Package ‘MadanTextNetwork’

January 20, 2025
Type Package

Title Persian Text Mining Tool for Co-Occurrence Network
Version 0.1.0

Description Provides an extension to 'MadanText' for creating and analyzing co-
occurrence networks in Persian text data.
This package mainly makes use of the 'PersianStemmer' (Safshekan, R., et al. (2019). <https:
//CRAN.R-project.org/package=PersianStemmer>),
'udpipe' (Wijffels, J., et al. (2023). <https://CRAN.R-project.org/package=udpipe>),
and 'shiny' (Chang, W., et al. (2023). <https:
//CRAN.R-project.org/package=shiny>) packages.

License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2
Depends R (>=4.0.0)

Imports xIsx, glue, lattice, stopwords,textmineR, tidytext, tidyr,
udpipe, PersianStemmer, shiny (>= 1.8.0), shinythemes, tm,
dplyr, hwordcloud, stringr, stringi, topicmodels, igraph,
ngram, visNetwork

NeedsCompilation no

Author Kido Ishikawa [aut, cre],
Hasan Khosravi [aut]

Maintainer Kido Ishikawa <kido.ishikawa6@gmail.com>
Repository CRAN
Date/Publication 2023-12-08 11:30:05 UTC

Contents

ASDATALFRAME o e
clustergraph L
Community.Detection.Membership,
Community.Detection.Plot

https://CRAN.R-project.org/package=PersianStemmer
https://CRAN.R-project.org/package=PersianStemmer
https://CRAN.R-project.org/package=udpipe
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

2 ASDATA.FRAME
7 T 5
5 J 5
6 e e e e 6
e 7
fun.all.sums L. e 7
fun.one.sums L e e e e e 8
FUNbigrams e 9
fungan L e 9
fungi e e 10
funmi e 11
LEMMA . . e e e e e 11
network.Cor e e e 12
PMI . e e e 13
ScaleWeight e 13
S5 7= 14
set.graph L e e 14
UL o oo e e e 15

Index 16

ASDATA . FRAME Convert to Data Frame
Description

This function converts the given object to a data frame.

Usage

ASDATA. FRAME (x)

Arguments

X

Value

An object to be converted into a data frame.

Returns a data frame with rows and columns corresponding to the original object’s structure. If ‘x*
is a matrix, each column in the matrix becomes a column in the data frame. If ‘x‘ is a list where
all elements are of the same length, each element of the list becomes a column in the data frame.
Attributes such as rownames, colnames, and dimnames (if any) are preserved in the conversion.

Examples

data <- ASDATA.FRAME(matrix(1:4, ncol = 2))

cluster.graph 3

cluster.graph Cluster a Graph and Extract Largest Component

Description

This function applies clustering to a graph and extracts the largest connected component.

Usage

cluster.graph(network)

Arguments

network A graph object.

Value

A list containing three elements: ’gr’ with the largest connected component of the graph, ’cl’ with
a data frame of nodes and their cluster membership, and 'node.impo’ with a data frame of node
importance measures like degree, closeness, and betweenness.

Examples

Not run:
Assuming 'network' is a predefined graph object
cluster.graph(network)

End(Not run)

Community.Detection.Membership
Get Community Membership of a Graph

Description
This function applies community detection to a graph and returns the membership information of
each node.

Usage

Community.Detection.Membership(network)

Arguments

network A graph object.

4 Community.Detection.Plot

Value

A data frame where each row represents a node in the graph, with columns for the node name and
its corresponding community membership number. This information is useful for understanding the
community structure within the graph.

Examples

Not run:
network <- make_graph("Zachary")
membership_info <- Community.Detection.Membership(network)
print(membership_info)

End(Not run)

Community.Detection.Plot
Plot Community Detection in a Graph

Description

This function applies community detection to a graph and plots the result.

Usage

Community.Detection.Plot(network)

Arguments

network A graph object.

