
Package ‘MPSEM’
September 5, 2024

Type Package

Encoding UTF-8

Title Modelling Phylogenetic Signals using Eigenvector Maps

Version 0.4-4

Date 2024-09-04

Description Computational tools to represent phylogenetic signals using adapted
eigenvector maps.

Depends R (>= 3.0.0), ape

Suggests knitr, caper, xfun

Imports MASS

License GPL-3

LazyLoad yes

NeedsCompilation yes

VignetteBuilder knitr

Repository CRAN

RoxygenNote 7.3.1

Author Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>),
Pierre Legendre [ctb] (<https://orcid.org/0000-0002-3838-3305>)

Maintainer Guillaume Guénard <guillaume.guenard@umontreal.ca>

Date/Publication 2024-09-04 22:40:02 UTC

Contents
MPSEM-package . 2
graph-class . 4
graph-functions . 5
lm-utils . 8
PEM-class . 9
PEM-functions . 11
trait-simulator . 17

Index 21

1

https://orcid.org/0000-0003-0761-3072
https://orcid.org/0000-0002-3838-3305

2 MPSEM-package

MPSEM-package Modelling Phylogenetic Signals using Eigenvector Maps

Description

Computational tools to represent phylogenetic signals using adapted eigenvector maps.

Details

Phylogenetic eignevector maps (PEM) is a method for using phylogeny to model features of or-
ganism, most notably quantitative traits. It consists in calculating sets of explanatory variables
(eigenvectors) that are meant to represent different patterns in trait values that are likely to have
been inducted by evolution. These patterns are used to model the data, using a linear model for
instance.

If one in interested in a ‘target’ species (i.e. a species for which the trait value is unknown), and
provided that we know the phylogenetic relationships between that species and those of the model,
the method allows us to obtain the scores of that new species on the phylogenetic eigenfunctions
underlying a PEM. These scores are used to make empirical predictions of trait values for the target
species on the basis of those observed for the species used in the model.

Functions PEM.build, PEM.updater, PEM.fitSimple, and PEM.forcedSimple allow one to build,
update (i.e. recalculate with alternative weighting parameters) as well as to estimate or force arbi-
trary values for the weighting function parameters.

Functions getGraphLocations and Locations2PEMscores allow one to make predictions using
method predict.PEM and a linear model. To obtain this linear model, one can use either function
lm or auxiliary functions lmforwardsequentialsidak or lmforwardsequentialAICc, which per-
form forward-stepwise variable addition on the basis of either familiwise type I error rate or the
Akaike Information Criterion (AIC), respectively.

The package provides low-level utility functions for performing operations on graphs (see graph-
functions), calculate influence matrix (PEMInfluence), and simulate trait values (see trait-simulator).

A phylogenetic modelling tutorial using MPSEM is available as a package vignette. See example
below.

The DESCRIPTION file:

Package: MPSEM
Type: Package
Encoding: UTF-8
Title: Modelling Phylogenetic Signals using Eigenvector Maps
Version: 0.4-4
Date: 2024-09-04
Authors@R: c(person(given = "Guillaume", family = "Guénard", role = c("aut","cre"), email = "guillaume.guenard@umontreal.ca", comment = c(ORCID = "0000-0003-0761-3072")), person(given = "Pierre", family = "Legendre", role = "ctb", email = "pierre.legendre@umontreal.ca", comment = c(ORCID = "0000-0002-3838-3305")))
Description: Computational tools to represent phylogenetic signals using adapted eigenvector maps.
Depends: R (>= 3.0.0), ape
Suggests: knitr, caper, xfun
Imports: MASS
License: GPL-3

MPSEM-package 3

LazyLoad: yes
NeedsCompilation: yes
VignetteBuilder: knitr
Repository: CRAN
RoxygenNote: 7.3.1
Author: Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb] (<https://orcid.org/0000-0002-3838-3305>)
Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

Index of help topics:

MPSEM-package Modelling Phylogenetic Signals using
Eigenvector Maps

PEM-class Class and Methods for Phylogenetic Eigenvector
Maps (PEM)

PEM-functions Phylogenetic Eigenvector Maps
graph-class Class and Method for Directed Graphs
graph-functions MPSEM graph Manipulation Functions
lm-utils Linear Modelling Utility Functions
trait-simulator Simulate the Evolution of a Quantitative Trait

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps: a framework
to model and predict species traits. Methods in Ecology and Evolution 4: 1120-1131

See Also

Makarenkov, V., Legendre, P. & Desdevise, Y. 2004. Modelling phylogenetic relationships using
reticulated networks. Zoologica Scripta 33: 89-96

Blanchet, F. G., Legendre, P. & Borcard, D. 2008. Modelling directional spatial processes in eco-
logical data. Ecological Modelling 215: 325-336

Examples

To view MPSEM tutorial
vignette("MPSEM", package="MPSEM")

4 graph-class

graph-class Class and Method for Directed Graphs

Description

Class and methods to handle MPSEM graphs.

