Package ‘MetalLandSim’

January 20, 2025
Type Package

Title Landscape and Range Expansion Simulation
Version 2.0.0

Date 2023-01-12

Depends R (>=3.5.0), igraph

Imports el071, grDevices, graphics, googleVis, spatstat.geom,
spatstat.random, stats, sp, minpack.lm, zipfR, coda, terra,
knitr

Suggests rasterVis

Author Frederico Mestre, Fernando Canovas, Benjamin Risk, Ricardo Pita,
Antonio Mira, Pedro Beja.

Maintainer Frederico Mestre <mestre.frederico@gmail.com>

Description Tools to generate random landscape graphs, evaluate species
occurrence in dynamic landscapes, simulate future landscape occupation and
evaluate range expansion when new empty patches are available (e.g. as a
result of climate change). References: Mestre, F., Canovas, F., Pita, R.,

Mira, A., Beja, P. (2016) <doi:10.1016/j.envsoft.2016.03.007>; Mestre, F.,
Risk, B., Mira, A., Beja, P, Pita, R. (2017)
<doi:10.1016/j.ecolmodel.2017.06.013>; Mestre, E., Pita, R., Mira, A., Beja,
P. (2020) <doi:10.1186/s12898-019-0273-5>.

License GPL (>=2)

NeedsCompilation no

Repository CRAN

Date/Publication 2023-01-12 22:30:02 UTC

Contents

MetaLandSim-package . . . . . . . . . . ...
accept.calculate . . . . ... L
addpoints . . . .. L e e e e e
Cabrera . . . . . . ...


https://doi.org/10.1016/j.envsoft.2016.03.007
https://doi.org/10.1016/j.ecolmodel.2017.06.013
https://doi.org/10.1186/s12898-019-0273-5

Contents

calemode . . . . ... 8
cluster.graph . . . . . . . . L 9
clusterdid . . . . .. L 10
coda.create . . . .. ... e e 11
combine.chains . . . . . . . ... L. e 13
components.graph . . . . . . ... L e e e 14
convert.graph . . . . . . .. L 15
create.parameter.df . . . . . ... L 16
edge.graph . . . . . . . L e 17
EXPANSION . .« . . v v i e e e e e e e e e 18
extract.graph . . . . . . 18
ifmmissing MCMC . . . . . o L . e 19
ifmnaive MCMC . . . . . . ... 23
ifmrobust MCMC . . . . . . .. 26
import.shape . . . . . . . . . e 30
iterate.graph . . . . . .. L e 31
landscape . . . . . . . .. 34
landscape_change . . . . . . . . . . .. e 35
List.stats . . . . ..o e 35
manage_expansion_Sim . . . . . . . . . . . ... i i e 36
manage_landscape_sim . . . . . . ... e 39
matrix.graph . . . . .. L e e 41
mc_ df . .. s 42
MetaLandSim-internal . . . . . . . ... 43
metapopulation . . ... .. e e e e 44
metrics.graph . . . . .o L. e e e e 45
min_diStance . . . . . . ... e e 49
occlandscape . . . ... e 49
occlandscape2 . . ... L. L e e 50
paraml . ..o 51
param?2 . ... e e e e e e e 52
parameter.estimate . . . . . . . ... . e e e e e e e e e e e e e e 53
plotL.graph . . . . . . . e 55
plot_expansion . . . . . ... ... 56
plot_graph . . . . . . . 57
Tange_eXPanSION . . . . v v v v i e e e e e e e e e e e e e e e e e e e 58
TANZE_TASIET . . . o v v v v e e e e e e e e e e e e e e e e e e e e 60
TEMOVE.SPECIES . .« v v v v v v v e e e e e e e e e e e e e e e 61
TEMOVEPOINLS . . . v v v v o v e et e e e e e e e e e e e e e e e e e 62
TE EXP + v v v e e e e e e e e e e e e e e 63
rland . . .o 64
rland.graph . . . . . oL 64
SIMLATEA . . . o v v v v i e e e e e e e e e e 66
sim.det.20 . ... oL 66
SIMLAIStANCE . . . . . ... 67
simulatedifm . . . ... L. 67
simulate_graph . . . . . ... L e 70

span.graph . . . . L L 72



MetalLandSim-package 3

species.graph . . . . .. L L e e e e e e e 74
SPOIM . & v v o v e e e e e e e e e e e e e e e e e e e e e e e e 75
summary_landscape . . . . . ... 80
summary_metapopulation . . . . . ... ... 82
ZSIM . L L e 84
z.sim.20 . .. 84
z.sim20.0a . . . L 85
Index 86

MetalLandSim-package Landscape And Range Expansion Simulation

Description

The package MetaLandSim is a simulation environment, allowing the generation of random land-
scapes, represented as graphs, the simulation of landscape dynamics, metapopulation dynamics and
range expansion.

The package was developed as part of the Ph.D. thesis of Frederico Mestre (SFRH/BD/73768/2010),
funded by European Social Funds and the Portuguese Foundation for Science and Technology, and
included in the project NETPERSIST (PTDC/AAG-MAA/3227/2012), funded by European Re-
gional Development Fund (ERDF) through COMPETE programme and Portuguese national funds
through the Portuguese Foundation for Science and Technology.

It is intended to provide a virtual environment, enabling the experimentation and simulation of
processes at two scales: landscape and range. The simulation approach, taken by MetalLandSim,
presents several advantages, like allowing the test of several alternatives and the knowledge of the
full system (Peck, 2004; Zurell et al. 2009). The role of simulation in landscape ecology is fun-
damental due to the spatial and temporal scale of the studied phenomena, which frequently hinders
experimentation (Ims, 2005).

Here, graph and metapopulation theories are combined, which is a broadly accepted strategy to pro-
vide a modelling framework for metapopulation dynamics (Cantwell & Forman, 1993; Bunn et al.
2000; Ricotta et al. 2000; Minor & Urban, 2008; Galpern et al. 2011). Also, several graph-based
connectivity metrics can be computed from the landscape graphs. This set of metrics have been
proven useful elsewhere (Urban & Keitt, 2001; Calabrese & Fagan, 2004). The graph representa-
tion of landscape has one major advantage: it effectively summarizes spatial relationships between
elements and facilitates a multi-scale analysis integrating patch and landscape level analysis (Cal-
abrese & Fagan, 2004).

MetalLandSim operates at two scales, providing researchers with the possibility of:

* Landscape scale - Simulation of metapopulation occupation on a dynamic landscape, compu-
tation of connectivity metrics.

» Range scale - Computes dispersal model and range expansion scenario simulation.

The landscape unit, an object of class landscape, is the basic simulation unit at both these scales.
At the landscape scale, the persistence of the metapopulation in a dynamic landscape is evaluated
through the simulation of landscape dynamics using the function iterate.graph or manage_landscape_sim.
At the range scale the metapopulation is allowed to expand to other, empty, landscape units using
range_expansion, producing an object of class expansion. The function range_raster allows



4 MetalLandSim-package

the conversion of the dispersal model obtained with the previous function into a raster. Finally,
also at the range scale, the user can analyse the outcome of several alternative landscapes in range
expansion speed and maximum dispersal distance, using the function manage_expansion_sim.
Since version 1.0 new IFM parameter estimation capabilities are available, which based upon
Bayesian statistics, using the functions first developed for the paper Risk et al.(2011).

We thank Dr. Santiago Saura (Universidad Politecnica de Madrid) for the very useful inputs and for
the R script which greatly improved the connectivity metrics capabilities of MetaLandSim.

After version 2.0.0 MetaLandSim had a few major changes: 1) There is no Graphic User Inter-
face, the user will have to resort solely to the usual R user interface; 2) It does not use GRASS,
resorting uniquely to R packages to conduct the simulations (mainly terra); 3) It depends on much
less packages (after removing rgrass7, maptools, rgeos, raster, tcltk and fgui); 4) There were
some major changes to the functions range_raster and range_expansion. In what concerns
range_expansion the output, rather than considering distinct dispersal probabilities in all four car-
dinal directions (as in previous versions), considers the same probability of dispersal from a current
presence in all directions. This has implications in the range_raster function, that converts the
dispersal probability to a raster. However, this does not change the results in any meaningfull way
given that these kinds of simulations require many iterations in which the distinctions between the
dispersal to all four directions was diluted.

Details
Package: MetalLandSim
Type: Package
Version: 2.0.0
Date: 2022-01-12
License: GPL (>=2)

Author(s)

Frederico Mestre, Fernando Canovas, Benjamin Risk, Ricardo Pita, Antonio Mira and Pedro Beja.

Maintainer: Frederico Mestre <mestre.frederico@ gmail.com>

References

Bunn, A. G., Urban, D. L. and Keitt, T. H. (2000). Landscape connectivity: a conservation applica-
tion of graph theory. Journal of Environmental Management, 59(4), 265-278.

Calabrese, J. M. and Fagan, W. F. (2004). A comparison-shopper’s guide to connectivity metrics.
Frontiers in Ecology and the Environment, 2(10), 529-536.

Cantwell, M. D. and Forman, R. T. (1993). Landscape graphs: ecological modelling with graph
theory to detect configurations common to diverse landscapes. Landscape Ecology, 8(4), 239-255.

Galpern, P., Manseau, M. and Fall, A. (2011). Patch-based graphs of landscape connectivity: a
guide to construction, analysis and application for conservation. Biological Conservation, 144(1),
44-55.



accept.calculate 5

Ims, R.A. (2005). The role of experiments in landscape ecology. In: Wiens, J.A., and Moss, M.R.
(eds.). Issues and Perspectives in Landscape Ecology. Cambridge University Press. pp. 70-78.

Mestre, F., Pita, R., Pauperio, J., Martins, F. M., Alves, P. C., Mira, A., & Beja, P. (2015). Combin-

ing distribution modelling and non-invasive genetics to improve range shift forecasting. Ecological
Modelling, 297, 171-179.

Mestre, F., Risk, B. B., Mira, A., Beja, P., & Pita, R. (2017). A metapopulation approach to predict
species range shifts under different climate change and landscape connectivity scenarios. Ecological
Modelling, 359, 406-414.

Mestre, F., Pita, R., Mira, A., Beja, P. (2020). Species traits, patch turnover and successional
dynamics: When does intermediate disturbance favour metapopulation occupancy?. BMC Ecology.

Minor, E. S. and Urban, D. L. (2008). A Graph Theory Framework for Evaluating Landscape
Connectivity and Conservation Planning. Conservation Biology, 22(2), 297-307.

Peck, S. L. (2004). Simulation as experiment: a philosophical reassessment for biological mod-
elling. Trends in Ecology & Evolution, 19(10), 530-534.

Ricotta, C., Stanisci, A., Avena, G. C., and Blasi, C. (2000). Quantifying the network connectivity
of landscape mosaics: a graph-theoretical approach. Community Ecology, 1(1), 89-94.

Risk, B. B., De Valpine, P., Beissinger, S. R. (2011). A robust design formulation of the incidence
function model of metapopulation dynamics applied to two species of rails. Ecology, 92(2), 462-
474.

Urban, D. and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology,
82(5), 1205-1218.

Zurell, D., Berger, U., Cabral, J.S., Jeltsch, F., Meynard, C.N., Munkemuller, T., Nehrbass, N.,
Pagel, J., Reineking, B., Schroder, B. and Grimm, V. (2009). The virtual ecologist approach: simu-
lating data and observers. Oikos, 119(4), 622-635.

accept.calculate Calculate acceptance rates in MCMC chains

Description

Calculate acceptance rates of parameters in the IFM.

Usage
accept.calculate(x, model = c("naive”, "missing"”, "robust"))
Arguments
X A named list with the MCMC chains estimated by ifm.naive. MCMC, ifm.missing. MCMC,

or ifm.robust. MCMC.

"non

model Either "naive", "missing", or "robust"



6 addpoints

Value

Named list containing MCMC chain acceptance rates. Names are built from the input list, e.g., for
model="naive":

acc.b.chain Acceptance rates of parameter b
acc.e.chain Acceptance rates of parameter e
acc.y.chain Acceptance rates of parameter y

acc.alpha.chain
Acceptance rates of parameter alpha

acc.x.chain Acceptance rates of parameter x

Author(s)

Benjamin Risk

Examples

data(simulatedifm)

# Here, we run a chain with random initial values:
init1=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))

inml <- ifm.naive.MCMC(niter=1000,init=init1,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,
sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=100)
accept.calculate(inml,model="naive"')

addpoints Add a given number of patches to a landscape

Description

Adds a given number of patches to the landscape.

Usage

addpoints(rl, nr)

Arguments

rl Object of class landscape’.

nr Number of patches to be added (see 'note’).
Value

Returns an object of class ’landscape’.



cabrera 7

Note

The number of patches to be added might be impaired by the minimum distance between points.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, removepoints

Examples

data(rland)

#Checking the number of patches in the starting landscape:
rland$number.patches

#60

#Adding 10 patches to a landscape:

rl1 <- addpoints(rl=rland, nr=10)

#Checking the number of patches in the output landscape:
r11$number.patches

#70

cabrera Modified patch occupancy data of Cabrera vole

Description

One season patch occupancy dataset for Microtus cabrerae in SW Portugal. This dataset is in
the format produced by species.graph, convert.graph or import.shape (class *'metapopulation’), and
it was created by converting a data frame using the function convert.graph. The data frame had
the information of one snapshot of patch occupancy data of Cabrera vole (Microtus cabrera) in
southwestern Portugal.