Value

A plot visualizing the graph with nodes colored according to their community membership. The plot
also displays the modularity score as a sub-title, indicating the strength of the community structure.

Examples

Not run:
Assuming 'network' is a predefined graph object
network <- make_graph("”Zachary")
Community.Detection.Plot(network)

End(Not run)

f3 5

f3 Persian Text Normalization and Stemming

Description

This function normalizes Persian text by replacing specific characters and applies stemming.

Usage
f3(x)

Arguments

X A character vector of Persian text.

Value

Returns a character vector where each element is the normalized and stemmed version of the corre-
sponding element in the input vector. Specifically, it performs character replacement and stemming
on each element of the input, thereby returning a vector of the same length but with processed text.
If an element cannot be processed, it will be returned as NA in the output vector.

Examples

Not run:
text <- c("Persian text here")
normalized_text <- f3(text)

End(Not run)

f5 Filter Data Frame by Document ID

Description
This function filters a data frame by the specified document ID. If the ID is 0, the entire data frame
is returned.

Usage
f5(UPIP, I)

Arguments

UPIP A data frame with a column named ’doc_id’.

I An integer representing the document ID.

Value

Returns a subset of the input data frame (‘UPIP‘) containing only the rows where the ’doc_id’
column matches the specified document ID ‘I°. If ‘I* is O, the function returns the entire data frame
unmodified. The output is a data frame with the same structure as the input but potentially fewer
rows, depending on the presence and frequency of the specified ID.

Examples

data <- data.frame(doc_id = 1:5, text = letters[1:5])
filtered_data <- f5(data, 2)

f6 Extract Token Information from Data Frame

Description

This function extracts token, lemma, and part-of-speech (POS) tag information from a given data
frame and compiles them into a new data frame.

Usage
£6 (UPIP)
Arguments
UPIP A data frame containing columns "token’, ’lemma’, and ’upos’ for tokens, their
lemmatized forms, and POS tags respectively.
Value

Returns a new data frame with three columns: "TOKEN’, ’LEMMA’, and "TYPE’. "TOKEN’ con-
tains the original tokens from the ’token’ column of the input data frame. 'LEMMA’ contains the
lemmatized forms of these tokens, as provided in the ’lemma’ column. "TYPE’ contains POS tags
corresponding to each token, as provided in the upos’ column. The returned data frame has the
same number of rows as the input data frame, with each row representing the token, its lemma, and
its POS tag from the corresponding row of the input.

Examples

data <- data.frame(token = c("running”, "jumps"),
lemma = c("run”, "jump"),
upos = c("VERB", "VERB"))
token_info <- f6(data)

f7 Extract and Count Specific Parts of Speech

Description
This function extracts tokens of a specified part of speech (POS) from the given data frame and
counts their frequency.

Usage
f7(UPIP, type)

Arguments
UPIP A data frame with columns upos’ (POS tags) and ’lemma’ (lemmatized tokens).
type A string representing the POS to filter (e.g., 'NOUN’, "VERB’).

Value

Returns a data frame where each row corresponds to a unique lemma of the specified POS type.
The data frame has two columns: ’key’, which contains the lemma, and ’freq’, which contains
the frequency count of that lemma in the data. The rows are ordered in decreasing frequency of
occurrence. This format is useful for quickly identifying the most common terms of a particular
POS in the data.

Examples

data <- data.frame(upos = c('NOUN', 'VERB'), lemma = c('house', 'run'))
noun_freq <- f7(data, 'NOUN')

fun.all.sums Apply Suffix Modifications to Persian Words

Description

This function iteratively applies a series of suffix modifications to a vector of Persian words.

Usage
fun.all.sums(v, TYPE = TYPE.org)

Arguments

v A character vector of Persian words.

TYPE A vector of suffix types for modification.