Usage

S3 method for class 'graph'
print(x, ...)

Arguments

x An object of graph-class.

... Additional parameters to be passed to the method. Currently ignored.

Format

A graph-class object contains:

edge A list whose first two unnamed members are the indices of the origin and destination ver-
tices. Additional members must be named and are additional edge properties (e.g. length).

vertex A list that optionally contains vertex properties, if any (or an empty list if none).

Details

Prints user-relevant information about the graph: number of edges and vertices, edge and vertex
labels, addition edge properties and vertex properties.

Functions

• print(graph): Print Graph
A print method for graph-class objects.

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps: a framework
to model and predict species traits. Methods in Ecology and Evolution 4: 1120-1131

See Also

graph-functions.

graph-functions 5

graph-functions MPSEM graph Manipulation Functions

Description

A set of primitive functions for creating and munipulating MPSEM graphs.

Usage

pop.graph(n, vertex = list(), label = NULL)

add.vertex(x, n, vertex = list(), label = NULL)

add.edge(x, from, to, edge = list(), label = NULL)

rm.edge(x, id)

rm.vertex(x, id)

collapse.vertex(x, id)

Phylo2DirectedGraph(tp)

Arguments

n The number of vertices to populate a new graph (pop.graph) or to add to an
existing graph (add.vertex).

vertex A list of vertex properties.

label Labels to be given to edges or vertices.

x A graph-class object.

from The origins of the edges to be added (vertex labels or indices).

to The destinations of the edges to be added (vertex labels or indices).

edge A list of edge properties.

id Indentity (label or index) of vertex or edge to be removed.

tp Phylogenetic tree object of class ‘phylo’, as defined in ape-package.

Details

A new graph can be populated with n vertices using function pop.graph. Additional vertices can
be added later with function add.vertex. The graphs so created contain no edges; the latter are
added using function add.edge. Vertices and edges are removed using functions rm.vertex and
rm.edge, respectively.

Function collapse.vertex allows one to remove a vertex while reestablishing the connections
between the vertices located above and below that vertex using a new set of edges.

6 graph-functions

Function Phylo2DirectedGraph uses the MPSEM graph functions to convert a rooted phylogenetic
tree of class ‘phylo’ (see ape-package) to a graph-class object. It recycles tip labels. It also
creates default node labels if they were absent from the ‘phylo’ object, and uses them as vertex
labels. The resulting acyclic graph can then be edited to represent cases that do not have a tree
topology.

Value

The function returns a graph-class object. Objects returned by Phylo2DirectedGraph have a
numeric edge property called ‘distance’ featuring branch lengths, and a link{logical} vertex
property called ‘species’ specifying whether a vertex is a tree tip or an internal node.

Functions

• pop.graph(): Create Graph
Create a graph and populates it with vertices.

• add.vertex(): Add Vertices
Add vertices to an existing graph.

• add.edge(): Add Edges
Add edges to a graph.

• rm.edge(): Remove Edges
Remove edges from a graph.

• rm.vertex(): Remove Vertices
Remove vertices from a graph.

• collapse.vertex(): Collapse Vertices
Remove vertices from a graph: remove vertices together with their associated edges.

• Phylo2DirectedGraph(): Phylogenetic Tree Conversion
Create a new graph-class object from a phylo-class object (phylogenetic tree).

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps: a framework
to model and predict species traits. Methods in Ecology and Evolution 4: 1120-1131

Makarenkov, V., Legendre, L. & Desdevise, Y. 2004. Modelling phylogenetic relationships using
reticulated networks. Zoologica Scripta 33: 89-96

Blanchet, F. G., Legendre, P. & Borcard, D. 2008. Modelling directional spatial processes in eco-
logical data. Ecological Modelling 215: 325-336

See Also

graph-class.

graph-functions 7

Examples

Populate a graph with 7 vertices labeled A-G having properties x and y:
gr <- pop.graph(n=7,

vertex=list(x=rnorm(7,0,1),y=rnorm(7,0,1)),
label=c("A","B","C","D","E","F","G"))

gr

Adding 3 vertices H, I, and J with property x (y is absent) and a new
property z (type character), which is unknown for A-G:
gr <- add.vertex(x=gr,

n=3,
label=c("H","I","J"),
vertex=list(x=rnorm(3,0,1),z=c("A","B","C")))

gr
gr$vertex

Adding 10 edges, labeled E1-E10 and with properties a and b, to the graph:
gr <- add.edge(x=gr,

from=c("A","B","B","C","C","D","D","E","E","F"),
to=c("A","C","D","E","F","F","G","H","I","J"),
edge=list(a=rnorm(10,0,1),b=rnorm(10,0,1)),
label=paste("E",1:10,sep=""))

gr
gr$edge

Removing edges 2, 4, and 7 from the graph:
print(rm.edge(gr,id=c(2,4,7)))