Usage

data(cabrera)



8 calcmode

Format
A list with the following elements:
* mapsize - 8200 (landscape mosaic side length, in meters).
e minimum.distance - 10.04 (minimum distance between patches centroids).
e mean.area - 0.46 (mean area, in hectares).
e SD.area - 1.05 (SD of the area).
* number.patches - 793 (number of patches).
* dispersal - 800 (mean dispersal ability of the species).
* distance.to.neighbours - data frame with pairwise distance between patches.

* nodes.characteristics - data frame with the characteristics of each patch.

Details
To create this sample dataset the occupancy status of patches was scrambled, however the proportion
of occupied patches was kept.

Source

Original field data was obtained during project PERSIST (PTDC/BIA-BEC/105110/2008).

Examples

data(cabrera)

calcmode Function for mode estimation of a continuous variable

Description

Derives the mode, estimating the value of a continuous variable.

Usage

calcmode(data,adjust=1)

Arguments

data vector used to estimate the mode.

adjust increase this value to make the density estimate smoother.
Value

Returns the numeric value of the mode.



cluster.graph 9

Author(s)

Adapted from https://stat.ethz.ch/pipermail/r-help/2008-August/172323.html.

Examples

vectl = rchisq(1000,df=3)
calcmode(vect1)
vectl

cluster.graph Delivers the number of patches per cluster

Description
Returns a data frame with the number of nodes (habitat patches) in each component of the landscape
graph (in this case a component is a group of patches connected by the species dispersal distance).
Usage

cluster.graph(rl)

Arguments

rl Object of class ’landscape’.

Details
The components are defined based on the species mean dispersal ability. This implies that the con-
nectivity model between patches is binary (connected/not connected) as opposed to probabilistic.
Value

This function returns a data frame with the number of patches of each component (group of patches).
The returned data frame has two fields: cluster (Id of the component) and number of nodes (the
number of nodes of the respective component).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph


https://stat.ethz.ch/pipermail/r-help/2008-August/172323.html

10 cluster.id
Examples

data(rland)

cluster.graph(rl=rland)

#Output:

# cluster number of nodes

#1 1 1
#2 2 1
#3 3 13
#4 4 1
#5 5 1
#6 6 15
#7 7 2
#8 8 1
#9 9 3
#10 10 1
#11 1 1
#12 12 2
#13 13 4
#14 14 1
#15 15 1
#16 16 1
#17 17 1
cluster.id Classify patches in clusters
Description

reclassify clusters of a landscape according to a given mean dispersal distance.

Usage

cluster.id(rl)

Arguments

rl Object of class ’landscape’.

Details

After changing the landscape some components (groups of connected patches) might suffer changes
(e.g. the removal of patches might split components). This function re-attributes a code to each
patch, identifying the groups of connected patches (components), after this type of disturbance to
the habitat network.Mainly to be used internally.



coda.create 11

Value

Returns the same landscape object, with the clusters reclassified.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

Examples

data(rland)

#After removing 30 (50%) of the patches of a landscape:

rland2 <- removepoints(rl=rland, nr=35)

#A reclassification might be needed to identify components:

rland2 <- cluster.id(rl=rland2)

#After removing 35 patches, there's a different number of components:
components.graph(rl=rland)

#21

components.graph(rl=rland2)

#16

coda.create Create files for use with R-package coda.

Description

Creates two text files, <filename.txt> and filename_Index.txt>, in the format used by OpenBUGS,
which can then be read using read.coda() to create an mcmc object for subsequent use of coda
diagnostic and plotting functions.

Usage

coda.create(object, file.name, write.index = TRUE, par.list = list("mupsil.chain”,
"e.chain”, "x.chain", "b.chain"”, "y.chain"”, "alpha.chain”), niter = 101000, nthin = 10)



12 coda.create

Arguments
object Output from ifm.naive. MCMC, ifm.missing. MCMC, or ifm.robust MCMC, i.e.,
a named list with vectors e.chain. x.chain, y.chain, b.chain, alpha.chain, and
other parameters depending on the model.
file.name Name of the text file that will be output in the format used by BUGS and JAGS.
write.index Logical indicating whether or not to also create file.name_Index.txt. Defaults to
TRUE, which allows the subsequent use of read.coda().
par.list List of parameters to include in the file. Defaults to mupsil.chain, e.chain,
x.chain, b.chain, y.chain, alpha.chain; modify to include additional parameters
in ifm.missing. MCMC and ifm.robust. MCMC.
niter Number of iterations in the original chain (before thinning).
nthin Thinning used in the original estimation function; this is just bookkeeping, as
this function does not perform the thinning.
Details

Writes text files to the current working directory or to the path specified with "file.name".

Author(s)

Benjamin Risk

Examples

## Not run:
# quick run; actual estimation requires more iterations:
data(simulatedifm)

myniter=100

nsite=nrow(z.sim)

nyear=ncol(z.sim)

nthin=1

nburnin=0

initi=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))

inm1 <- ifm.naive.MCMC(niter=myniter,init=initl1,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,
sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=1000)

# write files in OpenBUGS format to working directory:

n on non

coda.create(inml,”sim_inm1"”,par.list=1list("e.chain”,"x.chain”,"alpha.chain"”,

non

"b.chain”,"y.chain"),niter=myniter,nthin=nthin)

## End(Not run)



combine.chains 13

combine.chains Combines two chains into a single chain.

Description

Combines two lists of chains from ifm.naive. MCMC, ifm.missing. MCMC, or ifm.robust. MCMC
into one list where each element is the concatenated chains.

Usage

combine.chains(x1, x2, nburnin, nthin = 1, z.thin = TRUE)

Arguments
x1 First list of chains.
X2 Second list of chains.
nburnin Number of initial iterations to discard.
nthin If nthin>1, subsets to every nthin”th sample
z.thin logical; defaults to TRUE. Thinning for the posterior sample of the occupancy
states. If true, uses thinning equal to 5. The posterior sample of occupancy states
is a large nsite x nyear x niter array, and this option reduces memory usage.
Ignored if the chain is from the ifm.naive. MCMC (where occupancy states are
fixed).
Value

Named list with the same names as the inputs x1 and x2

Author(s)
Benjamin Risk
Examples
data(simulatedifm)
init1=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))
inml <- ifm.naive.MCMC(niter=500,init=initl1,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,
sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=100)
init1=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))
inm2 <- ifm.naive.MCMC(niter=500,init=initl1,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,

sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=100)

sim.inm=combine.chains(inm1,inm2,nburnin=0,nthin=1)



14 components.graph

components.graph Number of components of a landscape

Description

Returns the number of components in the landscape graph (in this case a component is a group of
patches connected by the species dispersal distance).

Usage

components.graph(rl)

Arguments

rl Object of class ’landscape’.

Value

Returns the number of components (groups of connected patches) of a landscape.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

Examples
data(rland)
components. graph(rl=rland)

#21



convert.graph 15

convert.graph Convert data frame to landscape

Description
Converts a given data frame in a list which can be used in the following functions, an object of class
’metapopulation’.

Usage

convert.graph(dframe, mapsize, dispersal)

Arguments
dframe data frame with the original data and the following columns, in this order:
* ID - patch Id.
* X - Coordinate.
* Y - Coordinate.
e Area - Patch area, in hectares.
* Occupation - Species presence status (0/1).
mapsize Landscape mosaic side length, in meters.
dispersal Species mean dispersal ability, in meters.
Value

Delivers an object of class *metapopulation’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also
species.graph
Examples
data(mc_df)
#Checking the columns of the data frame:
head(mc_df)
# ID X y area mc
#1 1 1248.254 0.000 0.079 0

#2 2 1420.857 46.725 0.781 1
#3 3 1278.912 52.629 1.053 1



16 create.parameter.df

#4 4 6370.625 62.637 0.788 0

#5 5 1151.337 97.140 0.079 0

#6 6 1295.796 104.839 0.137 1

#In order to import the data frame mc_df:

spl <- convert.graph(dframe=mc_df, mapsize=8300, dispersal=800)
#verify class

class(sp1)

# [1] "metapopulation”

create.parameter.df Create parameter data frame

Description
This function creates a parameter data frame, using parameter values computed with the application
available in the papers of Moilanen (1999) and ter Braak and Etienne (2003).

Usage

create.parameter.df(alpha, x, y, €)

Arguments
alpha Alpha parameter
X X parameter
y y parameter
e parameter
Details

It is highly recommended that the user reads both papers, as well as the help files.

Value

Returns a data frame, with the same format as the one returned by parameter.estimate for the
methods "Rsnap_1" and "Rsnap_x’.

Author(s)

Frederico Mestre and Fernando Canovas



edge.graph 17

References

Moilanen, A. (1999). Patch occupancy models of metapopulation dynamics: efficient parameter
estimation using implicit statistical inference. Ecology, 80(3): 1031-1043.

ter Braak, C. J., & Etienne, R. S. (2003). Improved Bayesian analysis of metapopulation data with
an application to a tree frog metapopulation. Ecology, 84(1): 231-241.

See Also

parameter.estimate

Examples

param2 <- create.parameter.df(alpha=0.5, x=0.1, y=5, e=0.1)
param2

# par_output
#alpha 0.5
#X
ity
#e

[SENG IS

N
.0
A

edge.graph Produce an edge (links) data frame

Description

Returns a data frame with the information on the connections between patches (assuming binary
connections).

Usage
edge.graph(rl)

Arguments

rl Object of class ’landscape’.

Value

Produces a data frame with the information on the edges (links): the IDs of both patches, the area,
the coordinates and the Euclidean distance.

Author(s)

Frederico Mestre and Fernando Canovas



18 extract.graph

See Also
rland.graph

Examples
data(rland)

edge_df <- edge.graph(rl=rland)

expansion Class 'expansion’

Description

Class representing an expansion object, as produced by range_expansion.

Slots

A list of four data frames with the proportion of occupation at several distances from the closest
occupied landscape mosaic. These four data frames correspond to the proportion of occupation to
the north, south, east and west. Each data frame has the following columns:

* DISTANCE - Distance (mapsize x number of landscapes).

* OCCUPATION - How many times did the landscape at this distance got occupied by the
species (from a total of ’iter’ repetitions).

* PROPORTION - Proportion of occupation for the landscape at this distance (OCCUPATION/iter).

Author(s)

Frederico Mestre and Fernando Canovas

extract.graph Extract landscape from span.graph generated list

Description

Extracts a landscape from an object delivered by span.graph. The output is an object of class
’landscape’.

Usage

extract.graph(rl, rlist, nr)



ifm.missing. MCMC

Arguments
rl Object of class ’landscape’ used to generate the list, with span. graph.
rlist Object delivered by span.graph.
nr Position of the landscape in the list (rlist).

Value

Delivers an object of class "landscape’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

span.graph, rland.graph

Examples

data(rland)
data(landscape_change)

#Extracting the landscape of the 50th time step:

rl1 <- extract.graph(rl=rland, rlist=landscape_change, nr=50)

ifm.missing.MCMC Estimate the 'missing’ design incidence function model

Description

Estimates the IFM with no false absences but incorporating missing data.

Usage
ifm.missing.MCMC(niter=1000,init,z.data, site.distance, site.area,
sd.prop.mupsil=0.1, sd.prop.e=0.1, sd.prop.x=0.5,sd.prop.y=10, sd.prop.b=0.2,
sd.prop.alpha=5, nthin=1,nsite.subset=10,print.by=100)

Arguments

niter Number of iterations in the MCMC chain.



20

init

z.data

site.distance

site.area

sd.prop.mupsil
sd.prop.e
sd.prop.x
sd.prop.y
sd.prop.b
sd.prop.alpha

nthin

nsite.subset

print.by

ifm.missing. MCMC

Named list with values to initialize the chain. E.g.:

initl=list(z.missing=runif(nmissing),mupsil=runif(1),alpha=runif(1,1,30),
b=runif(1,0,5),y=runif(1,0,20),

e=runif(1,0,1),x=runif(1,0,5)).

z.missing: a vector of initial occupancy states for the missing data with length
equal to the number of NAs in z.data (i.e., vectorized across years). Can use
runif(nmissing).

mupsil: probability of initial occupancy in year 1; runif(1) suffices

alpha: initial value for alpha in dispersal model; described as 1 / average dis-
persal distance

b: initial value for parameter b in colonization model
y: initial value for parameter y in colonization model
e: initial value for e in extinction model

x: initial value for X in extinction model

nsite X nyears matrix containing NA for missing data. Occupancy at sites with
missing data will be estimated.

nsite x nsite matrix of distances between sites. The tuning parameters in the
example are set for distances less than one, with max distance approximately
0.5. Input data should have a similar scaling.

Vector of length nsite with areas. The tuning parameters in the example are
set for average area approximately equal to 1. Input data should have a similar
scaling.

Standard deviation of the proposal distribution for occupancy in year 1.
Standard deviation of the proposal distribution for parameter e.
Standard deviation of the proposal distribution for parameter x.
Standard deviation of the proposal distribution for parameter y.
Standard deviation of the proposal distribution for parameter b.
Standard deviation of the proposal distribution for parameter alpha.

If specified, keeps only every nthin”th sample from the MCMC chain. Use to
save memory or when the chain is moving slowly.

The number of sites to include in the block sampling, where nsite.subset is equal
to the number of sites updated in the same step. Larger values decrease the
probability of acceptance.

