for more details,
probs all probability parameters to be optimized,

optim.probs.indic
a vector of logical values indicating which probability parameters to be updated,

30 p.compute

res.weight a matrix of n times K, individual weights, where n is the number of individuals
and K is the total number of latent classes in the model, resulting from the E step
of the EM algorithm (see e. step)

famdep a logical variable indicating if familial dependence model is used or not. Default
is TRUE.

Details

explicit estimators are computed in function of the weights.

Value

the function returns the estimated probs of all probability parameters.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

Examples

#data

data(ped.cont)

data(peel)

#probs and param

data(probs)

data(param.cont)

#e step

weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,

var.list=NULL,famdep=TRUE)

#the function

optim.probs(ped.cont,probs,weight,optim.probs.indic=
c(TRUE, TRUE, TRUE, TRUE) , famdep=TRUE)

p.compute computes the probability vector using logistic coefficients

Description

computes the probability vector using cumulative logistic coefficients

Usage

p.compute(alpha,decal)

p-post.child 31

Arguments
alpha a vector of cumulative logistic coefficients, the first value can be -Inf, followed
by, eventually, only one negative value, then only positive values. It can end by
Inf values.
decal offset term to be applied to sums of logistic coefficients
Details

If alpha has S-1 values, p. compute returns p of length S. If Y is a random variable taking values in
{1,...,S} with probabilities p, coefficients alpha[i] are given by:

exp(a + ... + ;)
(1+exp(ar + ... + ;)

pr+..+pi=PY <i) =
for all i<=S-1.

Value

p: a probability vector

See Also

p.compute is the inverse function of alpha.compute

Examples

a vector of probability

p <- c(0,0.2,0,0,0.3,0.4,0.1,0,0)

alpha <- alpha.compute(p)

#gives alpha= -Inf -1.38 @ @ 1.38 @ 2.19 Inf Inf
p.compute(alpha) #gives p

p.post.child computes the posterior probability of observations of a child

Description

computes the posterior probability of measurements of a child for each class and each symptom
status of the subject given the classes of both of his parents. This is an internal function not meant
to be called by the user.

Usage

p.post.child(child, c.connect, c.spouse, status, probs, fyc)

32 p-post.found

Arguments
child a child in the pedigree,
c.connect the class of one parent (who is a connector) of the child,
C.spouse the class of the other parent of the child,
status the symptom status vector of the whole pedigree,
probs a list of all probability parameters of the model,
fyc a matrix of n times K+1 giving the density of measurements of each individual
if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model,
Value

the function returns p.child a matrix of 2 times K+1 entries such that p.child[s, k] is the posterior
probability of the measurements Y_child under status S_child=s and when he is assigned to class
k and his parents are assigned to classes c.connect and c. spouse.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

Examples

#data

data(ped.cont)

fam <- ped.cont[,1]

dad <- ped.cont[fam==1,3]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

#a child

child <- which(dad!=0)[1]

data(probs)

data(param.cont)

#densities of the observations

fyc <- matrix(1,nrow=nrow(y),ncol=length(probs$p)+1)

fyc[status==2,1:1length(probs$p)] <- t(apply(y[status==2,],1,dens.norm,
param.cont,NULL))

#the function

p.post.child(child,c.connect=1,c.spouse=3,status,probs, fyc)

p.post. found computes the posterior probability of observations of a founder

Description

computes the posterior probability of measurements of a founder for each class and each symptom
status of the founder. This is an internal function not meant to be called by the user.

param.cont 33

Usage

p.post.found(found, status, probs, fyc)

Arguments
found a founder in the pedigree (individual without parents in the pedigree),
status the symptom status vector of the whole pedigree,
probs a list of all probability parameters of the model,
fyc a matrix of n times K+1 given the density of measurements of each individual
if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model,
Value

the function returns p. found a matrix of 2 times K+1 entries: p.found[s,k] is the posterior prob-
ability of the observations Y_found under status S_found=s and when he is assigned to class k.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2001, DOI: 10.1007/s00180-010-0224-2.

Examples

#data

data(ped.cont)

fam <- ped.cont[,1]

dad <- ped.cont[fam==1,3]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

#a founder

found <- which(dad==0)[1]

data(probs)

data(param.cont)

#densities of the observations

fyc <= matrix(1,nrow=nrow(y),ncol=length(probs$p)+1)

fyc[status==2,1:1ength(probs$p)] <- t(apply(y[status==2,],1,dens.norm,
param.cont,NULL))

#the function

p.post.found(found,status,probs, fyc)

param.cont parameters to be used for examples in the case of continuous mea-
surements

Description

means and variance-covariance matrices for each class to be used in examples with continuous
measurements.