Removing vertices 1, 3, 7, and 10 from the graph:
print(rm.vertex(gr,id=c(1,3,7,10)))
Notice that the edges that had one of the removed vertex as their
origin or destination are also removed:
print.default(rm.vertex(gr,id=c(1,3,7,10)))

Vertex collapsing.
x <- pop.graph(n=9,label=c("A","B","C","D","E","F","G","H","I"))
x <- add.edge(x,from=c("A","A","B","B","C","C","D","D","E","E"),

to=c("B","C","D","E","E","I","F","G","G","H"),
label=paste("E",1:10,sep=""),
edge=list(length=c(1,2,3,2,1,3,2,2,1,3)))

print.default(x)
for(i in c("A","B","C","D","E","F","G","H","I"))

print(collapse.vertex(x,id=i))

if(require(ape)) {
tree1 <- read.tree(
text=paste(

"(((A:0.15,B:0.2)N4:0.15,C:0.35)N2:0.25,((D:0.25,E:0.1)N5:0.3,",
"(F:0.15,G:0.2)N6:0.3)N3:0.1)N1;",sep=""))

x <- Phylo2DirectedGraph(tree1)
print(x)

}

8 lm-utils

lm-utils Linear Modelling Utility Functions

Description

Utility functions to build linear models using Phylogenetic Eigenvector Maps among their explana-
tory variables.

Usage

lmforwardsequentialAICc(y, x, object)

lmforwardsequentialsidak(y, x, object, alpha = 0.05)

Arguments

y A response variable.
x Descriptors (numeric of factor) to be used as auxiliary traits.
object A PEM-class object.
alpha The p-value threshold above which the function will stop adding variables.

Details

Function lmforwardsequentialsidak, performs a forward stepwise selection of the PEM eigen-
vectors until the familywise test of significance of the new variable to be included exceeds the
p-value threshold alpha. The familiwise type I error probability is obtained using the Holm-Sidak
correction of the testwise probabilities, thereby correcting for type I error rate inflation due to mul-
tiple testing.

Function lmforwardsequentialAICc carries out forward stepwise selection of the eigenvectors
as long as the candidate model features a sample-size-corrected Akaike information criterion lower
than the previous model. The final model should be regarded as overfitted from the Neyman-Pearson
(i.e. frequentist) point of view, but this is the model that minimizes information loss from the
standpoint of information theory.

Value

An lm-class object.

Functions

• lmforwardsequentialAICc(): Forward Stepwise Regression AICc
Forward stepwise variable addition using the sample-size-corrected Akaike Information Cri-
terion.

• lmforwardsequentialsidak(): Forward Stepwise Regression Sidak
Forward stepwise variable addition using a Sidak multiple testing corrected alpha error thresh-
old as the stopping criterion.

PEM-class 9

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Burnham, K. P. & Anderson, D. R. 2002. Model selection and multimodel inference: a practical
information-theoretic approach, 2nd ed. Springer-Verlag. xxvi + 488 pp.

Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6: 65-70

Sidak, Z. 1967. Rectangular confidence regions for means of multivariate normal distributions. J.
Am. Stat. Ass. 62, 626-633

PEM-class Class and Methods for Phylogenetic Eigenvector Maps (PEM)

Description

Class and methods to handle Phylogenetic Eigenvector Maps (PEM).

Usage

S3 method for class 'PEM'
print(x, ...)

S3 method for class 'PEM'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S3 method for class 'PEM'
predict(
object,
targets,
lmobject,
newdata,
interval = c("none", "confidence", "prediction"),
level = 0.95,
...

)

Arguments

x A PEM-class object containing a Phylogenetic Eigenvector Map.

... Additional parameters to be passed to the method. Currently ignored.

row.names Included for method consistency reason; ignored.

optional Included for method consistency reason; ignored.

object A PEM-class object.

10 PEM-class

targets Output of getGraphLocations.
lmobject An object of class ‘lm’ (see lm for details).
newdata Auxiliary trait values.
interval The kind of limits (confidence or prediction) to return with the predictions;

interval="none": do not return a confidence interval.
level Probability associated with the confidence of prediction interval.

Format

A PEM-class object contains:

x The graph-class object that was used to build the PEM (see PEM.build).
sp A logical vector specifying which of the vertices are tips.
B The influence matrix for those vertices that are tips.
ne The number of edges.
nsp The number of species (tips).
Bc The column-centred influence matrix.
means The column means of B.
dist Edge lengths.
a The steepness parameter (see PEM.build for details).
psi The relative evolution rate along the edges (see PEM.build for details).
w Edge weights.
BcW The weighted and column-centred influence matrix.
d The singular values of BcW.
u The eigenvectors (left singular vectors) of BcW.
vt The right singular vectors of BcW.

In addition to these standard component, function, PEM.fitSimple and PEM.forcedSimple add
the following members, which are necessary to make predictions:

S2 The variances of response data (one value for each response variable).
y A copy of the response data.
opt The list returned by optim.

The estimated weighting parameters are also given as an edge property.

Details

The print.PEM method provides the number of eigenvectors, the number of observations these
vectors are spanning, and their associated eigenvalues.