Specifies how often to print the number of the current iteration.



ifm.missing. MCMC 21

Value
z.chain nsite X nyear x niter array sampled from the posterior distribution of occupancy
in each year (if detection occurred at a given year and site, then the value is
identically equal to one for all iterations).
muz.chain nyear X niter matrix posterior sample of the proportion of sites occupied in each

year.
muz.missing.chain
nyear X niter matrix posterior sample of the proportion of sites occupied for sites
with missing data.
prop.extinct.chain
Extinction rate for all sites.
prop.colon.chain
Colonization rate.

mupsil.chain  posterior sample of parameter for occupancy in year 1.

e.chain posterior sample of e

x.chain posterior sampmle of x

y.chain posterior sample of y

b.chain posterior sample of b

alpha.chain posterior sample of alpha
Author(s)

Benjamin Risk

References

Risk, B. B., De Valpine, P., Beissinger, S. R. (2011). A robust design formulation of the incidence
function model of metapopulation dynamics applied to two species of rails. Ecology, 92(2), 462-
474.

Examples

## Not run:

data(simulatedifm)
library("coda")

niter=2000

nsite=100

nyear=10

nthin=1

nburnin=1000

## NOTE! The notation used here corresponds to MetalLandSim and differs from Risk et al 2011
## Here

## e (in MetaLandSim) = mu (in Risk et al 2011)

## x = chi

## y = gamma



ifm.missing. MCMC

## b = beta

## alpha = alpha

#H#

# Priors:

# e: [0,1]

# x: [0,5]

# y*2: [0,400]
# b: [0,5]

# alpha: [1,30]

# NOTE: If posteriors are truncated at zero, then estimates may be biased. Rescale
# distances (e.g., divide by 10,000) and/or areas so that parameters are larger.

nmissing = sum(is.na(z.sim.20))

initi=list(z.missing=runif(nmissing),mupsil=runif(1),alpha=runif(1,1,30),
b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))

a = Sys.time()

iml <- ifm.missing.MCMC(niter=niter,init=initl1,z.data = z.sim. 20,
site.distance=sim.distance,site.area=sim.area, sd.prop.mupsil=0.2, sd.prop.alpha=4, sd.prop.bh=0.6,
sd.prop.y=40, sd.prop.e=0.05, sd.prop.x=0.4, nthin=1, print.by=500)
accept.calculate(iml,model="missing"')

Sys.time() - a

init2=list(z.missing = runif(nmissing), mupsil = runif(1), alpha=runif(1,1,30),
b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))

im2 <- ifm.missing.MCMC(niter=niter,init=init2, z.data = z.sim.20, site.distance=sim.distance,
site.area=sim.area, sd.prop.mupsil=0.2, sd.prop.alpha=4, sd.prop.b=0.6, sd.prop.y=40,
sd.prop.e=0.05,sd.prop.x=0.4, nthin=1, print.by=1000)

accept.calculate(im2,model="missing"')

Sys.time() - a

n on n on non

coda.create(iml,”sim_im1" par.list=list("mupsil.chain”,”e.chain”,"x.chain”,"alpha.chain”,
"b.chain”,"y.chain”),niter=niter,nthin=nthin)

coda.create(im2,"sim_im2" ,par.list=1ist("mupsil.chain”,”e.chain”,"x.chain”,"alpha.chain”,
"b.chain”,"y.chain”),niter=niter,nthin=nthin)
coda.sim.iml=read.coda("sim_im1.txt","sim_im1_Index.txt")
coda.sim.im2=read.coda("sim_im2.txt","sim_im2_Index.txt")
coda.sim.im.list=mcmc.list(coda.sim.im1,coda.sim.im2)
sim.im=combine.chains(im1,im2,nburnin=nburnin,nthin=1)

coda.create(sim.im,"sim_im”,par.list=1list("mupsil.chain”,"e.chain”,"x.chain","alpha.chain”,
won

"b.chain”,"y.chain”),niter=(2*niter-2*nburnin),nthin=nthin)
coda.sim.im.long=read.coda("sim_im.txt","sim_im_Index.txt")

summary(coda.sim.im.list)
summary(coda.sim.im.long)

gelman.diag(coda.sim.im.list)

plot(coda.sim.im.list)
plot(coda.sim.im.long)



ifm.naive. MCMC 23

cumuplot(coda.sim.im.long)

# calculate maximum a posteriori estimates:
ml <- as.matrix(sim.im)

e <- calcmode(m1[,11L[111)

x <- calcmode(m1[,1]L[21])

y <- calcmode(m1[,11C[31])

b <- calcmode(m1[,11[[41])

alpha <- calcmode(m1[,11[[511)

## End(Not run)

ifm.naive.MCMC Estimate the naive design incidence function model

Description

Estimates the IFM assuming no false absences and omitting sites for particular years in which data
were missing.

Usage

ifm.naive.MCMC(niter=1000,init,z.data, site.distance, site.area, sd.prop.e=0.2,
sd.prop.x=0.5,sd.prop.y=10, sd.prop.b=0.2, sd.prop.alpha=5,nthin=1,print.by=100)

Arguments

niter Number of iterations in the MCMC chain.

init Named list with values to initialize the chain. E.g.:
init1=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),
e=runif(1,0,1),x=runif(1,0,5)).

alpha: initial value for alpha in dispersal model; described as 1 / average dis-
persal distance

b: initial value for parameter b in colonization model
y: initial value for parameter y in colonization model
e: initial value for e in extinction model

x: initial value for x in extinction model

z.data nsite x nyears matrix. If contains NAs, the corresponding parts are omitted from
the likelihood (the missing data are not estimated).



24

site.distance

site.area

sd.prop.e
sd.prop.x
sd.prop.y
sd.prop.b
sd.prop.alpha

nthin

print.by

Value

e.chain
x.chain
y.chain
b.chain

alpha.chain

ifm.naive. MCMC

nsite x nsite matrix of distances between sites. The tuning parameters in the
example are set for distances less than one, with max distance approximately
0.5.

Vector of length nsite with areas. The tuning parameters in the example are set
for average area approximately equal to 1.

Standard deviation of the proposal distribution for parameter e.
Standard deviation of the proposal distribution for parameter x.
Standard deviation of the proposal distribution for parameter y.
Standard deviation of the proposal distribution for parameter b.
Standard deviation of the proposal distribution for parameter alpha.

If specified, keeps only every nthin”th sample from the MCMC chain. Use to
save memory or when the chain is moving slowly.

Specifies how often to print the number of the current iteration.

posterior sample of e
posterior sampmle of x
posterior sample of y
posterior sample of b

posterior sample of alpha

deviance.chain posterior sample of -2*loglik

Author(s)

Benjamin Risk

References

Risk, B. B., De Valpine, P., Beissinger, S. R. (2011). A robust design formulation of the incidence
function model of metapopulation dynamics applied to two species of rails. Ecology, 92(2), 462-

474.

Examples

## Not run:

data(simulatedifm)

library(”coda")

myniter=5000

nsite=nrow(z.sim)
nyear=ncol(z.sim)

nthin=1
nburnin=1000

## NOTE! The notation used here corresponds to MetalLandSim and differs from Risk et al 2011



ifm.naive. MCMC 25

## Here

## e (in MetalLandSim) = mu
## x = chi

## y = gamma

## b = beta

## alpha = alpha

##

# Priors:

# e: [0,1]

# x: [0,5]

# y*2: [0,400]
# b: [0,5]

# alpha: [1,30]

# NOTE: If posteriors are truncated at zero, then estimates are biased. Rescale
# distances (e.g., divide by 10,000) and/or areas so that parameters are larger.

# Here, we run two chains with random initial values:
initi=list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))

a = Sys.time()

inm1 <- ifm.naive.MCMC(niter=myniter,init=initl1,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,
sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=1000)

accept.calculate(inml,model="naive")

Sys.time() - a

init2=1list(alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1),x=runif(1,0,5))
inm2 <- ifm.naive.MCMC(niter=myniter,init=init2,z.data =
z.sim,site.distance=sim.distance,site.area=sim.area,
sd.prop.alpha=4,sd.prop.b=0.6,sd.prop.y=40,sd.prop.e=0.05,sd.prop.x=0.4,nthin=1,print.by=1000)
accept.calculate(inm2,model="naive"')

Sys.time() - a

n on n on

coda.create(inml,"”sim_inm1"”,par.list=1list("e.chain”,"x.chain”,"alpha.chain"”,
"b.chain”,"y.chain"),niter=myniter,nthin=nthin)
coda.create(inm2,"sim_inm2" par.list=list("e.chain”,"x.chain"”,"alpha.chain”,

non

"b.chain”,"y.chain"),niter=myniter,nthin=nthin)
coda.sim.inml=read.coda(”sim_inm1.txt","sim_inm1_Index.txt")
coda.sim.inm2=read.coda("sim_inm2.txt","sim_inm2_Index.txt")
coda.sim.inm.list=mcmc.list(coda.sim.inml1,coda.sim.inm2)
sim.inm=combine.chains(inm1,inm2,nburnin=nburnin,nthin=1)

"o non

coda.create(sim.inm,"sim_inm"”, par.list=1list("e.chain”,”x.chain"”,"alpha.chain”,
won

"b.chain”,"y.chain"”),niter=(2*myniter-2xnburnin),nthin=nthin)
coda.sim.inm.long=read.coda(”sim_inm.txt","sim_inm_Index.txt")

summary(coda.sim.inm.list)
summary(coda.sim.inm.long)

gelman.diag(coda.sim.inm.list)

plot(coda.sim.inm.list)
plot(coda.sim.inm.long)



26 ifm.robust MCMC

cumuplot(coda.sim.inm.long)

# calculate maximum a posteriori estimates:
ml <- as.matrix(sim.inm)

e <- calcmode(m1[,11L[111)

x <- calcmode(m1[,1]L[21])

y <- calcmode(m1[,11C[31])

b <- calcmode(m1[,11[[41])

alpha <- calcmode(m1[,11[[511)

## End(Not run)

ifm.robust.MCMC Estimate the robust design incidence function model

Description

Estimates the IFM with imperfect detection and missing data.

Usage

ifm.robust.MCMC(niter = 1000, init, det.data, site.distance, site.area, sd.prop.p=0.1,
sd.prop.mupsil = 0.1, sd.prop.e =0.2, sd.prop.x = 0.2, sd.prop.y =0.2, sd.prop.b=0.2,
sd.prop.alpha = 0.2, nthin = 1, nsite.subset = 5, print.by = 100)

Arguments
niter Number of iterations in the MCMC chain.
init Named list with values to initialize the chain. E.g.:

init1=list(z.data=initocc,z.missing=runif(nmissing),p=runif(nyear,
0.1,1),mupsil=runif(1),alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),
e=runif(1,0,1),x=runif(1,0,5)).

z.data: a matrix with nrows = number of sites and ncol = number of years.
Contains NAs for missing values. Contains naive estimates of occupancy else-
where.

z.missing: z.missing: a vector of initial occupancy states for the missing data
with length equal to the number of NAs in z.data (i.e., vectorized across years).
Can use runif(nmissing).

p: vector of length nyears with inital probability of detection in each year

mupsil: probability of initial occupancy in year 1; runif(1) suffices



ifm.robust MCMC

det.data

site.distance

site.area

sd.prop.p

sd.prop.mupsil
sd.prop.e
sd.prop.x
sd.prop.y
sd.prop.b
sd.prop.alpha

nthin

nsite.subset

print.by

Value

z.chain

muz.chain

27

alpha: initial value for alpha in dispersal model; described as 1 / average dis-
persal distance

b: initial value for parameter b in colonization model
y: initial value for parameter y in colonization model
e: initial value for e in extinction model

x: initial value for X in extinction model

Detection data in an array with dimensions nsites X nyears X nvisits. For removal
design, set all values after a detection equal to NA. For missing data in a given
year, set all visits to NA.

nsite x nsite matrix of distances between sites. The tuning parameters in the
example are set for distances less than one, with max distance approximately
0.5. Input data should have a similar scaling.

Vector of length nsite with areas. The tuning parameters in the example are
set for average area approximately equal to 1. Input data should have a similar
scaling.

Scalar equal to the standard deviation of the proposal distribution for probability
of detection, which is a normal distribution centered at current value in the mcmc
chain. The same standard deviation is used for all years.

Standard deviation of the proposal distribution for occupancy in year 1.
Standard deviation of the proposal distribution for parameter e.
Standard deviation of the proposal distribution for parameter x.
Standard deviation of the proposal distribution for parameter y.
Standard deviation of the proposal distribution for parameter b.
Standard deviation of the proposal distribution for parameter alpha.

If specified, keeps only every nthin”th sample from the MCMC chain. Use to
save memory or when the chain is moving slowly.

The number of sites to include in the block sampling, where nsite.subset is equal
to the number of sites updated in the same step. Larger values decrease the
probability of acceptance.

Specifies how often to print the number of the current iteration.

nsite X nyear x niter array sampled from the posterior distribution of occupancy
in each year (if detection occurred at a given year and site, then the value is
identically equal to one for all iterations).

nyear X niter matrix posterior sample of the proportion of sites occupied in each
year.