34 param.ordi

Usage

data(param.cont)

Details
ped.paramis a list of 2 elements:

mu a list of K=3 (the number of latent classes) entries, each represents the means of the measurement
multinormal density in the class,

sigma alist of K=3 entries, each is the variance-covariance matrix of the measurement multinormal
density in the class.

The dimension (the number of multinormal measurements) used in the dataset is 4.

See Also

See also init.norm

Examples

data(param.cont)

param.ordi parameters to be used for examples in the case of discrete or ordinal
measurements

Description
list of cumulative logistic coefficients for each measurement and each class to be used in examples
for discrete or ordinal models.

Usage

data(param.ordi)

Details

ped.paramis a list of 1 element: alpha a list of d=4 (the number of measurements) entries, each is
a matrix of K=3 (the number of classes) times S[j] (the number of possible values of measurement
j), arow alphal[j]]1[k,] contains the logistic coefficients of the measurement j for class k.

See Also

See also init.ordi

Examples

data(param.ordi)

ped.cont 35

ped.cont pedigrees with continuous data to be used for examples

Description

data set of 48 pedigrees: a matrix of pedigrees data with continuous observations to be used for
examples.

Usage
data(ped.cont)

Details

ped is a matrix of 10 columns: ped[,1] family ID, ped[,2] subject ID, ped[, 3] father ID, O
for founders (i.e. subjects having no parents in the pedigree), ped[, 4] mother ID, O for founders
(i.e. subjects having no parents in the pedigree), ped[, 5] subject sex: 1 male, 2 female, ped[, 6]
symptom status (2: symptomatic, 1: without symptoms, 0: missing), ped[,7:10] continuous ob-
servations, NA for missing and without symptoms,

Examples

data(ped.cont)

ped.ordi pedigrees with discrete or ordinal data to be used for examples

Description

data set of 48 pedigrees: a matrix of pedigrees data with discrete or ordinal observations to be used
for examples.

Usage
data(ped.ordi)

Details

ped is a matrix of 10 columns: ped[, 1] family ID, ped[, 2] subject ID, ped[, 3] father ID, O for
founders (i.e. subjects having no parents in the pedigree), ped[, 4] mother ID, O for founders (i.e.
subjects having no parents in the pedigree), ped[, 5] subject sex: 1 male, 2 female, ped[, 6] symp-
tom status (2: symptomatic, 1: without symptoms, 0: missing), ped[,7:10] discrete or ordinal
observations, NA for missing and without symptoms,

Examples

data(ped.ordi)

36 probs

peel peeling order of pedigrees and couples in pedigrees

Description

peel is a list of 48 entries, each gives the peeling order of the pedigrees and lists the couples in the
48 pedigrees of ped.cont and peed.ordi.

Usage

data(peel)

Value
For a pedigree f in the data ped. cont or ped.ordi, peel[[f]] is a list of three entries:

generation the number of generations in the pedigree,

peel.connect a matrix of generation rows, each giving the connectors of the generation in the
order of peeling,

couple a matrix of two columns, giving the couples in the pedigree.

See Also

See also ped.cont and ped.ordi.

Examples

data(peel)

probs probabilities parameters to be used for examples

Description

a list of probability parameters such as the probability that a founder is assigned to each class, the
transition probabilities and the probability that a child is symptomatic.

Usage

data(probs)

upward 37

Details

probs a list of probability parameters:

For models with familial dependence:

p a probability vector, each p[c] is the probability that an symptomatic founder is in class c for
c>=1,

p@ the probability that a founder without symptoms is in class 0,

p.trans an array of dimension K times K+1 times K+1, where K is the number of latent classes
of the model, and is such that p.trans[c_i,c_1,c_2] is the conditional probability that a
symptomatic individual i is in class c_i given that his parents are in classes c_1 and c_2,

poconnect a vector of length K, where p@connect[c] is the probability that a connector without
symptoms is in class @, given that one of his parents is in class c>=1 and the other in class 0,

p.found the probability that a founder is symptomatic,

p.child the probability that a child is symptomatic,
For models without familial dependence, all individuals are independent:

p a probability vector, each p[c] is the probability that an symptomatic individual is in class ¢ for
c>=1,

p@ the probability that an individual without symptoms is in class 0O,

p.aff the probability that an individual is symptomatic,

Examples

data(probs)

upward performs the upward step of the peeling algorithm of a pedigree

Description

computes the probability of observations below connectors conditionally to their classes given the
model parameters. This is an internal function not meant to be called by the user.