The as.data.frame.PEM method extracts the eigenvectors from the object and allows one to use
PEM-class objects as data parameter in function such as lm and glm.

The predict.PEM method is a barebone interface to make predictions. It must be given species loca-
tions with respect to the phylogenetic graph (target), which are provided by function getGraphLocations
and a linear model in the form of an object from lm. The user must provide auxiliary trait values if
lmobject involves such traits.

PEM-functions 11

Functions

• print(PEM): Print PEM-class
A print method for PEM-class objects.

• as.data.frame(PEM): Method as.data.frame for PEM-class Objects
A method to extract the phylogenetic eigenvectors from a PEM-class object.

• predict(PEM): Predict Method for PEM-class Objects
A predict method to predict species trait values using Phylogenetic Eigenvector Maps.

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps: a framework
to model and predict species traits. Methods in Ecology and Evolution 4: 1120-1131

See Also

PEM-functions

PEM-functions Phylogenetic Eigenvector Maps

Description

Functions to calculate and manipulate Phylogenetic Eigenvector Maps (PEM), which are sets of
eigenfunctions describing the structure of a phylogenetic graph. Each computation function is
briefly described in section Functions below.

Usage

PEMInfluence(x, mroot = TRUE)

PEMweights(d, a = 0, psi = 1)

PEM.build(
x,
d = "distance",
sp = "species",
a = 0,
psi = 1,
tol = .Machine$double.eps^0.5

)

12 PEM-functions

PEM.updater(object, a, psi = 1, tol = .Machine$double.eps^0.5)

PEM.fitSimple(
y,
x,
w,
d = "distance",
sp = "species",
lower = 0,
upper = 1,
tol = .Machine$double.eps^0.5

)

PEM.forcedSimple(
y,
x,
w,
d = "distance",
sp = "species",
a = 0,
psi = 1,
tol = .Machine$double.eps^0.5

)

getGraphLocations(tpall, targets)

getAncGraphLocations(x, tpall)

Locations2PEMscores(object, gsc)

Arguments

x A graph-class object containing a phylogenetic graph.

mroot Boolean (TRUE or FALSE) specifying whether multiple roots are allowed.

d The name of the member of x$edge where the phylogenetic distances (edge
lengths) can be found.

a The steepness parameter describing whether changes occur, on average: pro-
gressively long edges (a close to 0) or abruptly at vertices (a close to 1).

psi Relative evolution rate along the edges (default: 1). This parameter is only rele-
vant when multiple values are assigned to different portions of the phylogeny.

sp Name of the member of x$vertex where a logical vertex property can be
found, specifying which vertices are species (see graph-class).

tol Eigenvalue threshold indicating that eigenvectors as usable.

object A PEM-class object containing a Phylogenetic Eigenvector Map.

y One or many response variable(s) in the form of a single numeric vector or a
matrix, respectively.

PEM-functions 13

w A graph-class object containing a phylogenetic graph.

lower Lower limit for the L-BFGS-B optimization algorithm implemented in optim.

upper Upper limit for the L-BFGS-B optimization algorithm implemented in optim.

tpall First parameter of function getGraphLocations: Phylogenetic tree object with
class ‘phylo’ (package ape) containing all species (model and target) used in the
study.

targets Name of the target species to extract using the tree tpall.

gsc The output of getGraphLocations.

Details

Functions PEMInfluence and PEMweights are used internally by PEM.build to create a binary
matrix referred to as an ‘influence matrix’ and weight its columns. That matrix has a row for each
vertex (or node) of graph ‘x’ and a column for each of its edges. The elements of the influence
matrix are 1 whenever the vertex associated with a row is located in the tree, either directly or
indirectly downward the edge associated with a column. That function is implemented in C language
using recursive function calls. Although PEMInfluence allows one to use multiple roots as its
default argument, it is called within PEM.build with mroot = FALSE. User must therefore make
sure that the graph provided to PEMap is single-rooted.

Function PEM.build is used to produce a phylogenetic eigenvector map, while function PEM.updater
allows one to re-calculate a PEM-class object with new weighting function parameters. Function
PEM.fitSimple performs a maximum likelihood estimation of parameters a and psi assuming sin-
gle values for the whole tree, whereas function PEM.forcedSimple allows one to impose values to
arguments a and psi of a PEM-class object, while making the function produce the same details as
PEM.fitSimple would have produced; these details are necessary to make predictions.

Functions getGraphLocations returns the coordinates of a species in terms of its position with
respect to the influence matrix while function Locations2PEMscores transforms these coordinates
into sets of scores that can be used to make predictions. Function getAncGraphLocations pro-
duces the same output as getGraphLocations, but for the ancestral species (i.e. the nodes of the
phylogeny) in order to estimate ancestral trait values.