28 ifm.robust MCMC
muz.missing.chain
nyear X niter matrix posterior sample of the proportion of sites occupied for sites
with missing data.
prop.extinct.chain
Extinction rate for all sites.
prop.colon.chain
Colonization rate.
p.chain nyear x niter sample of detection probabilities.
mupsil.chain  posterior sample of parameter for occupancy in year 1.
e.chain posterior sample of e
x.chain posterior sampmle of x
y.chain posterior sample of y
b.chain posterior sample of b
alpha.chain posterior sample of alpha
latent.deviance.chain
posterior sample of -2*loglik
Author(s)
Benjamin Risk
References
Risk, B. B., De Valpine, P., Beissinger, S. R. (2011). A robust design formulation of the incidence
function model of metapopulation dynamics applied to two species of rails. Ecology, 92(2), 462-
474.
Examples
## Not run:
data(simulatedifm)

library("coda")

# There are more parameters in this model

# and estimating the posterior requires more iterations:

niter=2000

nsite=nrow(z.sim)

nyear=ncol(z.sim)

nthin=1

nburnin=1000

## NOTE! The notation used here corresponds to MetalLandSim and differs from Risk et al 2011
## Here

## e (in MetaLandSim) = mu (in Risk et al 2011)

## x = chi
## y = gamma
## b = beta

## alpha = alpha



ifm.robust MCMC 29

#H#

# Priors:

# e: [0,1]

# x: [0,5]

# y*2: [0,400]
# b: [0,5]

# alpha: [1,30]

# NOTE: If posteriors are truncated at zero, then estimates are biased. Rescale
# distances (e.g., divide by 10,000) and/or areas so that parameters are larger.

# Count number of times a site was never visited in a given year:
nmissing = sum(is.na(z.sim.20))

# Create a dataset with initial guess of true occupancy for sites with visits.
# This dataset should be number of sites by years

# one way of generating these initial values:

initocc <- suppressWarnings(apply(sim.det.20,c(1,2),max,na.rm=TRUE))

# produces warnings but that's okay

initocc[initocc==-Inf]=NA

init1=list(z.data=initocc,z.missing=runif(nmissing),p=runif(nyear,
0.1,1),mupsil=runif(1),alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),e=runif(1,0,1)
,x=runif(1,0,5))

# for diagnosing acceptance rates:
# init1=list(z.data=initocc,z.missing=runif(nmissing),p=runif(nyear,0.1,1),
mupsil=runif(1),alpha=20, b=0.5,y=7.5,e=0.25,x=0.25)

a = Sys.time()

ir1 <- ifm.robust.MCMC(niter=niter,init=init1, det.data = sim.det. 20,
site.distance=sim.distance,site.area=sim.area, sd.prop.p=0.25,sd.prop.mupsil=0.2,
sd.prop.alpha=2, sd.prop.b=0.6, sd.prop.y=20, sd.prop.e=0.1, sd.prop.x=0.4, nthin=1)
accept.calculate(irl,model="robust"')

Sys.time() - a

init2=list(z.data=initocc,z.missing=runif(nmissing),p=runif(nyear,

0.1,1),mupsil=runif(1),alpha=runif(1,1,30), b=runif(1,0,5),y=runif(1,0,20),

e=runif(1,0,1),x=runif(1,0,5))

ir2 <- ifm.robust.MCMC(niter=niter,init=init2, det.data = sim.det. 20,

site.distance=sim.distance,site.area=sim.area, sd.prop.mupsil=0.2, sd.prop.alpha=2, sd.prop.b=0.6,
sd.prop.y=20, sd.prop.e=0.1, sd.prop.x=0.4, sd.prop.p = 0.25, nthin=1)

accept.calculate(ir2,model="robust"')

non non

coda.create(irl,”sim_ir1",par.list=list("mupsil.chain”,”e.chain","x.chain",

n on non

"alpha.chain”,"b.chain”,"y.chain”,"p.chain”),niter=niter,nthin=nthin)

non non

coda.create(ir2,"sim_ir2",par.list=list("mupsil.chain”,”e.chain”,"x.chain”,

non non

"alpha.chain”,"b.chain”,"y.chain”,"p.chain”),niter=niter,nthin=nthin)
coda.sim.irl=read.coda("sim_irl.txt","sim_ir1_Index.txt")
coda.sim.ir2=read.coda("sim_ir2.txt","sim_ir2_Index.txt")
coda.sim.ir.list=mcmc.list(coda.sim.ir1,coda.sim.ir2)

sim.ir=combine.chains(ir1,ir2,nburnin=nburnin,nthin=1)



30 import.shape

non

coda.create(sim.ir,"sim_ir" ,par.list=1list("mupsil.chain”,"e.chain"”,

non non non

"x.chain"”,"alpha.chain”,"b.chain” "y.chain”,"p.chain"),niter=(2*niter-2*nburnin),nthin=nthin)

n on

coda.sim.ir.long=read.coda("sim_ir.txt","sim_ir_Index.txt")

summary(coda.sim.ir.list)
summary (coda.sim.ir.long)

gelman.diag(coda.sim.ir.list)

plot(coda.sim.ir.list)
plot(coda.sim.ir.long)
cumuplot(coda.sim.ir.long)

# calculate maximum a posteriori estimates:
ml <- as.matrix(sim.ir)

e <- calcmode(m1[,1]LL11])

x <- calcmode(m1[,11[[21]1)

y <- calcmode(m1[,11L[31])

b <- calcmode(m1[,11[[411)

alpha <- calcmode(m1[,11[[511)

## End(Not run)

import.shape Import a shapefile

Description

Imports a shapefile, converting it to an object of class *metapopulation’ or ’landscape’.

Usage

import.shape(filename, path, species.col, ID.col, area.col, dispersal,
class.landscape=FALSE)

Arguments

filename Character vector with the shapefile name.

path Character vector with the path to the file.

species.col Character vector with the name of the column (in the shapefile) with the species
occupancy data.

ID.col Character vector with the name of the column (in the shapefile) with the patch
Id.

area.col Character vector with the name of the column (in the shapefile) with the patch
area, in hectares.

dispersal Species mean dispersal ability, in meters.

class.landscape
Should the output belong to the class *metapopulation’ or ’landscape’.



iterate.graph 31

Value

Delivers an object of class *metapopulation’ or ’landscape’.

Note

The shapefile must be in project coordinates (units=meters and hectares).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, convert.graph

Examples

## Not run:

rl1 <- import.shape(filename = "yourshapefile.shp”
,path = "C:/yourpath...”

,species.col= "column with species”

,ID.col="column with patch Id"

,area.col="Column with area”

,dispersal=800#Mean dispersal ability of the species
#(used to generate patch clusters, or components)

)

## End(Not run)

iterate.graph Simulate landscape series occupation

Description

Repeats the process of simulation by simulate_graph as many times as required (argument ’iter’).

Usage

iterate.graph(iter, mapsize, dist_m, areaM, areaSD, Npatch, disp,
span, parl = "none", par2 = NULL, par3 = NULL, par4 = NULL,

par5 = NULL, method = "percentage”, parm, nsew = "none"”,
succ="none", param_df, kern, conn, colnz, ext, betal,

b =1, ¢l =NULL, ¢c2 = NULL, z = NULL, R = NULL, graph)



32 iterate.graph

Arguments

iter Number of repetitions of the simulation.

mapsize Landscape mosaic side length, in meters. To be internally passed to rland. graph.
dist_m Minimum distance between patches (centroid). To be internally passed to rland. graph.
areaM Mean area (in hectares). To be internally passed to rland.graph.

areaSDh SD of the area of patches, in order to give variability to the patches area. To be
internally passed to rland.graph.

Npatch Number of patches (might be impaired by the dist_m, see the "Note" section).
To be internally passed to rland.graph.

disp Species mean dispersal ability, in meters. To be internally passed to rland. graph.

span Number of time steps (e.g. years) to simulate. To be internally passed to
span.graph.

pari One of the following (default 'none’):

* “hab’ percentage of the number of patches to eliminate.

* “dincr’ minimal distance (between centroids of patches) increase over the
simulation (in meters).

* ’darea’ percentage of increase/decrease of the mean area of patches, without
changing SD.

* ’stoc’ simultaneous creation and destruction of patches.

* ’ncsd’ simultaneous creation and destruction of patches to the north and
south of the landscape.

* ’aggr’ correlated habitat destruction.

* ’none’ no change.

To be internally passed to span.graph.

par2 Parameter specifying details for the options in parl: percentage of patches do
delete (if parl = "hab’); distance, in meters (if parl = ’dincr’); percentage of
increase/decrease of the mean area of patches (if parl = ’area’); percentage of
new patches (if parl = ’stoc’); ’northerndness’ of created patches (if parl =
'nesd’); percentage of destroyed patches (if parl = ’aggr’). To be internally
passed to span. graph. Default NULL.

par3 Additional parameter specifying details for the options in parl: percentage of
destroyed patches (if parl = ’stoc’); ’southerndness’ of destroyed patches (if
parl = ’ncsd’); aggregation of destruction (if parl = ’aggr’). Minimum area
for patch deletion, in hectares (if parl="darea’). To be internally passed to
span. graph. Default NULL.

par4 Percentage of created patches (if parl = ’ncsd’). To be internally passed to
span.graph. Default NULL.

parb Percentage of destroyed patches (if parl = ncsd’). To be internally passed to
span.graph. Default NULL.

method One of the following (default ’percentage’): click - individually select the patches
with occurrence of the species by clicking on the map. Use only for individ-
ual landscape simulations. However, this option should not be used with iter-
ate.graph. percentage - percentage of the patches to by occupied by the species.



iterate.graph

parm

nsew

succ

param_df

kern

conn

colnz

ext

betal

cl

c2

graph

Value

33

number - number of patches to be occupied by the species. To be internally
passed to species.graph.

parameter to specify the species occurrence - either percentage of occupied
patches or number of occupied patches, depending on the method chosen. To be
internally passed to species.graph.

'N’,’S’, ’E’, "W’ or none - point of entry of the species in the landscape. By
default set to "none". To be internally passed to species.graph.

Set the preference of the species for patch successional stage: ’none’, ’early’,
’mid’ and ’late’.
Parameter data frame delivered by parameter.estimate, including:

* alpha - Parameter relating extinction with distance.

* y - Parameter y in the colonization probability.

* ¢ - Parameter defining the extinction probability in a patch of unit area.
* x - Parameter scaling extinction risk with patch area.

To be internally passed to simulate_graph.

opl’ or ’op2’. Dispersal kernel. See details in the spom function. To be inter-
nally passed to spom.

opl’ or "op2’. Connectivity function. See details in the spom function. To be
internally passed to spom.

opl’, ’op2’ or "op3’. Colonization function. See details in the spom function.
To be internally passed to spom.

opl’, ’op2’ or *op3’. Extinction function. See details in the spom function. To
be internally passed to spom.

Parameter affecting long distance dispersal probability (if the Kern="0p2’). To
be internally passed to spom.

Parameter scaling emigration with patch area (if conn="op1’ or 'op2’). To be
internally passed to spom. By default set to 1.

Parameter scaling immigration with the focal patch area (if conn="0p2’). To be
internally passed to spom.

Parameter c in the option 3 of the colonization probability (if colnz="op3’). To
be internally passed to spom.

Parameter giving the strength of the Allee effect (if colnz="op3’). To be inter-
nally passed to spom.

Parameter giving the strength of the Rescue effect (if ext="op3”). To be inter-
nally passed to spom.

TRUE/FALSE, to show graphic output.

Returns a list of five data frames with information regarding the values of mean area, mean inter-
patch distance, number of patches occupancy and patch occupancy turnover in each of the iterations,
as well as the mean values and SD.



34 landscape

Author(s)

Frederico Mestre and Fernando Canovas

References

References in the spom function.

See Also

rland.graph, span.graph, species.graph, simulate_graph, spom

Examples

## Not run:
data(param1)

#Example with 2 iterations (ideally >100):

it1 <- iterate.graph(iter = 2, mapsize =10000, dist_m = 10, areaM = 0.05,
areaSD = 0.02, Npatch = 250, disp = 800, span = 100,

par1l = "hab", par2 = 2, par3 = NULL, par4 = NULL,

par5 = NULL, method = "percentage”, parm = 50,

nsew = "none”, succ="none", param_df = paraml,kern = "op1”,

conn = "opl1", colnz = "opl”, ext = "opl1”,

betal = NULL, b = 1, ¢1 = NULL, c2 = NULL, z = NULL,

R = NULL, graph =TRUE)

## End(Not run)

landscape Class ’landscape’

Description

Class representing a landscape graph, as produced by rland. graph, convert.graph and import. shape.

Slots

* mapsize - Side of the landscape in meters.

* minimum.distance - Minimum distance between patches centroids, in meters.
* mean.area - Mean patch area in hectares.

* SD.area - Standard deviation of patches area.

» number.patches - Total number of patches.

* dispersal - Species mean dispersal ability, in meters.

* nodes.characteristics - Data frame with patch (node) information (coordinates, area, radius,
cluster, distance to nearest neighbor and ID).



landscape_change 35

Author(s)

Frederico Mestre and Fernando Canovas

landscape_change Landscape loosing 5% of patches per time step

Description

This dataset is a list of 100 landscapes with a loss of 5% of each patch’s area at each time step. The
first landscape is the sample empty landscape.

Format

List of 100 data frames, that represent the evolution of the landscape during 100 time steps.

Examples

data(landscape_change)

list.stats Returning information on a dynamic landscape list

Description

This function allows the computation of some statistics of the sequence of landscapes obtained from
simulate.graph. Namely: mean area of the patches, standard deviation of the area, mean pairwise
Euclidean distance, total number of patches, species occupation and turnover and mean distance to
nearest habitat patch. It allows the graphical representation of the evolution of these statistics.