Usage

upward(id, dad, mom, status, probs, fyc, peel)

38

Arguments
id
dad
mom
status
probs

fyc

peel

Details

upward

individual ID of the pedigree,

dad ID,

mom ID,

symptom status: (2: symptomatic, 1: without symptoms, 0: missing),
a list of probability parameters of the model,

a matrix of n times K+1 given the density of observations of each individual
if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model,

a list of pedigree peeling result containing connectors by peeling order and cou-
ples of parents.

This function computes the probability of observations below connectors conditionally to their
classes using the function upward. connect

Value

The function returns a list of 2 elements:

sum.child

p.yF.c

References

an array of dimension n times K+1 times K+1 such that sum.child[i,c_1,c_2]
is the probability of individual i measurements when his parent are assigned to
classes c_1 and c_2,

an array of dimension n times 2 times K+1 giving the probability of all measure-
ments below the individual, depending on his status and his class.

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of

Complex Diseases.

See Also

Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See also upward. connect

Examples

#data
data(ped.cont)
data(peel)

fam <- ped.cont[,

1]

id <- ped.cont[fam==1,2]

dad <- ped.cont[fam==1,3]

mom <- ped.cont[fam==1,4]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

peel <- peell[[1]1]

upward.connect 39

#standardize id to be 1, 2, 3,

id.origin <- id

standard <- function(vec) ifelse(vec%in%id.origin,which(id.origin==vec),0)

id <- apply(t(id),2,standard)

dad <- apply(t(dad),2,standard)

mom <- apply(t(mom),2,standard)

peel$couple <- cbind(apply(t(peel$couplel[,1]),2,standard),
apply(t(peel$couplel[,2]1),2,standard))

for(generat in 1:peel$generation)

peel$peel.connect[generat,] <- apply(t(peel$peel.connect[generat,]),2,standard)

#probs and param

data(probs)

data(param.cont)

#densities of the observations

fyc <= matrix(1,nrow=length(id),ncol=1length(probs$p)+1)

fyc[status==2,1:1length(probs$p)] <- t(apply(y[status==2,],1,dens.norm,

param.cont,NULL))
#the function
upward(id,dad,mom, status, probs, fyc, peel)

upward.connect performs the upward step for a connector

Description

computes the probability of the measurements below a connector conditionally to the connector
latent class given the model parameters. This is an internal function not meant to be called by the
user.

Usage
upward. connect(connect, spouse.connect, children.connect, status,
probs, p.yF.c, fyc, sum.child)

Arguments

connect a connector in the pedigree,

spouse.connect spouse of the connector,
children.connect
children of the connector,

status a vector of symptom status of the whole pedigree,
probs a list of probability parameters of the model,
p.yF.c an array of dimension n times 2 times K+1 giving the probability of measure-

ments below the individual, depending on his status and his class, where n is the
number of individuals and K is the total number of latent classes in the model,

fyc a matrix of n times K+1 given the density of measurements of each individual if
allocated to class k,

40 upward.connect

sum.child an array of dimension nber. indiv times K+1 times K+1 such that sum.child[i,c_1,c_2]
is the probability of individual i measurements when his parent are assigned to
classes c_1 and c_1.

Details

If Y_above (i) is the observations below connector i and C_i is his class, the functions computes
P(Y_below(i)|C_i).

Value

The function returns a list of 2 elements:

sum.child an array of dimension n times K+1 times K+1 such that sum.child[i,c_1,c_2]
is the probability of individual i observations when his parent are assigned to
classes c_1 and c_2,

p.yF.c a array of dimension n times 2 times K+1 giving the probability of measure-
ments below the individual, depending on his status and his class, updated for
the current connector.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See Also

See also upward

Examples

#data

data(ped.cont)

data(peel)

fam <- ped.cont[,1]

id <- ped.cont[fam==1,2]

dad <- ped.cont[fam==1,3]

mom <- ped.cont[fam==1,4]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

peel <- peel[[1]]