Value

Function PEMInfluence returns the influence matrix of graph x and function PEMweights returns
weights corresponding to the distances. Functions PEM.build, PEM.fitSimple and PEM.forcedSimple
return a PEM-class object. Function getGraphLocations returns a list whose first member is an
influence coordinate matrix whose rows refer to the target species and columns refer to the edges.
The second member contains the lengths of the terminal edges connecting each target species to the
rest of the phylogeny.

Function Locations2PEMscores returns a list whose first member is a PEM score matrix whose
rows refer to the target species and columns refer to the eigenvectors. The second member contains
the variance associated with the terminal edges connecting the target species to the phylogeny.

Functions

• PEMInfluence(): Influence Matrix

14 PEM-functions

Calculates the influence matrix of a phylogenetic graph. The influence matrix is a binary
matrix whose rows and columns correspond to the vertices and edges of the phylogenetic
graph, respectively, and whose elements describe whether a given edge had been taken by any
ancestors of a vertex (representing extinct of extant species) during evolution (value = 1) or
not (value = 0).

• PEMweights(): PEM Weighting
A power function to obtain the edge weights used during PEM calculation.

• PEM.build(): PEM Building
Calculates a PEM with parameters given by arguments a and psi.

• PEM.updater(): PEM Update
Update a PEM with new parameters given by arguments a and psi.

• PEM.fitSimple(): Fitting a PEM to Data while Estimating Global Steepness
Fits a PEM to a data set estimating the selection (steepness) parameter using gradient descent.
The selection and evolution rate (psi = 1) are assumed to be homogeneous for the whole
phylogenetic network.

• PEM.forcedSimple(): Fitting a PEM to Data while Forcing Global Steepness
Fits a PEM to a data set forcing a user-provided selection (steepness) parameter. The selec-
tion and evolution rate (psi = 1) are assumed to be homogeneous for the whole phylogenetic
network.

• getGraphLocations(): Get Phylogenetic Graph Locations
Takes a phylogenetic tree and a list of species to be removed, and produce a phylogenic graph
without these species together with the locations of the removed species on that graph (i.e.,
the location where the removed species would be found should they be inserted again in the
phylogenetic graph).

• getAncGraphLocations(): Get Ancestral Species Location
Get the location on the phylogenetic graph of the immediate ancestors for a list of species.
The species of the list remain in the resulting phylogenetic graph. This function is useful for
estimating the ancestral state of a trait.

• Locations2PEMscores(): PEM Score Calculation
Calculates the scores of an extant or ancestral species on a phylogenetic eigenvector map (i.e.,
its value on the eigenvectors of the map) from its location on the phylogenetic graph used to
build that map.

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) – Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps: a framework
to model and predict species traits. Methods in Ecology and Evolution. 4: 1120–1131

Makarenkov, V., Legendre, L. & Desdevise, Y. 2004. Modelling phylogenetic relationships using
reticulated networks. Zoologica Scripta 33: 89–96

Blanchet, F. G., Legendre, P. & Borcard, D. 2008. Modelling directional spatial processes in eco-
logical data. Ecological Modelling 215: 325–336

PEM-functions 15

See Also

PEM-class

Examples

Synthetic example

This example describes the phyogeny of 7 species (A to G) in a tree with 6
nodes, presented in Newick format, read by function
read.tree of package ape.

t1 <- read.tree(text=paste(
"(((A:0.15,B:0.2)N4:0.15,C:0.35)N2:0.25,((D:0.25,E:0.1)N5:0.3,",
"(F:0.15,G:0.2)N6:0.3)N3:0.1)N1;",sep=""))

t1 # Summary of the structure of the tree
summary(t1)

x <- Phylo2DirectedGraph(t1)

Calculate the (binary) influence matrix; E1 to E12 are the tree edges
Edge E12 comes from the tree origin
PEMInfluence(x)
PEMInfluence(x)[x$vertex$species,]

Building phylogenetic eigenvector maps
PEM1 <- PEM.build(x)
PEM2 <- PEM.build(x, a = 0.2)
PEM3 <- PEM.build(x, a = 1)
PEM4 <- PEM.updater(PEM3,a=0.5)

Print summary statistics about PEM1
print(PEM1)

Extract the eigenvectors (species A--G, 6 eigenvectors)
as.data.frame(PEM4)

Example of a made up set of trait values for the 7 species
y <- c(A=-1.1436265,B=-0.3186166,C=1.9364105,D=1.7164079,E=1.0013993,

F=-1.8586351,G=-2.0236371)

Estimate a single steepness parameter for the whole tree
PEMfs1 <- PEM.fitSimple(y=y, x=NULL, w=x, d="distance", sp="species",

lower=0, upper=1)
PEMfs1$optim # Optimisation results

Force neutral evolution over the whole tree
PEMfrc1 <- PEM.forcedSimple(y=y,x=NULL,w=x,d="distance",sp="species",a=0)
PEMfrc1xedge$a # Steepness parameter forced on each individual edge

Graph locations for target species X, Y, and Z not found in the original
data set
tpAll <- read.tree(text=paste("((X:0.45,((A:0.15,B:0.2)N4:0.15,",