Usage

list.stats(sim_list, stat, plotG)

Arguments
sim_list list from function simulate_graph.
stat ’mean_area’, ’sd_area’, 'mean_distance’, 'n_patches’, ’occupation’, "turnover’
and mean_nneigh’.
plotG TRUE/FALSE, plot output.
Value

Returns a vector with the evolution of the specified statistics throughout the list of landscapes repre-
senting the changes in a dynamic landscape and its occupation. A graphical output is also possible.It
is possible to visualize the evolution of mean patch area, standard deviation of the patch area, mean
distance between all pairs of patches, number of patches, species percentage of occupation, patch
turnover (change in occupational state) and mean distance to nearest habitat patch.



36 manage_expansion_sim

Author(s)

Frederico Mestre and Fernando Canovas

See Also

span.graph

Examples

data(rland)
data(landscape_change)
data(param1)

#First, using simulate graph, simulate the occupation on a dynamic landscape
#(output of span.graph):

siml <- simulate_graph( rl=rland, rlist=landscape_change, simulate.start=TRUE,
method="percentage”, parm=50, nsew="none", succ = "none”,

param_df=paraml, kern="op1"”, conn="op1", colnz="op1",

ext="op1", betal=NULL, b=1, c1=NULL, c2=NULL, z=NULL, R=NULL)

#Then evaluate species occupancy through the changes suffered by the landscape:
occ <- list.stats(sim_list=siml, stat="occupation”, plotG=TRUE)

#Checking the percentage of occupation in the 40 first landscapes:

head(occ, 40)

#Output:

#[1] 50.000000 65.000000 90.000000 96.666667 93.333333 91.666667

#[7] 91.666667 90.000000 93.333333 90.000000 85.000000 83.333333

#[13] 85.000000 88.333333 83.333333 86.666667 81.666667 68.333333

#[19] 70.000000 75.000000 80.000000 73.333333 63.333333 56.666667

#[25] 55.000000 51.666667 46.666667 41.666667 38.333333 21.666667

#[31] 13.333333 13.333333 10.000000 6.666667 5.000000 3.389831
#[37] 1.694915 1.694915 ©.000000 0.000000

manage_expansion_sim  Simulate range expansion simulation

Description

This function produces dispersal scenarios, considering different habitat networks properties, eval-
uating the variation in dispersal speed and dispersal maximum distance (of range expansion).



manage_expansion_sim 37

Usage

manage_expansion_sim(mapsize, dist_m, areaM, areaSD, Npatch,percI,
param, b=1, tsteps, iter, variable,var_min,var_max,by)

Arguments
mapsize Landscape mosaic side length, in meters. To be internally passed to rland. graph
dist_m Minimum distance between patches (centroid).To be internally passed to rland. graph
areaM Mean area (in hectares). To be internally passed to rland.graph
areaSD SD of the area of patches, in order to give variability to the patches area. To be
internally passed to rland.graph
Npatch Number of patches. To be internally passed to rland.graph
percl Percentage of patch occupancy in the starting landscape. To be internally passed
to range_expansion
param Parameter data frame delivered by parameter.estimate. To be internally passed
to range_expansion It includes:
* alpha - Parameter relating extinction with distance.
* y - Parameter y in the colonization probability.
* ¢ - Parameter defining the extinction probability in a patch of unit area.
* x - Parameter scaling extinction risk with patch area.
b Parameter scaling emigration with patch area (if conn="op1’ or op2’) in spom.
By default, equal to 1.To be internally passed to range_expansion
tsteps Number of time steps to simulate (e.g. years).
iter Number of iterations of the simulation procedure.
variable Landscape graph characteristic to be varied. One of the following:
e area - Mean patch area (in hectares).
¢ dist - Minimum distance between patches (centroid).
* npatch - Number of patches.
* sizevar - SD of the area of patches.
var_min Minimum value the changing variable can assume (beware of units used in each
case).
var_max Maximum value the changing variable can assume (beware of units used in each
case).
by Rate of variation of the changing variable.
Details

For details regarding the arguments that are to be internally passed to other functions, see the re-
spective functions. Any of the arguments dist_m, areaM, areaSD, Npatch would be unnecessary if
the respective variable is the one to be evaluated (it depends on the parameter variable).



38 manage_expansion_sim

Value

Returns a list of eight data frames. For the first four data frames (NORTH, SOUTH, EAST and
WEST) each data frame’s first column is the name of the variable to be changed. The other two
columns are:

MEAN EXPANSION SPEED
Expansion speed in each simulated scenario. Speed given in km/time step

MAXIMUM EXPANSION DISTANCE
Maximum distance of the expanded range, from an occupied site. Given in km.

The other four data frames have detailed information on the simulations for each of the values of
parameter "variable". The first column has the distance (in km), and each of the following columns
has the time step at which each distance was colonized for each of the simulations.

Warning

This function might be time consuming, and the code is experimental and should be improved in
future versions of MetaLLandSim.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, range_expansion, expansion

Examples
## Not run:

data(paraml)

sim_range <- manage_expansion_sim(mapsize=1000, dist_m=0, areaM, areaSD=0.001,
patch=300,percI=50, param=paraml, b=1,
tsteps=100, iter=100,variable="area"”,var_min=0.01,
var_max=0.6,by=0.1)

## End(Not run)



manage_landscape_sim

39

manage_landscape_sim

Batch landscape simulation

Description

Runs a series of simulations, using iterate.graph, allows changing the simulations parameters in
several sequential simulations.

Usage

manage_landscape_sim(par_df, parameters_spom, full.output)

Arguments

par_df Arguments data frame to be used by iterate.graph (each row of this data frame
is a set of Arguments). The data frame has to have the following columns in this
order (the name of the column is not relevant):

MDST - Minimum inter-patch distance (in meters).

NPATCH - Number of patches in the landscape.

AREA_M - Mean area of the patches (in hectares).

AREA_SD - SD of the patches’ area.

MAPSIZE - Landscape mosaic side length (in meters).

SPAN - Number of time steps in the simulation.

ITER - Number of iterations of the simulation.

PAR1_SPAN - parml for the span.graph function.

PAR2_SPAN - parm2 for the span.graph function.

PAR3_SPAN - parm3 for the span.graph function.

PAR4_SPAN - parm4 for the span.graph function.

PARS_SPAN - parmS5 for the span.graph function.
NSEW_SPECIES - Argument nsew for the species.graph function.
PARM_SPECIES - Argument parm for the species.graph function.
METHOD_SPECIES - Argument method for the species.graph function.
KERN - Argument kern for the spom function.

CONN - Argument conn for the spom function.

COLNZ - Argument colnz for the spom function.

EXT - Argument ext for the spom function.

BETAI1 - Argument betal for the spom function.

B - Argument b for the spom function.

C1 - Argument cl for the spom function.

C2 - Argument c2 for the spom function.

Z - Argument z for the spom function.

R2 - Argument R for the spom function.

DISPERSAL - Species mean dispersal ability (in meters).



40 manage_landscape_sim

* SUCCESSION - Species successional preference (early, mid or late).
parameters_spom
Parameters data frame, as given by parameter.estimate.

full.output Creates a folder named ’output’ to which it saves the full results of the simula-
tions made with the parameters in each row of "par_df’. It will generate as many
objects as the number of rows in this data frame.

Details

For details regarding the arguments see the respective functions.

Value

Returns a data frame with the parameters used for the simulations and the results (mean occupation,
mean number of patches, mean turnover, mean distance and mean area).

Note

Depending on computing capacity, this function can take from several hours to several days to run.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, span.graph, species.graph, spom

Examples

#Setup the parameters for each simulation:

PART_SPAN2 <- rep("”ncsd”,820)#parameter 1 for the span function

PAR2_SPAN2 <- rep(seq(from=0,to=80,by=2), each=20)#parameter 2 for the span function
PAR3_SPAN2 <- rep(seq(from=0,to0=80,by=2),20)#parameter 3 for the span function
PAR4_SPAN2 <- rep(2,820)#parameter 4 for the span function

PAR5_SPAN2 <- rep(2,820)#parameter 5 for the span function

NSEW_SPECIES2 <- rep("none”,820)#where to start populating the landscape
PARM_SPECIES2 <- rep(5,820)#parameter for the species function
METHOD_SPECIES2 <- rep("percentage"”,820)#method for populating the landscape
MAPSIZE2 <- rep(10000,820)#dimension of the landscape

SPAN2 <- rep(100,820)#number of time steps of each simulation

ITER2 <- rep(5,820)#number of iterations of each simulation

NPATCH2 <- rep(800,820)#number of patches

AREA_M2 <- rep(0.45,820)#mean area

AREA_SD2 <- rep(0.2,820)#area sd

MDST2 <- rep(@,820)#minimum distance between

KERN <- rep("op1",820)#kernel

CONN <- rep("op1"”,820)#connectivity function

COLNZ <- rep("op1"”,820)#colonization function

EXT <- rep("op1",820)#extinction function

BETA1 <- rep("NULL",820)



matrix.graph 41

B <- rep(1,820)

C1 <- rep("NULL",820)

C2 <- rep("NULL",820)

Z <- rep("NULL",820)

R2 <- rep("NULL",820)

DISPERSAL2 <- rep(800,820)#mean dispersal ability of the species
SUCC <- rep("early”,820)

#Build parameter data frame (keep the order of the parameters):

simulation <- data.frame(MDST2,NPATCH2,AREA_M2,AREA_SD2,
MAPSIZE2,SPAN2,ITER2,PART_SPAN2,PAR2_SPAN2,PAR3_SPAN2,PAR4_SPAN2,PAR5_SPAN2,
NSEW_SPECIES2,PARM_SPECIES2,METHOD_SPECIES2,KERN, CONN,COLNZ ,EXT,BETA1,B,C1,C2,Z,R2,DISPERSAL2, SUCC)

#Delete vectors used for data frame creation:

rm('PART_SPAN2', 'PAR2_SPAN2', 'PAR3_SPAN2', 'PAR4_SPAN2', 'PAR5_SPAN2',
'"NSEW_SPECIES2', 'PARM_SPECIES2', '"METHOD_SPECIES2', 'MAPSIZE2', 'SPAN2', 'ITER2',
"NPATCH2', 'AREA_M2', 'AREA_SD2', 'MDST2','KERN', 'CONN', 'COLNZ', 'EXT',
'BETA1','B','C1','C2','Z','R2', 'DISPERSAL2', 'SuccC')

## Not run:
data(paraml)
ms2 <- manage_landscape_sim(par_df=simulation,parameters_spom=paraml)

## End(Not run)

matrix.graph Returning a matrix with information on connections between patches

Description

Based on a landscape graph, this function allows the creation of a matrix of Euclidean distances
(straight-line pairwise distance between the margins of all the patches), matrix of topological dis-
tances (minimum number of connections between any two patches) and adjacency matrix (this a
matrix of 0 and 1, showing the adjacency between any two patches, where 0 means that the patches
are not connected and 1 means that the patches are connected).

Usage

matrix.graph(rl, mat)

Arguments
rl Object of class ’landscape’.
mat mat - one of the following:

* ’euc_distance’ - euclidian distance between patches (edge-to-edge).



42 mc_df

 “centr_distance’ - euclidian distance between patches (centroid-to-centroid).

* ’adjacency’ - adjacency matrix, with values d_ij, taking value O if patches i
and j are not connected and value 1 if those patches are connected.

* ’top_matrix’ - topological distance, with values d_ij, where the value d is
the minimum number of connections between the patches i and j. Topolog-
ical distance is defined as the minimum number of links between patches i
and j.

Value

This function returns a matrix (each one of the specified matrices: Euclidean distance, topological
distance and adjacency matrix).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

Examples

data(rland)
#Computing matrix of topological distances:

matrix.graph(rl=rland, mat="top_matrix")

mc_df Modified patch occupancy data of Cabrera vole as a data frame

Description

One season patch occupancy dataset for Microtus cabrerae in SW Portugal (modified). This dataset
is in a format directly used by convert.graph and converted to an object class *metapopulation’.

Usage

data(mc_df)



Metal_andSim-internal

Format

A data frame with 685 observations on the following 5 variables.

ID Patch Id.
x X coordinate.

y Y coordinate.

area Patch area, in hectares.

mc Occupancy state (0/1).

Details

43

To create this sample dataset the occupancy status of patches was scrambled, however the proportion
of occupied patches was kept.

Source

Original field data was obtained during project PERSIST (PTDC/BIA-BEC/105110/2008).

Examples

##To be converted in a object of class "metapopulation”:
#mc1 <- convert.graph(dframe=mc_df,mapsize=8200,dispersal=800)

data(mc_df)

#Check the columns:

head(mc_df)

# 1ID X

#1 1 1248.254 0.
#2 2 1420.857 46.
#3 3 1278.912 52.
#4 4 6370.625 62.
#5 5 1151.337 97.
#6 6 1295.796 104.

y
000

725
629
637
140
839

area mc
0.079
0.781
1.053
0.788
0.079
0.137

N ST R SO Y

MetalLandSim-internal

Internal functions for the MetaLandSim package.

Description

Internal functions for the MetaLandSim package



44 metapopulation

Details

These are not to be called by the user.

Source

Coded by Tal Galili. URL: http://www.r-statistics.com/2012/01/merging-two-data-frame-objects-
while-preserving-the-rows-order/

metapopulation Class 'metapopulation’

Description

Class representing a landscape graph with species’ patch occupancy data, as produced by species. graph,
convert.graph and import. shape.