8 fun.one.sums

Value

Returns a character vector where each element corresponds to a word from the input vector ‘v‘ with
all specified suffix modifications applied. This results in a transformed vector where each word has
been modified according to the series of suffix types provided in ‘TYPE‘. The length of the returned
vector matches the length of the input vector.

Examples

Not run:
words <- c("Persian text here")
modified_words <- fun.all.sums(words, TYPE)

End(Not run)

fun.one.sums General Persian Suffix Modification

Description

This function modifies Persian words based on a specified suffix type.

Usage

fun.one.sums(v, type)

Arguments

v A character vector of Persian words.

type A character string representing the suffix type.
Value

Returns a character vector where each element corresponds to a word from the input vector ‘v* with
the specified suffix type modified. This results in a transformed vector where each word has been
modified to remove or alter the specified suffix. The length of the returned vector matches the length
of the input vector, and each word is modified independently based on the specified suffix type.

Examples

Not run:
words <- c("Persian text here")
modified_words <- fun.one.sums(words, "Persian text here")

End(Not run)

FUNbigrams 9

FUNbigrams Extract Bigram Information and Count Frequency

Description

This function processes a data frame containing bigrams and their frequency, and creates a new data
frame with separated words and their frequencies.

Usage

FUNbigrams(tf.bigrams)

Arguments

tf.bigrams A data frame with bigram terms and their frequency.

Value

A tibble data frame where each row represents a unique bigram from the input data. The data frame
contains three columns: word1’ and *word2’ representing the individual words in the bigram, and
weight’ representing the frequency of the bigram in the corpus. This structure facilitates further
analysis of the bigram relationships and their occurrences.

Examples

tf_bigrams <- data.frame(term = c("hello_world", "shiny_app"),
term_freq = c(3, 2))
bigram_info <- FUNbigrams(tf_bigrams)

fungan Persian Suffix Modification for ’Persian text here’ Suffix

Description

This function modifies Persian words ending with *Persian text here’ suffix.

Usage

fungan(v)

Arguments

v A character vector of Persian words.

10 fungi

Value

Returns a character vector where each element corresponds to a word from the input vector ‘v* with
the *Persian text here’ suffix modified. This results in a transformed vector where each word ending
with the specified suffix is altered. The length of the returned vector matches the length of the input
vector, and each word is modified independently based on the presence of the specified suffix.

Examples

Not run:
words <- c("Persian text here")
modified_words <- fungan(words)

End(Not run)

fungi Persian Suffix Modification

Description

This function modifies Persian words ending with *Persian text here’ suffix.

Usage

fungi(v)

Arguments

v A character vector of Persian words.

Value

Returns a character vector where each element corresponds to a word from the input vector ‘v* with
the specified suffix modified. This results in a transformed vector where each word ending with the
specified suffix is altered. The length of the returned vector matches the length of the input vector,
and each word is modified independently based on the presence of the specified suffix.

Examples

Not run:
words <- c("Persian text here")
modified_words <- fungi(words)

End(Not run)

funmi 11

funmi Modify Persian Words Starting with ’Persian text here’

Description

This function modifies Persian words starting with the prefix ’Persian text here’.

Usage

funmi(v)

Arguments

% A character vector of Persian words.

Value

Returns a character vector where each element corresponds to a word from the input vector ‘v* with
the specified suffix modified. This results in a transformed vector where each word ending with the
specified suffix is altered. The length of the returned vector matches the length of the input vector,
and each word is modified independently based on the presence of the specified suffix.

Examples

Not run:
words <- c("Persian text here")
modified_words <- funmi(words)

End(Not run)

LEMMA Persian Lemmatization

Description

This function performs lemmatization on a vector of Persian words.

Usage
LEMMA(CY, TYPE = TYPE.org)

Arguments

Y A character vector of Persian words.

TYPE A vector of suffix types for modification.

12 network.cor

Value

Returns a character vector where each element is the lemmatized form of the corresponding element
in the input vector ‘Y‘. Lemmatization involves removing inflectional endings and returning the
word to its base or dictionary form. The length of the returned vector matches the length of the
input vector, and each word is lemmatized independently based on the specified suffix types in
‘TYPE".