16 PEM-functions

"(C:0.25,Z:0.2)NZ:0.1)N2:0.05)NX:0.2,",
"(((D:0.25,E:0.1)N5:0.05,Y:0.25)NY:0.25,",
"(F:0.15,G:0.2)N6:0.3)N3:0.1)N1;",sep=""))

tpAll
summary(tpAll) # Summary of the structure of the tree

grloc <- getGraphLocations(tpAll, c("X","Y","Z"))
grloc

PEMfs2 <- PEM.fitSimple(y=y, x=NULL, w=grloc$x, d="distance", sp="species",
lower=0, upper=1)

PEMfs2

Same as for PEMfs1$optim
PEMfs2$optim

Get the PEM scores from the species graph locations:
PEMsc1 <- Locations2PEMscores(PEMfs2, grloc)
lm1 <- lm(y ~ V_2 + V_3 + V_5, data=PEMfs2)

Making prdictions for the species in locations `grloc`
using linear model `lm1`:
ypred <- predict(object=PEMfs2, targets=grloc, lmobject=lm1, interval="none")

Removing species X, Y, and Z from the tree in `tpAll`:
tpModel <- drop.tip(tpAll, c("X","Y","Z"))

Plot the results
layout(t(c(1,1,2)))
par(mar=c(6,2,2,0.5)+0.1)
plot(tpModel, show.tip.label=TRUE, show.node.label=TRUE, root.edge = TRUE,

srt = 0, adj=0.5, label.offset=0.08, font=1, cex=1.5, xpd=TRUE)
edgelabels(paste("E", 1:nrow(tpModel$edge), sep=""),

edge=1:nrow(tpModel$edge), bg="white", font=1, cex=1)
points(x=0.20,y=2.25,pch=21,bg="black")
lines(x=c(0.20,0.20,0.65), y=c(2.25,0.55,0.55), xpd=TRUE, lty=2)
text("X",x=0.69, y=0.55, xpd=TRUE, font=1, cex=1.5)
points(x=0.35, y=4.5,pch=21,bg="black")
lines(x=c(0.35,0.35,0.6), y=c(4.5,5.47,5.47), xpd=TRUE, lty=2)
text("Y", x=0.64, y=5.47, xpd=TRUE, font=1, cex=1.5)
points(x=0.35, y=3, pch=21, bg="black")
lines(x=c(0.35,0.35,0.55), y=c(3,3.5,3.5), xpd=TRUE, lty=2)
text("Z", x=0.59, y=3.5, xpd=TRUE, font=1, cex=1.5)
text(c("NX","NY","NZ"), x=c(0.20,0.35,0.35), y=c(2.25,4.5,3)+0.3*c(1,-1,-1),

font=1, cex=1)
add.scale.bar(length=0.1, cex=1.25)
par(mar=c(3.75,0,2,2)+0.1)
plot(x=y, y=1:7, ylim=c(0.45,7), xlim=c(-4,4), axes=FALSE, type="n", xlab="")
axis(1, label=c("-4","-2","0","2","4"), at=c(-4,-2,0,2,4))
abline(v=0)

Plot the observed values
points(x=y, y=1:7, xlim=c(-2,2), pch=21, bg="black")

trait-simulator 17

text("B)", x=-3.5, y=7, cex=1.5, xpd=TRUE)
text("Trait value", x=0, y=-0.5, cex=1.25, xpd=TRUE)

Plot the predicted values
points(x=ypred, y=c(0.5,5.5,3.5), pch=23, bg="white", cex=1.25)

Estimate the ancestral trait values
ANCloc <- getAncGraphLocations(x)
PEMfsAnc <- PEM.fitSimple(y=y, x=NULL, w=ANCloc$x, d="distance",

sp="species", lower=0, upper=1)
PEMfsAnc$optim

Get the PEM scores from the species graph locations:
PEManc1 <- Locations2PEMscores(PEMfsAnc, ANCloc)

Making predictions for the ancestral species whose locations are found in
`ANCloc` using the linear model `lm1`:
y_anc <- predict(object=PEMfsAnc, targets=ANCloc, lmobject=lm1,

interval="confidence")

trait-simulator Simulate the Evolution of a Quantitative Trait

Description

Functions to simulate the evolution of a quantitative trait along a phylogenetic tree inputted as an
object of class ‘phylo’ (package ape) or a graph-class object.

Usage

EvolveOptimMarkovTree(tp, tw, anc, p = 1, root = tp$edge[1, 1])

TraitOUsimTree(tp, a, sigma, opt, p = 1, root = tp$edge[1, 1])

OUvar(d, a = 0, theta = 1, sigma = 1)

PEMvar(d, a = 0, psi = 1)

TraitVarGraphSim(x, variance, distance = "distance", p = 1, ...)

Arguments

tp A rooted phylogenetic tree of class ‘phylo’ (see package ape).

tw Transition matrix giving the probability that the optimum trait value changes
from one state (row) to another (column) at vertices. All rows must sum to 1.

anc Ancestral state of a trait (at the root).

p Number of variates to generate.