Slots

* mapsize - Landscape mosaic side length, in meters.

* minimum.distance - Minimum distance between patches centroids, in meters.

* mean.area - Mean patch area in hectares.

* SD.area - Standard deviation of patches area.

* number.patches - Total number of patches.

* dispersal - Species mean dispersal ability, in meters.

* distance.to.neighbours - Data frame with pairwise distance between patches, in meters.

* nodes.characteristics - Data frame with patch (node) information (coordinates, area, radius,
cluster, distance to nearest neighbor, ID and species).

Author(s)

Frederico Mestre and Fernando Canovas



metrics.graph

45

metrics.graph

Computes landscape connectivity metrics

Description

Computes several landscape metrics, mostly derived from graph theory or assuming a graph repre-
sentation of the landscape.

Usage

metrics.graph(rl, metric, dispersal.dist = NULL)

Arguments
rl Object of class ’landscape’.
metric one of the following connectivity metrics:

’NC’ - Number of components.

"LNK’ - Number of links connecting the patches.
"SLC’ - Area (in hectares) of the largest group of patches.
"MSC’- Mean area (in hectares) of the components.
"HI’ - Harary Index.

’NH’ - Normalized Harary Index.

’ORD’ - Landscape (graph) order.

’GD’ - Landscape (graph) diameter.

"CCP’ - Class coincidence probability.

"LCP’ - Landscape coincidence probability.

"ECS’ - Expected cluster size.

"AWF’ - Area-weighted flux.

"IIC” - Integral index of connectivity.

"PC’ - Probability of connectivity.

"ECA’ - Equivalent connected area.

dispersal.dist Maximum dispersal distance for the binary indexes (NC, LNK, SLC, MSC, HI,
NH, ORD, GD, CCP, LCP, ECS, IIC) and mean dispersal distance for the prob-
abilistic indexes (AWF, PC, ECA). When no value is provided the function will
assume the dispersal value provided by the ’landscape’ object.

Details

These metrics assume different types of links between nodes (patches). Some assume probabilistic
connections between nodes (e.g. PC) while others assume binary connections (e.g. NC, SLC,
LNK, IIC). Also, these metrics have several degrees of complexity, from the simpler ones (such as
NC and LNK) to the more complex (such as IIC and PC). Some are purely structural; the same
landscape has the same index whatever the species, while others are measures of functional, where
the connectivity of a given landscape is dependent on the species (dispersal ability). Precaution



46

metrics.graph

must be taken when looking at the outputs produced by some of these metrics (particularly the
simpler, structural ones). Regardless of being simpler to compute, the outputs might be misleading.
This metrics can however be used as exploratory tools.

This function was improved by the collaboration of Dr. Santiago Saura (Universidad Politecnica de
Madrid).

Detail about each of the metrics:

e ’NC’ - Number of components,groups of connected patches, in the landscape graph (Urban
and Keitt, 2001). Patches in the same component are accessible, while patches in different
components are not connected. More connected landscapes have less components. Threshold
dependent (dispersal distance).

* 'LNK’ - Number of links connecting the patches (considering that the maximum distance is
the species dispersal distance and that these graphs are are binary, which means that nodes
are either connected or unconnected) (Pascual-Hortal and Saura, 2006). Higher LNK implies
higher connectivity. Threshold dependent (dispersal distance).

e ’SLC’ - Area (in hectares) of the largest group of patches, or component (Pascual-Hortal and
Saura, 2006). Threshold dependent (dispersal distance).

e "MSC’- Mean area (in hectares) of a group of patches, or component (Pascual-Hortal and
Saura, 2006). Threshold dependent (dispersal distance).

e "HI’ - Harary Index. Originally developed to characterize molecular graphs by Plavsic et al.
(1993) it was later transposed to the landscape context by Ricotta et al. (2000). This index
was considered by Ricotta et al. (2000) to be more effective from a statistical and ecological
perspective. Higher HI implies higher connectivity. Threshold dependent (dispersal distance).

* 'NH’ - Normalization of the Harary Index, facilitates analysis because this normalization
will set the values between 0 and 1 and allow direct comparison of different habitat net-
works(Ricotta et al. 2000). Threshold dependent (dispersal distance).

* ’ORD’ - Order. Index originated in the graph theory and later translated into the landscape
context by Urban and Keitt (2001) provides a simple structural evaluation of the graph: it is
the number of patches of the component (group of patches) with more patches. Threshold
dependent (dispersal distance).

* ’GD’ - Graph diameter. Another index directly derived from graph theory, providing a simple
quantification of the graph structure. The graph diameter is the maximum of all the shortest
paths between the patches of an habitat network. It is computed in meters (euclidean distance),
instead of number of links (such as HI, NH and IIC)(Bunn et al. 2000, Urban and Keith,
2001). Shorter diameter implies faster movement in the habitat network (Minor and Urban,
2008). Threshold dependent (dispersal distance).

* ’CCP’ - Class coincidence probability. It is defined as the probability that two randomly
chosen points within the habitat belong to the same component. Ranges between 0 and 1
(Pascual-Hortal and Saura 2006). Higher CCP implies higher connectivity. Threshold depen-
dent (dispersal distance).

* "LCP’ - Landscape coincidence probability. It is defined as the probability that two randomly
chosen points in the landscape (whether in an habitat patch or not) belong to the same habitat
component. Ranges between 0 and 1 (Pascual-Hortal and Saura 2006). Threshold dependent
(dispersal distance).



metrics.graph 47

Value

* "CPL’ - Characteristic path length. Mean of all the shortest paths between the network nodes

(patches) (Minor and Urban, 2008). The shorter the CPL value the more connected the patches
are. Threshold dependent (dispersal distance).

"ECS’ - Expected cluster size. Mean cluster size of the clusters weighed by area. (O’ Brien et
al.,2006 and Fall et al, 2007). This represents the size of the component in which a randomly
located point in an habitat patch would reside. Although it is informative regarding the area
of the component, it does not provide any ecologically meaningful information regarding the
total area of habitat, as an example: ECS increases with less isolated small components or
patches, although the total habitat decreases(Laita et al. 2011). Threshold dependent (dispersal
distance).

"AWF’ - Area-weighted Flux. Evaluates the flow, weighted by area, between all pairs of
patches (Bunn et al. 2000 and Urban and Keitt 2001). The probability of dispersal between
two patches (pij), required by the AWF formula, was computed using pij=exp(-k*dij), where
k is a constant making pij=0.5 at half the dispersal distance defined by the user. Does not
depend on any distance threshold (probabilistic).

"IIC” - Integral index of connectivity. Index developed specifically for landscapes by Pascual-
Hortal and Saura (2006). It is based on habitat availability and on a binary connection model
(as opposed to a probabilistic). It ranges from O to 1 (higher values indicating more connec-
tivity). Threshold dependent (dispersal distance).

"PC’ - Probability of connectivity. Probability that two points randomly placed in the land-
scape are in habitat patches that are connected, given the number of habitat patches and the
connection probabilities (pij). Similar to IIC, although assuming probabilistic connections
between patches (Saura and Pascual-Hortal 2007). Probability of inter-patch dispersal is com-
puted in the same way as for AWF. Does not depend on any distance threshold (probabilistic).

"ECA’ - The Equivalent Connected Area is the square root of the numerator in PC, not ac-
counting for the total landscape area (AL) (Saura 2011a, 2011b). It is defined as ’...the size
of a single habitat patch (maximally connected) that would provide the same value of the
probability of connectivity than the actual habitat pattern in the landscape’ (Saura 2011a).

Returns the numeric value(s), corresponding to the chosen connectivity metric(s) for a given land-
scape.

Author(s)

Frederico Mestre and Fernando Canovas

References

Bunn, A. G., Urban, D. L., and Keitt, T. H. (2000). Landscape connectivity: a conservation appli-
cation of graph theory. Journal of Environmental Management, 59(4): 265-278.

Fall, A., Fortin, M. J., Manseau, M., and O’ Brien, D. (2007). Spatial graphs: principles and
applications for habitat connectivity. Ecosystems, 10(3): 448-461.

Ivanciuc, O., Balaban, T. S., and Balaban, A. T. (1993). Design of topological indices. Part 4.
Reciprocal distance matrix, related local vertex invariants and topological indices. Journal of Math-
ematical Chemistry, 12(1): 309-318.



48

metrics.graph

Laita, A., Kotiaho, J.S., Monkkonen, M. (2011). Graph-theoretic connectivity measures: what do
they tell us about connectivity? Landscape Ecology, 26: 951-967.

Minor, E. S., and Urban, D. L. (2007). Graph theory as a proxy for spatially explicit population
models in conservation planning. Ecological Applications, 17(6): 1771-1782.

Minor, E. S., and Urban, D. L. (2008). A Graph-Theory Framework for Evaluating Landscape
Connectivity and Conservation Planning. Conservation Biology, 22(2): 297-307.

O’Brien, D., Manseau, M., Fall, A., and Fortin, M. J. (2006). Testing the importance of spatial
configuration of winter habitat for woodland caribou: an application of graph theory. Biological
Conservation, 130(1): 70-83.

Pascual-Hortal, L., and Saura, S. (2006). Comparison and development of new graph-based land-
scape connectivity indices: towards the priorization of habitat patches and corridors for conserva-
tion. Landscape Ecology, 21(7): 959-967.

Plavsic, D., Nikolic, S., Trinajstic, N., and Mihalic, Z. (1993). On the Harary index for the charac-
terization of chemical graphs. Journal of Mathematical Chemistry, 12(1): 235-250.

Ricotta, C., Stanisci, A., Avena, G. C., and Blasi, C. (2000). Quantifying the network connectivity
of landscape mosaics: a graph-theoretical approach. Community Ecology, 1(1): 89-94.

Saura, S., and Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity
in landscape conservation planning: comparison with existing indices and application to a case
study. Landscape and Urban Planning, 83(2): 91-103.

Saura, S., Estreguil, C., Mouton, C. & Rodriguez-Freire, M. (2011a). Network analysis to assess
landscape connectivity trends: application to European forests (1990-2000). Ecological Indicators
11: 407-416.

Saura, S., Gonzalez-Avila, S. & Elena-Rossello, R. (2011b). Evaluacion de los cambios en la
conectividad de los bosques: el indice del area conexa equivalente y su aplicacion a los bosques de
Castilla y Leon. Montes, Revista de Ambito Forestal 106: 15-21

Urban, D., and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology,
82(5): 1205-1218.

See Also

rland.graph

Examples

data(rland)
#Compute the Integral index of connectivity of a landscape:

metrics.graph (rl=rland, metric="AWF")



min_distance 49

min_distance Computes topological distance

Description

Function to compute topological distance between patches. Topological distance is defined as the
minimum number of links between any two patches.

Usage

min_distance(rl)

Arguments

rl Object of class "landscape’.

Value

Returns a matrix with the topological distance between the nodes.

Author(s)

Frederico Mestre and Fernando Canovas.

See Also

rland.graph

Examples

data(rland)

min_distance(rl=rland)

occ.landscape Sample landscape with one simulated occupancy snapshot

Description
Sample random landscape graph, with species occupancy data (occupancy rate - 50%). Simulated
data.

Usage

data(occ.landscape)



50 occ.landscape?2

Format
A list with the following elements:

* mapsize - landscape mosaic side length, in meters.

* minimum.distance - minimum distance between patches centroids.

* mean.area - mean area, in hectares.

* SD.area - standard deviation of the area.

* number.patches - number of patches.

* dispersal - mean dispersal ability of the species.

* distance.to.neighbours - data frame with pairwise distance between patches.

* nodes.characteristics - data frame with the characteristics of each patch.

Examples

data(occ.landscape)

occ.landscape? Sample landscape with 10 simulated occupancy snapshots

Description

Sample species occupancy in a network during 10 time steps. Simulated data.

Usage

data(occ.landscape2)

Format
A list with the following elements:

* mapsize - landscape mosaic side length, in meters.

* minimum.distance - minimum distance between patches centroids.

* mean.area - mean area, in hectares.

* SD.area - standard deviation of the area.

* number.patches - number of patches.

* dispersal - mean dispersal ability of the species.

* distance.to.neighbours - data frame with pairwise distance between patches.

* nodes.characteristics - data frame with the characteristics of each patch, (species 1 to 10 -
occupancy snapshots).

Examples

data(occ.landscape?2)



paraml 51

parami Sample parameter data frame number 1

Description

Sample data frame, as produced by parameter.estimate. These parameters are to be passed to
spom. These are made up parameters, not related to any species.

Usage

data(paraml)

Format
A data frame with 4 rows displaying the four parameters (alpha, x, y, e) to be passed to spom:
* alpha - Parameter relating extinction with distance.
* y - Parameter y in the colonization probability.

* e - Parameter defining the extinction probability in a patch of unit area.

* x - Parameter scaling extinction risk with patch area.

Details

The four parameters are to be passed to spom.

Examples
data(paraml)
paraml
# par_output
#alpha 0.00100000
#x 0.50000000
#y 2.00000000

#e 0.04662827



52 param2

param2 Sample parameter data frame number 2

Description

Sample data frame, as produced by parameter.estimate. These parameters are to be passed to
spom. These are based upon those computed for Cabrerae’s vole in the paper Mestre et al. (2017)
(see references).

Usage

data(paraml)

Format
A data frame with 4 rows displaying the four parameters (alpha, X, y, ) to be passed to spom:
* alpha - Parameter relating extinction with distance.
* y - Parameter y in the colonization probability.