#standardize id to be 1, 2, 3,

id.origin <- id

standard <- function(vec) ifelse(vec%in%id.origin,which(id.origin==vec),0)

id <- apply(t(id),2,standard)

dad <- apply(t(dad),2,standard)

mom <- apply(t(mom),2,standard)

peel$couple <- cbind(apply(t(peel$couplel,1]),2,standard),
apply(t(peel$couplel,2]),2,standard))

for(generat in 1:peel$generation)

peel$peel.connect[generat,] <- apply(t(peel$peel.connect[generat,]),2,standard)

weight.famdep 41

#a nuclear family

#connector in the pedigree 1

connect <- peel$peel.connect[1,1]

#soupse of connector connect

spouse.connect <- peel$couple[peel$couple[,1]==connect,?2]

#children of connector connect

children.connect <- union(id[dad==connect],id[mom==connect])

#probs and param

data(probs)

data(param.cont)

#probabilitiy of observations above

p.yF.c <= matrix(1,nrow=length(id),ncol=length(probs$p)+1)

#densities of the observations

fyc <- matrix(1,nrow=length(id),ncol=length(probs$p)+1)

fyc[status==2,1:1length(probs$p)] <- t(apply(y[status==2,],1,dens.norm,

param.cont,NULL))

#sums over childs

sum.child <- array(@,c(length(id),length(probs$p)+1,length(probs$p)+1))

#the function

upward. connect(connect, spouse.connect,children.connect,status,probs,
p.yF.c,fyc,sum.child)

weight.famdep performs the computation of triplet and individual weights for a pedi-
gree under familial dependence

Description

computes the triplet and the individual weights of the E step of the EM algorithm for a pedigree in
the case of familial dependence. It returns also the overall log-likelihood of the observations. This
is an internal function not meant to be called by the user.

Usage

weight.famdep(id, dad, mom, status, probs, fyc, peel)

Arguments

id individual ID of the pedigree,

dad dad ID,

mom mom ID,

status symptom status: (2: symptomatic, 1: without symptoms, 0: missing),

probs list of probability parameters of the model,

fyc a matrix of n times K+1 given the density of observations of each individual
if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model,

peel a list of pedigree peeling containing connectors by peeling order and couples of

parents

42 weight.famdep

Details

the function calls the functions upward and downward which perform the required probability com-
putations by processing the pedigree by nuclear family (or equivalently by connector) following the
peeling order.

Value

the function returns a list of 3 elements:

ww triplet weights: an array of n times 2 times K+1 times K+1 times K+1, see e. step,
w individual weights: an array of n times 2 times K+1, see e. step,
11 log-likelihood.

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See Also

See also upward, downward, e. step.

Examples

#data

data(ped.cont)

data(peel)

fam <- ped.cont[,1]

id <- ped.cont[fam==1,2]

dad <- ped.cont[fam==1,3]

mom <- ped.cont[fam==1,4]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

peel <- peel[[1]1]

#probs and param

data(probs)

data(param.cont)

#densities of the observations

fyc <- matrix(1,nrow=1length(id),ncol=length(probs$p)+1)

fyc[status==2,1:1ength(probs$p)] <- t(apply(y[status==2,],1,dens.norm,
param.cont,NULL))

#the function

weight.famdep(id,dad, mom,status,probs,fyc,peel)

weight.nuc 43

weight.nuc performs the computation of unnormalized triplet and individuals
weights for a nuclear family in the pedigree

Description

the weighting algorithm proceeds by nuclear family, the function weight.nuc computes the un-
normalized triplet and individuals weights for a nuclear family in the pedigree. This is an internal
function not meant to be called by the user.

Usage
weight.nuc(connect, spouse.connect, children.connect, status,
probs, fyc, p.ybarF.c, ww, w, res.upward)

Arguments

connect a connector in the pedigree,
spouse.connect spouse of the connector,
children.connect

children of the connector,

status vector of symptom status of the whole pedigree,
probs all probability parameters of the model,
fyc a matrix of n times K+1 given the density of observations of each individual

if allocated to class k, where n is the number of individuals and K is the total
number of latent classes in the model,

p.ybarF.c a array of dimension n times 2 times K+1 giving the probability of observations
above the individual, depending on his status and his class and conditionally on
his class,

ww unnormalized triplet weights, an array of n times 2 times K+1 times K+1 times

K+1, where n is the number of individuals and K is the total number of latent
classes in the model, see e. step,

w unnormalized individual weights, an array of n times 2 times K+1, see e. step,
res.upward result of the upward step of the weighting algorithm, see upward,
Details

updated ww and w are computed for the current nuclear family.