18 trait-simulator

root Root node of the tree.

a Selection rate in function (OUvar) or steepness in (PEMvar).

sigma Neutral evolution rate, i.e. mean trait shift by drift.

opt An index vector of optima at the nodes.

d Phylogenetic distances (edge lengths).

theta Adaptive evolution rate, i.e. mean trait shift by natural selection.

psi Mean evolution rate.

x A graph-class object.

variance Variance function: OUvar, PEMvar, or any other suitable user-defined function.

distance The name of the member of ‘x$edge’ where edge lengths can be found.

... Additional parameters for the specified variance function.

Details

Function EvolveOptimMarkovTree allows one to simulate the changes of optimum trait values as
a Markov process. The index whereby the process starts, at the tree root, is set by parameter anc;
this is the ancestral character state. From the root onwards to the tips, the optimum is given the
opportunity to change following a multinomial random draw with transition probabilities given by
the rows of matrix tw. The integers thus obtained can be used as indices of a vector featuring the
actual optimum trait values corresponding to the simulated selection regimes.

The resulting optimum trait values at the nodes are used by TraitOUsimTree as its argument opt
to simulate trait values at nodes and tips.

Function TraitVarGraphSim uses a graph variance function (either OUvar or PEMvar) to reconstruct
a covariance matrix, used to generate covariates drawn from a multi-normal distribution.

Value

Functions EvolveOptimMarkovTree and TraitOUsimTree return a matrix whose rows represent
the vertices (nodes and tips) of the phylogenetic tree and whose columns stand for the n different
trials the function was asked to perform.

For EvolveQTraitTree, the elements of the matrix are integers, representing the selection regimes
prevailing at the nodes and tips, whereas for TraitOUsimTree, the elements are simulated quantita-
tive trait values at the nodes and tips. These functions are implemented in C language and therefore
run swiftly even for large (10000+ species) trees.

Function TraitVarGraphSim returns p phylogenetic signals. It is implemented using a rotation of
a matrix of standard normal random (mean=0, variance=1) deviates. The rotation matrix is itself
obtained by Choleski factorization of the trait covariance matrix expected for a given set of trees,
variance function, and variance function parameters.

Functions

• EvolveOptimMarkovTree(): Trait Optima Simulator
Simulates the evolution of trait optima along a phylogeny as a Markov process.

• TraitOUsimTree(): Trait Value Simulator
Simulates the evolution of trait values along a phylogeny as a Ornstein–Uhlenbeck process.

trait-simulator 19

• OUvar(): Ornstein–Uhlenbeck Variance Calculator
Calculates the expected covariance matrix for a trait evolving following an Ornstein–Uhlenbeck
process. This function is meant to be used with function TraitVarGraphSim.

• PEMvar(): Phylogenetic Eigenvector Maps Variance Calculator
Calculates the covariance on the basis of the covariance model (power function) associated
used in calculating Phylogenetic Eigenvector Maps. This function is meant to be used with
function TraitVarGraphSim.

• TraitVarGraphSim(): Covariance-based Trait Evolution Simulator.
Simulates trait evolution as covariates drawn from a multi-normal distribution whose covari-
ance is estimated using an external function (functions OUvar, PEMvar provided with the pack-
age or any user-provided function).

Author(s)

Guillaume Guénard [aut, cre] (<https://orcid.org/0000-0003-0761-3072>), Pierre Legendre [ctb]
(<https://orcid.org/0000-0002-3838-3305>) Maintainer: Guillaume Guénard <guillaume.guenard@umontreal.ca>

References

Butler, M. A. & King, A. A. 2004. Phylogenetic comparative analysis: a modeling approach for
adaptive evolution. American Naturalist 164: 683-695

Guénard, G., Legendre, P., and Peres-Neto, P. 2013. Phylogenetic eigenvector maps: a framework
to model and predict species traits. Methods in Ecology and Evolution 4: 1120-1131

Examples

opt <- c(-2,0,2) # Three trait optima: -2, 0, and 2
Transition probabilities:
transit <- matrix(c(0.7,0.2,0.2,0.2,0.7,0.1,0.1,0.1,0.7),

length(opt),length(opt),dimnames=list(from=opt,to=opt))

In this example, the trait has a probability of 0.7 to stay at a given
optimum, a probability of 0.2 for the optimum to change from -2 to 0,
from 0 to -2, and from 2 to -2, and a probability of 0.1 for the
optimum to change from -2 to 2, from 0 to 2, and from 2 to 0.
nsp <- 25 # A random tree for 25 species.
tree2 <- rtree(nsp,tip.label=paste("Species",1:nsp,sep=""))
tree2$node.label=paste("N",1:tree2$Nnode,sep="") # Node labels.