* ¢ - Parameter defining the extinction probability in a patch of unit area.

* x - Parameter scaling extinction risk with patch area.

Details

The four parameters are to be passed to spom.

References

Mestre, F., Risk, B., Mira, A., Beja, P, Pita, R. (2017) <doi:10.1016/j.ecolmodel.2017.06.013>

Examples
data(param2)
param2
# par_output
#alpha 0.00047
#x 0.44000
#y 18.15000

#e 0.00480



parameter.estimate 53

parameter.estimate Estimate parameters

Description

Estimates the parameters of the Stochastic Patch Occupancy Model with the following approaches:
regression of snapshot data (Hanski, 1994); Monte Carlo simulation (Moilanen, 1999) and Bayesian
MCMC on the full dataset (ter Braak and Etienne, 2003).

Usage

parameter.estimate(sp, method, alpha = NULL, nsnap)

Arguments
sp Object of class *metapopulation’ with real patch occupancy data of the focal
species.
method Method to be used in parameter estimation. Available methods:
* Rsnap_1 - Regression of snapshot data, using one snapshot (code based on
Oksanen, 2004).
* Rsnap_x - Regression of snapshot data, using more than one snapshot (code
based on Oksanen, 2004).
* MCsim - Monte Carlo simulation.
* norescue - Bayesian MCMC, not considering Rescue effect.
* rescue - Bayesian MCMC, considering Rescue effect.
alpha Bolean (TRUE/FALSE). Estimate the alpha parameter.
nsnap Number of snapshots considered.
Details

Parameter alpha describes the effect of distance to dispersal (inverse of the average dispersal dis-
tance). Parameter x describes de dependence of the extinction risk on patch size, and consequently
on population dimension. Parameter y scales colonization with connectivity. Parameter e is the
intrinsic extinction rate of local populations, which is the extinction rate not considering immigra-
tion. In the current version the methods "MCsim’, "rescue’ and 'norescue’ only create the files to
be used in the applications already available. Future versions should allow the direct estimation of
parameters without the need for the applications of Moilanen (1999) and Ter Braak and Etienne
(2003).

Regarding the method "MCsim’ the settings file produced (.set) by default has the method Nlr (non-
linear regression) chosen. The user should read the file readme.txt, available with the application,
where a three step estimation process is described. The objective is to produce the priors for the
Monte Carlo simulation to run.

It is highly recommended that the user reads both papers that provide the applications to compute
the methods "MCsim’, 'rescue’ and "norescue’. Several editions to the settings and parameters files
of both applications might be needed in order to customize the estimation process. This function



54 parameter.estimate

only generates the input files with the basic needed structure.

Parameter estimation is not the main purpose of this package. As such, the user can estimate the
parameters using other available software tools and then apply the estimated parameters in the simu-
lations. The function create.parameter.df can be used to create the data frame of the basic spom
parameters. Other required parameters can be directly given as arguments to the iterate.graph,
spom or range_expansion functions.

The application of the Moilanen paper considers the kernel *op1’, connectivity "opl’, colonization
opl” and extinction 'opl’. This SPOM (Stochastic Patch Occupancy Model) is known as Inci-
dence Function Model (Hanski, 1994 and 1999). In the original version of the mode b=1.However
this might be an useful parameter as it scales emigration with patch area. This parameter can be
estimated with field data. Moilanen (1998) obtained the value for this parameter by regressing the
patch area with known population size.

Value

With the methods 'Rsnap_1" and ’Rsnap_x’ eturns a data frame with 4 rows displaying the four
parameters (alpha, x, y, €) to be passed to spom:

* alpha - Parameter relating extinction with distance.

* y - Parameter y in the colonization probability.

* e - Parameter defining the extinction probability in a patch of unit area.

* x - Parameter scaling extinction risk with patch area.
Regarding the methods "MCsim’, ’rescue’ and 'norescue’ it returns the files to be used as input in
the applications. The files will be saved in the working directory. After running the applications, a

data frame can be created in R using the function create.parameter.df. This will return a data
frame with the same structure as the first two methods.

Note

A vignette is available with detailed information about the computation of the parameters using

each method. The method "MCsim’ creates the files (data and settings files) to be used with the ap-

plication available with the paper by Moilanen (1999). The methods 'rescue’ and 'norescue’ create

the files (data, parameters and distance files)to be used with the application available with the paper

by ter Braak and Etienne (2003).

The application by Moilanen is available in http: //www.esapubs.org/archive/ecol/E080/003/.
The application by ter Braak and Etienne is available in http://www.esapubs.org/archive/

ecol/E084/005/suppl-1.htm.

Author(s)

Frederico Mestre and Fernando Canovas

References

Hanski, 1. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63:
151-162.

Hanski, 1. (1999). Metapopulation Ecology. Oxford University Press. 313 pp.


http://www.esapubs.org/archive/ecol/E080/003/
http://www.esapubs.org/archive/ecol/E084/005/suppl-1.htm
http://www.esapubs.org/archive/ecol/E084/005/suppl-1.htm

plotL.graph 55

Hanski, I., Alho, J. and Moilanen, A. (2000) Estimating the parameters of survival and migration
of individuals in metapopulations. Ecology, 81, 239-251.

Moilanen, A. (1998). Long-term dynamics in a metapopulation of the American Pika. The Ameri-
can Naturalist, 152(4), 530-542.

Moilanen, A. (1999). Patch occupancy models of metapopulation dynamics: efficient parameter
estimation using implicit statistical inference. Ecology, 80(3): 1031-1043.

Oksanen, J. (2004). Incidence Function Model in R. url.:. http://cc.oulu.fi/~jarioksa/opetus/openmeta/metafit.pdf.

ter Braak, C. J., & Etienne, R. S. (2003). Improved Bayesian analysis of metapopulation data with
an application to a tree frog metapopulation. Ecology, 84(1): 231-241.

See Also

create.parameter.df, iterate.graph, range_expansion and spom

Examples

data(occ.landscape)
#Using the Regression of snapshot data:

paraml <- parameter.estimate (sp=occ.landscape, method="Rsnap_1")

plotL.graph Plot one landscape of the list created by span.graph

Description

Plots a given landscape of a landscape sequence from span.graph.

Usage
plotL.graph(rl, rlist, nr, species, links, ...)
Arguments
rl Object of class ’landscape’.
rlist List returned by span. graph.
nr index of the landscape to display graphically.
species TRUE/FALSE, TRUE if 11’ is of class metapopulation’ or 'FALSE’ if 1l is of
class ’landscape’.
links TRUE/FALSE, show links between connected patches.

Other arguments.



56 plot_expansion

Value

Graphical display of the landscape.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

plot_graph, span.graph, rland.graph

Examples

data(rland)
data(landscape_change)

plotL.graph(rl=rland, rlist=landscape_change, nr=50, species=FALSE, links=FALSE)

plot_expansion Graphical display of the expansion simulations

Description

Plots the expansion simulations resulting from range_expansion.

Usage

plot_expansion(expansion_object)

Arguments

expansion_object
Output of the function range_expansion.

Value

Graphical display of the range_expansion simulation results.

Author(s)

Frederico Mestre and Fernando Canovas

Examples

data(rg_exp)

plot_expansion(exp = rg_exp)



plot_graph 57

plot_graph Graphical display of the landscape

Description
Plots the landscape graph, with or without the species occupation (respectively lists returned by
species.graph or rland.graph) and with or without the links between patches.

Usage

plot_graph(rl, species, links)

Arguments
rl Object of class landscape’ (species=FALSE) or metapopulation’ (species=TRUE).
species TRUE/FALSE, TRUE if ’x’ is of class 'metapopulation’ or ’'FALSE’ if x is of
class ’landscape’.
links TRUE/FALSE, show links between connected patches.
Value

Graphical display of the landscape.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, species.graph

Examples

data(rland)
data(occ.landscape)

#Without the species occupancy:
plot_graph(rl=rland, species=FALSE, links=FALSE)

#With the species occupancy:
plot_graph(rl=occ.landscape, species=TRUE, links=FALSE)



58 range_expansion

range_expansion Computes a range expansion model

Description
This function returns the expansion probability, from a landscape with a given set of parameters.
This can subsequently be converted in a dispersal model by the function range_raster.

Usage

range_expansion(rl, percl, param, b, tsteps, iter, plot)

Arguments
rl Object of class ’landscape’. Starting landscape for the expansion procedure.
percl Pecentage of patch occupancy in the starting landscape.
param Parameter data frame delivered by parameter.estimate, including:
* alpha - Parameter relating extinction with distance.
* y - Parameter y in the colonization probability.
* e - Parameter defining the extinction probability in a patch of unit area.
* x - Parameter scaling extinction risk with patch area.
b Parameter scaling emigration with patch area (if conn="op1’ or "op2’) in spom.
By default, equal to 1.
tsteps Number of time steps to simulate (e.g. years).
iter Number of iterations of the simulation procedure.
plot Plot results.
Details

The expansion algorithm has been improved, since the paper Mestre et al. (2017) describing the
package was published. Now, instead of the transition between adjacent landscape units being dic-
tated by the occupation of a spurious node (representing the margin through which the expansion
takes place) a somewhat more realistic approach is followed. If, during the metapopulational dy-
namics simulation, any patch located between the landscape unit (LU) margin and a parallel line
placed at a distance equivalent to half of the mean dispersal ability of the species is occupied, than
the algorithm assumes that the species will have the ability to go across to the next LU. In this new
empty LU initial occupation is defined as follows: a new line is placed, with a spacing equivalent
to half the dispersal ability of the species. In the area defined by the margins of the LU and this line
the species will occupy in the same proportion as in the preceding LU.

After version 2.0.0, the output, rather than considering distinct dispersal probabilities in all four car-
dinal directions (as in previous versions), considers the same probability of dispersal from a current
presence in all directions. This does not change the results in any meaningfull way given that these
kinds of simulations require many iterations in which the distinctions between the dispersal to all
four directions was diluted.



range_expansion 59

Value

This function returns a data frame with the proportion of occupations at several distances from
the closest occupied landscape mosaic. After version 2.0.0 the package uses the same dispersal
probability in all directions relative to current presences. the data frame has the following columns:

DISTANCE - Distance (mapsize x number of landscapes).

OCCUPATION - How many times did the landscape at this distance got occupied by the
species (from a total of ’iter’ repetitions).

PROPORTION - Proportion of occupation for the landscape at this distance (OCCUPATION/iter).

TIME STEP - The average time steps at which a given distance is occupied.

Note

Depending on computing power and number of iterations (parameter ’iter’) this function can take
some time to run.

Author(s)

Frederico Mestre and Fernando Canovas

References

Mestre, F., Risk, B., Mira, A., Beja, P, Pita, R. (2017) <doi:10.1016/j.ecolmodel.2017.06.013>

See Also

range_raster

Examples

## Not run:
#Produce a model of range expansion:
#Note: this function should be run with >100 iterations (parameter "iter").

data(rland)
data(param2)

rg_expl <- range_expansion(rl=rland, percI=80, param=param2, b=1, tsteps=100, iter=100)

## End(Not run)



60 range_raster

range_raster Probability of occupancy, dispersal model

Description
This function creates the raster map with the expansion simulation, estimating probability of occu-
pancy, at a given time step, based on species dispersal and landscape configuration. range_raster
uses the output from range_expansion and a raster map with the species current occupancy.
Usage

range_raster(presences.map, re.out, mask.map=NULL, plot=TRUE)

Arguments

presences.map string of the raster file name with species occurrence.

re.out object of class list expansion. Output from range_expansion.

mask.map default NULL. String of the raster file name with the mask. Usually, 1 over the
area where the analyses should be done.

plot default TRUE. Whether It will (TRUE) or will not (FALSE) return a graphics for

the expansion model functions and raster maps with expansion probabilities in
all four cardinal points.

Details

The function automatically reads the raster input files (presences.map and mask.map, if present).
Usually, O for absence and 1 for presence in every square cell over a given resolution. Note
that the projection for the raster layer should be one of those supporting metric units (i.e., lin-
ear scale is equal in all directions around any point such as Transverse Mercator; see https:
//spatialreference.org/).

Then, it computes and fits a sigmoidal function for the expansion probability.

The user might have to manually adjust the starting values of the function fit.sigmoid, (defined
internally in this function) if it has difficulty adjusting to the output of range_expansion.

Value
Produces the spatial realization of the dispersal model, which is saved in the working directory
(named "PROB’).

Author(s)

Frederico Mestre and Fernando Canovas

References

Mestre, F., Risk, B., Mira, A., Beja, P, Pita, R. (2017) <doi:10.1016/j.ecolmodel.2017.06.013>


https://spatialreference.org/
https://spatialreference.org/

remove.species 61

See Also

range_expansion

Examples

## Not run:

#Loading required packages
library(MetalLandSim)

#lLoading the range expansion simulation output and required rasters
data(rg_exp)

presences <- system.file("examples/presences.asc”, package="MetalandSim")
mask <- system.file("examples/landmask.asc"”, package="MetalLandSim")

range.map <- range_raster(presences.map=presences, re.out=rg_exp, mask.map=mask, plot = FALSE)

#Ploting the results with the terra package
plot(range.map)

#Ploting the results with the rasterVis package

require(rasterVis)
levelplot(range.map, contour=TRUE)

## End(Not run)

remove.species Remove the species occupancy from the landscape

Description
This function converts an object of class *metapopulation’ (with the species occupancy) in a object
of class ’landscape’ (without the species occupancy).