Value
the function returns a list of 2 elements:

ww unnormalized triplet weights, an array of n times 2 times K+1 times K+1 times
K+1, see e.step,

w unnormalized individual weights, an array of n times 2 times K+1, see e. step.

44 weight.nuc

References

TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of
Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.

See Also

See also downward

Examples

#data

data(ped.cont)

data(peel)

fam <- ped.cont[,1]

id <- ped.cont[fam==1,2]

dad <- ped.cont[fam==1, 3]

mom <- ped.cont[fam==1,4]

status <- ped.cont[fam==1,6]

y <- ped.cont[fam==1,7:ncol(ped.cont)]

peel <- peell[[1]]

#standardize id to be 1, 2, 3,

id.origin <- id

standard <- function(vec) ifelse(veckin%id.origin,which(id.origin==vec),0)

id <- apply(t(id),2,standard)

dad <- apply(t(dad),2,standard)

mom <- apply(t(mom),2,standard)

peel$couple <- cbind(apply(t(peel$couplel[,1]),2,standard),
apply(t(peel$couplel,2]1),2,standard))

for(generat in 1:peel$generation)

peel$peel.connect[generat,] <- apply(t(peel$peel.connect[generat,]),2,standard)

#the first nuclear family

generat <- peel$generation

connect <- peel$peel.connect[generat,]

connect <- connect[connect>0]

spouse.connect <- peel$couple[peel$couple[,1]==connect,?2]

children.connect <- union(id[dad==connect],id[mom==connect])

#probs and param

data(probs)

data(param.cont)

#densities of the observations

fyc <- matrix(1,nrow=length(id),ncol=length(probs$p)+1)

fyc[status==2,1:1ength(probs$p)] <- t(apply(y[status==2,],1,dens.norm,

param.cont,NULL))

#triplet and individual weights

ww <- array(@,dim=c(length(id),rep(2,3),rep(length(probs$p)+1,3)))

w <- array(@,dim=c(length(id), 2, length(probs$p)+1))

#probability of the observations below

p.ybarF.c <- array(1,dim=c(length(id),2,length(probs$p)+1))

p.ybarF.c[connect,,] <- p.post.found(connect,status,probs,fyc)

#the upward step

res.upward <- upward(id,dad,mom,status,probs,fyc,peel)

#the function

weight.nuc

weight.nuc(connect, spouse.connect,children.connect,status,probs, fyc,
p.ybarF.c,ww,w,res.upward)

45

Index

alpha.compute, 2, 11, 13, 14, 16, 31
attrib.dens, 3

dens.norm, 4
dens.prod.ordi, 5
downward, 6, 9, 42, 44
downward. connect, 7, 8

e.step, 7, 10, 29, 30, 42, 43

init.norm, 12, 15, 34
init.ordi, 5, 6, 13, 15, 34
init.p.trans, 14, 15

lca.model, 12, 15, 20-22
model.select, 18, 22
n.param, 21

optim.const.ordi, 4, 16, 20, 22
optim.diff.norm, 4, 16, 20, 23
optim.equal.norm, 4, 16, 20, 25
optim.gene.norm, 4, 17, 20, 26
optim.indep.norm, 4, 16, 20, 27
optim.noconst.ordi, 4, 16, 20, 28
optim.probs, 29

p.compute, 3, 30
p.post.child, 31
p.post.found, 32
param.cont, 33
param.ordi, 34
ped.cont, 35, 36
ped.ordi, 35, 36
peel, 36
probs, 36

upward, 6, 8, 37, 40, 42, 43
upward. connect, 38, 39

weight.famdep, 12, 41
weight.nuc, 7,43

46

	alpha.compute
	attrib.dens
	dens.norm
	dens.prod.ordi
	downward
	downward.connect
	e.step
	init.norm
	init.ordi
	init.p.trans
	lca.model
	model.select
	n.param
	optim.const.ordi
	optim.diff.norm
	optim.equal.norm
	optim.gene.norm
	optim.indep.norm
	optim.noconst.ordi
	optim.probs
	p.compute
	p.post.child
	p.post.found
	param.cont
	param.ordi
	ped.cont
	ped.ordi
	peel
	probs
	upward
	upward.connect
	weight.famdep
	weight.nuc
	Index