Simulate 10 trials of optimum change.
reg <- EvolveOptimMarkovTree(tp=tree2,tw=transit,p=10,anc=2)
y1 <- TraitOUsimTree(tp=tree2,a=0,sigma=1,

opt=opt[reg[,1]],p=10) ## Neutral
y2 <- TraitOUsimTree(tp=tree2,a=1,sigma=1,

opt=opt[reg[,1]],p=10) ## Few selection.
y3 <- TraitOUsimTree(tp=tree2,a=10,sigma=1,

opt=opt[reg[,1]],p=10) ## Strong selection.

Display optimum change with colours.
displayOUprocess <- function(tp,trait,regime,mvalue) {

20 trait-simulator

layout(matrix(1:2,1,2))
n <- length(tp$tip.label)
ape::plot.phylo(tp,show.tip.label=TRUE,show.node.label=TRUE,root.edge=FALSE,

direction="rightwards",adj=0,
edge.color=rainbow(length(trait))[regime[tp$edge[,2]]])

plot(y=1:n,x=mvalue[1:n],type="b",xlim=c(-5,5),ylab="",xlab="Trait value",yaxt="n",
bg=rainbow(length(trait))[regime[1:n]],pch=21)

text(trait[regime[1:n]],y=1:n,x=5,col=rainbow(length(trait))[regime[1:n]])
abline(v=0)

}

displayOUprocess(tree2,opt,reg[,1],y1[,1]) # Trait evolve neutrally,
displayOUprocess(tree2,opt,reg[,1],y2[,1]) # under weak selection,
displayOUprocess(tree2,opt,reg[,1],y3[,1]) # under strong selection.

x <- Phylo2DirectedGraph(tree2)
y4 <- TraitVarGraphSim(x, variance = OUvar, p=10, a=5)

DisplayTreeEvol <- function(tp,mvalue) {
layout(matrix(1:2,1,2))
n <- length(tp$tip.label)
ape::plot.phylo(tp,show.tip.label = TRUE, show.node.label = TRUE,

root.edge = FALSE, direction = "rightwards", adj = 0)
plot(y=1:n, x=mvalue[1:n], type="b", xlim=c(-5,5), ylab="",

xlab="Trait value", yaxt="n", pch=21)
abline(v=0)

}

Iteratively displays the simulated traits.
Left-click on the display area to go to the next plot.
To terminate: right-click (WIndows, X11), esc key (Mac), or hit the
"finish" button (RStudio).

for(i in 1:10) {
DisplayTreeEvol(tree2,y4[i,])
if(is.null(locator(1)))

break ## Terminate:
}

Index

add.edge (graph-functions), 5
add.vertex (graph-functions), 5
ape, 13, 17
as.data.frame.PEM (PEM-class), 9

collapse.vertex (graph-functions), 5

EvolveOptimMarkovTree, 18
EvolveOptimMarkovTree

(trait-simulator), 17

factor, 8

getAncGraphLocations, 13
getAncGraphLocations (PEM-functions), 11
getGraphLocations, 2, 10, 13
getGraphLocations (PEM-functions), 11
glm, 10
graph (graph-class), 4
graph-class, 4
graph-functions, 2, 5

list, 4
lm, 2, 8, 10
lm-utils, 8
lmforwardsequentialAICc, 2
lmforwardsequentialAICc (lm-utils), 8
lmforwardsequentialsidak, 2, 8
lmforwardsequentialsidak (lm-utils), 8
Locations2PEMscores, 2, 13
Locations2PEMscores (PEM-functions), 11
logical, 10, 12

matrix, 12
MPSEM-package, 2

numeric, 6

optim, 10, 13
OUvar, 18
OUvar (trait-simulator), 17

PEM (PEM-class), 9
PEM-class, 9
PEM-functions, 11
PEM.build, 2, 10, 13
PEM.build (PEM-functions), 11
PEM.fitSimple, 2, 10, 13
PEM.fitSimple (PEM-functions), 11
PEM.forcedSimple, 2, 10, 13
PEM.forcedSimple (PEM-functions), 11
PEM.updater, 2, 13
PEM.updater (PEM-functions), 11
PEMInfluence, 2, 13
PEMInfluence (PEM-functions), 11
PEMvar, 18
PEMvar (trait-simulator), 17
PEMweights, 13
PEMweights (PEM-functions), 11
Phylo2DirectedGraph, 6
Phylo2DirectedGraph (graph-functions), 5
pop.graph (graph-functions), 5
predict.PEM, 2
predict.PEM (PEM-class), 9
print.graph (graph-class), 4
print.PEM (PEM-class), 9

rm.edge (graph-functions), 5
rm.vertex (graph-functions), 5

simulation (trait-simulator), 17

trait (trait-simulator), 17
trait-simulator, 2, 17
TraitOUsimTree, 18
TraitOUsimTree (trait-simulator), 17
TraitVarGraphSim, 18
TraitVarGraphSim (trait-simulator), 17

utils (lm-utils), 8

21

	MPSEM-package
	graph-class
	graph-functions
	lm-utils
	PEM-class
	PEM-functions
	trait-simulator
	Index