Examples

Not run:
words <- c("Persian text here")
lemmatized_words <- LEMMA(words, TYPE)

End(Not run)

network.cor Create and Plot a Correlation Network

Description

This function creates a correlation network based on specified terms and a threshold, and optionally
plots it.

Usage

network.cor(dt, Terms, threshold = 0.4, pl = TRUE)

Arguments
dt A document-term matrix.
Terms A vector of terms to check for correlation.
threshold A numeric threshold for correlation.
pl A logical value to plot the network or not.
Value

If ’pI’ is TRUE, a plot of the correlation network is displayed, highlighting the strength of associa-
tions between terms. If *pl” is FALSE, a data frame with correlation pairs and their corresponding
weights is returned.

PMI 13

PMI Calculate Pointwise Mutual Information (PMI)

Description

This function calculates the PMI for collocations in a given text data.

Usage
PMI(x)

Arguments

X A data frame with columns ’token’ and ’doc_id’.

Value

Returns a data frame where each row represents a unique keyword (collocation) in the input data.
The data frame contains columns such as ’keyword’, representing the keyword, and "pmi’, repre-
senting the PMI score of that keyword. Higher PMI scores indicate a stronger association between
the components of the collocation within the corpus.

Examples

data <- data.frame(token = c("word1"”, "word2"), doc_id = c(1, 1))
pmi_scores <- PMI(data)

ScaleWeight Scale a Numeric Vector

Description

This function scales a numeric vector by a specified lambda value.

Usage
ScaleWeight(x, lambda)

Arguments
X A numeric vector.
lambda A numeric scaling factor.
Value

A numeric vector where each element of the input vector ’x’ is divided by the scaling factor
’lambda’. This results in a scaled version of the input vector.

14 set.graph

Examples

scaled_vector <- ScaleWeight(1:10, 2)

server Server Logic for MadanText Shiny Application

Description
This function contains the server-side logic for the MadanText application. It handles user inputs,
processes data, and creates outputs to be displayed in the UL

Usage

server(input, output)

Arguments
input List of Shiny inputs.
output List of Shiny outputs.
Value

This function sets up the reactive environment and output elements in the Shiny application. It does
not return any value but modifies the Shiny app’s UI based on user inputs and reactive expressions.
It returns a Shiny Server object.

set.graph Set Graph Attributes

Description
This function sets various attributes for a given graph object, including vertex degree and edge
width.

Usage

set.graph(network)

Arguments

network A graph object.

Value

The input graph object with added attributes: ’degree’ for each vertex and "width’ for each edge.
These attributes enhance the graph’s visual representation and analytical capabilities.

ui 15

ui User Interface for MadanText

Description

This function creates a user interface for the MadanText Shiny application. It includes various input
and output widgets for file uploads, text input, and visualization.

Usage
ui
Format

An object of class shiny.tag.list (inherits from 1list) of length 4.

Value

A Shiny UI object.

Index

x datasets
ui, 15

ASDATA . FRAME, 2

cluster.graph, 3
Community.Detection.Membership, 3
Community.Detection.Plot, 4

f3,5

f5,5

6,6

7,7
fun.all.sums, 7
fun.one.sums, 8
FUNbigrams, 9
fungan, 9
fungi, 10
funmi, 11

LEMMA, 11
network.cor, 12
PMI, 13

ScaleWeight, 13
server, 14
set.graph, 14

ui, 15

16

	ASDATA.FRAME
	cluster.graph
	Community.Detection.Membership
	Community.Detection.Plot
	f3
	f5
	f6
	f7
	fun.all.sums
	fun.one.sums
	FUNbigrams
	fungan
	fungi
	funmi
	LEMMA
	network.cor
	PMI
	ScaleWeight
	server
	set.graph
	ui
	Index