Usage

remove.species(sp)

Arguments

sp Object of class "metapopulation’.

Value

Delivers an object of class "landscape’.



62

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, species.graph

Examples

data(occ.landscape)

rl1 <- remove.species(sp=occ.landscape)

removepoints

removepoints Remove a given number of patches from the landscape

Description

Randomly removes a given number of patches from the landscape.

Usage

removepoints(rl, nr)

Arguments
rl Object of class ’landscape’.
nr Number of patches to remove.
Value

Returns an object of class ’landscape’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, addpoints



rg_exp 63
Examples

data(rland)

#Checking the number of patches in the starting landscape:

rland$number.patches

#60

#Removing 10 patches from the landscape:

rl1 <- removepoints(rl=rland, nr=10)

#Checking the number of patches in the output landscape:

r11$number.patches

#50

rg_exp List with range.expansion output

Description

Output of range_expansion. Object of class expansion’.

Usage
data(rg_exp)

Format
Data frame with the probability of occupations at several distances from the closest occupied land-
scape mosaic. The data frame has the following columns:
* DISTANCE - Distance (mapsize x number of landscapes).

* OCCUPATION - How many times did the landscape at this distance got occupied by the
species (from a total of ’iter’ repetitions).

* PROPORTION - Proportion of occupation for the landscape at this distance (OCCUPATION/iter).
* TIME STEP - The average time step during which a given distance is reached.

Examples

data(rg_exp)



64 rland.graph

rland Random landscape

Description

Sample random landscape graph, object of class ’landscape’. It has 60 patches and the landscape
mosaic has 1000 meters of side.

Usage
data(rland)

Format

A list with the following elements:

* mapsize - landscape mosaic side length, in meters.

* minimum.distance - minimum distance between patches centroids).
* mean.area - mean area, in hectares.

* SD.area - standard deviation of the area.

* number.patches - number of patches.

* dispersal - mean dispersal ability of the species.

* nodes.characteristics - data frame with the characteristics of each patch.

Examples

data(rland)

rland.graph Creates random landscape graph

Description

One of the key functions of the package, which allows the creation of random landscapes (repre-
sented as graphs) with two categories: habitat patch and non-habitat matrix. The landscapes can be
different depending on the parameters chosen.

Usage

rland.graph(mapsize, dist_m, areaM, areaSD, Npatch, disp, plotG)



rland.graph

Arguments
mapsize
dist_m
areaM
areaSD
Npatch
disp
plotG

Details

65

Landscape mosaic side length, in meters.

Minimum distance between patches (centroid).

Mean area (in hectares).

SD of the area of patches, in order to give variability to the patches area.
Number of patches (might be impaired by the dist_m, see the "Note" section).
Species mean dispersal ability, in meters.

TRUE/FALSE, to show graphic output.

The dispersal distance, as given by the parameter ’disp’, is used for the computation of some of the
connectivity metrics (function metrics. graph) and for the graphic representation of the landscapes
(in both cases defining the groups of patches, or components). For the simulation of the metapop-
ulational dynamics, the dispersal distance is given through the ’alpha’ parameter (the inverse of
the mean dispersal ability) in the parameter data frame created by create.parameter.df. This
has an important consequence: no thresholding (considering the dispersal ability) is assumed when
simulating the metapopulational dynamics.

Value

Returns a list, with the following elements:

* mapsizeSide of the landscape in meters.

* minimum.distanceMinimum distance between patches centroids, in meters.

* mean.areaMean patch area in hectares.

» SD.areaStandard deviation of patches area.

* number.patchesTotal number of patches.

* dispersalSpecies mean dispersal ability, in meters.

* nodes.characteristicsData frame with patch (node) information (coordinates, area, radius, clus-
ter, distance to nearest neighbour and ID).

An additional field, colour, has only graphical purposes.

Note

If the mean distance between patches centroid and the number of patches are both too high then the
number of patches is lower than the defined by the user.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

span.graph, species.graph



66 sim.det.20

Examples

#Example to create a random landscape graph with 60 patches with a mean area

#of 0.05 hectares.

#The landscape mosaic is a square with 1000 meters side.

#The species mean dispersal ability is 120 meters (in order to connect the patches).
#A plot with the landscape graph is displayed graphically.

r11 <- rland.graph(mapsize=1000, dist_m=80, areaM=0.05, areaSD=0.02, Npatch=60,
disp=120, plotG=TRUE)

sim.area Vector of the areas for each site; here, 100 sites

Description

By loading simulatedifm this object is loaded.

Format

sim.area Vector of the areas for each site; here, 100 sites.

Details

This dataset was created using the code included in Examples, in simulatedifm.

sim.det.20 Array corresponding to nsites x nyears x nvisits

Description

By loading simulatedifm this object is loaded.

Format

sim.det.20 100 x 10 x 3 array corresponding to nsites x nyears x nvisits. Data simulated with
year-specific detection probabilities equal to 0.4,0.6,0.2,0.9,0.3,0.4,0.6,0.2,0.9,0.3.

Details

This dataset was created using the code included in Examples, in simulatedifm.



sim.distance 67

sim.distance Distance matrix between sampling sites (nsite x nsite).

Description

By loading simulatedifm this object is loaded.

Format

sim.distance nsite x nsite distance matrix.

Details

This dataset was created using the code included in Examples, in simulatedifm.

simulatedifm Set of simulated data to use with the IFM parameter estimation func-
tions. The data were generated using the code provided in "details".

Description

This dataset loads several objects:

’sim.area’, "sim.det.20’, ’sim.distance’, ’z.sim’, *z.sim.20’ and ’z.sim.20.fa’.

Format

sim.area Vector of the areas for each site; here, 100 sites.

sim.det.20 100 x 10 x 3 array corresponding to nsites X nyears x nvisits. Data simulated with
year-specific detection probabilities equal to 0.4,0.6,0.2,0.9,0.3,0.4,0.6,0.2,0.9,0.3.

sim.distance nsite x nsite distance matrix.
z.sim nyear x nsite occupancy data generated with perfect detection.

z.sim.20 nyear x nsite occupancy data generated with perfect detection with approximately 20%
of data missing at random.

z.sim.20.fa nyear x nsite occupancy data containing false absences, which can be used to explore
the bias of ifm.missing. MCMC and ifm.naive. MCMC when there is imperfect detection.

Details

These datasets were created using the code included in Examples.



68

Examples

## Not run:

HHHHHHHHHHAHAEHEHHHEHHH R
# Areas for 100 hundred sites were created from a log normal distribution with mean
# and variance equal to the mean and variance of the area of the sites in the

# Sierra Foothills black rail population.

# Universal Transverse Mercator locations (UTMs) for each site were

# simulated from the mean and variance of the UTM Northing and Easting

#

simulatedifim

# Dynamics were simulated for 1000 years. The parameters were chosen such that the metapopulation
# persisted with reasonable turnover. The last 10 years of these data were retained.
# For the detection data sets, we simulated a removal design based on three visits.

mean.log.area=-0.75
sd.log.area=1.33
nsite=100
log.sim.area=rnorm(nsite,mean.log.area,sd.log.area)
= exp(log.sim.area)

sim.

sim.
.site

sim

sim.

sim.
sim.
.site

sim

area

.site
.site

site

site

site
site

.x=rnorm(nsite, 643930,9000)
.y=rnorm(nsite,4340500,10500)

.x.mat.
.x.mat.
.delta.

.y.mat.
.y.mat.
.delta.

col=matrix(rep(sim.site.x,nsite),ncol=nsite,byrow=TRUE)
row=matrix(rep(sim.site.x,nsite),ncol=nsite)
x=(sim.site.x.mat.col-sim.site.x.mat.row)"2

col=matrix(rep(sim.site.y,nsite),ncol=nsite,byrow=TRUE)
row=matrix(rep(sim.site.y,nsite),ncol=nsite)
y=(sim.site.y.mat.col-sim.site.y.mat.row)"2

# scale distance so that alpha = 2 is reasonable:
sim.distance=((sim.site.delta.x+sim.site.delta.y)*0.5)/100000
diag(sim.distance)=99

spom=function(nsite,nyear.sim,alpha,b,y,e,x) {
psi=matrix(rep(NA,nsite*nyear.sim),ncol=nyear.sim)
psil=rbinom(nsite,1,0.8)



simulatedifin

psil,1]=psil
s.i.temp=exp(-alpha*sim.distance)
s.i.temp[s.i.temp==1]=0
e.i=e/sim.area’x

e.ife.i>1]=1

for (i in 2:nyear.sim) {

s.i=s.i.temp

c.i=s.i"2/(s.1i%2+y"2)

e.i.re=e.ix(1-c.1i)
mul=psi[,i-1]*(1-e.i.re)+(1-psi[,i-1])*c.i
psi.temp=rbinom(nsite,1,mul)
psil,i]=psi.temp

nyear.sim=1000
psi.sim=spom(nsite,nyear.sim,alpha=20,b=0.5,y=7.5,e=0.25,x=0.25)

nyear=10

# Data from this dataset conforms to the assumptions of IFM Naive:
z.sim=psi.sim[, (nyear.sim+1-nyear) :nyear.sim]
apply(z.sim,2,mean)

#CREATE DETECTION HISTORY
p=rep(c(0.4,0.6,0.2,0.9,0.3),2)

nrep=3

temp=rep(1,nrep*nsitexnyear)
p.mat=matrix(rep(p,nsite),nrow=nsite,byrow=TRUE)
temp.z.sim=z.sim*p.mat
sim.det=rbinom(temp,1,temp.z.sim)
dim(sim.det)=c(nsite,nyear,nrep)

#ENFORCE REMOVAL DESIGN
for (i in 1:nsite) {
for(t in 1:nyear) {

if (sim.det[i,t,1]==1) sim.det[i,t,2]=2
if (sim.det[i,t,1]1==1) sim.det[i,t,3]=2
if (sim.det[i,t,2]==1) sim.det[i,t,3]=2
}
3

sim.det[sim.det==2]=NA
sim.det.no.missing.values=sim.det

#RANDOMLY CREATE MISSING DATA; 20



70 simulate_graph

# Data are missing when a site was never visited in a given year
unif.mat=runif(nyear*nsite)

z.sim.20=z.sim

z.sim.20[unif.mat<@.2]=NA

sim.det.20=sim.det
sim.det.20[rep(is.na(z.sim.20),nrep)]=NA

#CREATE DATASET WITH MISSING VALUES AND FALSE ABSENCES
#THIS IS TO CHECK HOW IFM.NAIVE AND IFM.MISSING

# LEAD TO BIASES

z.sim.20.fa = apply(sim.det.20,c(1,2),sum,na.rm=TRUE)
z.sim.20.falunif.mat<0.20]=NA

# z.sim: Perfect detection, one visit per year.

# z.sim.20: Perfect detection, but 20

# z.sim.20.fa: 20

#  then collapsed to a single observation per year equal to one if a detection occurred.
# sim.det.20: 20

# The data are arranged in a 3-d array sites x years x visits

save(z.sim,z.sim.20,z.sim.20.fa,sim.det.
20,sim.distance,sim.area,file=paste("SIMULATE_DATA_MDL_CMP" nsite,"”_", nyear,

n on

_",nrep,"”.RData”,sep=""))
## End(Not run)

data(simulatedifm)
1sO)

simulate_graph Simulate species occupancy in one dynamic landscape

Description

Simulates the species’ occupation on a landscape sequence, resorting to the spom function.

Usage

simulate_graph(rl, rlist, simulate.start, method, parm, nsew="none", succ="none",
param_df, kern, conn, colnz, ext, betal, b, c1, c2, z, R)

Arguments
rl Object of class ’landscape’ or *'metapopulation’.
rlist List delivered by span. graph.

simulate.start TRUE (rlis of class 'landscape’) or FALSE (1l is of class "'metapopulation’)



simulate_graph

method

parm

nsew
succ

param_df

kern
conn
colnz
ext

betal

cl

c2

Value

71

One of the following: click - individually select the patches with occurrence of
the species by clicking on the map. Use only for individual landscape sim-
ulations. However, this option should not be used with iterate.graph. per-
centage - percentage of the patches to by occupied by the species. number
- number of patches to be occupied by the species. To be internally passed to
species.graph.

Parameter to specify the species occurrence - either percentage of occupied
patches or number of occupied patches, depending on the method chosen. To be
internally passed to species.graph.

'N’,’S’, ’E’, "W’ or none - point of entry of the species in the landscape. By
default set to "none". To be internally passed to species.graph.

Set the preference of the species for patch successional stage: ’none’, ’early’,
’mid’ and ’late’.
Parameter data frame delivered by parameter.estimate, including:
* alpha - Parameter relating extinction with distance.
* y - Parameter y in the colonization probability.
* ¢ - Parameter defining the extinction probability in a patch of unit area.
* x - Parameter scaling extinction risk with patch area.
To be internally passed to simulate_graph.

opl’ or 'op2’. Dispersal kernel. See details in the spom function. To be inter-
nally passed to spom.

opl” or "op2’. Connectivity function. See details in the spom function. To be
internally passed to spom.

opl’, "op2’ or ’op3’. Colonization function. See details in the spom function.
To be internally passed to spom.

opl’, "op2’ or "op3’. Extinction function. See details in the spom function. To
be internally passed to spom.

Parameter afecting long distance dispersal probability (if the Kern="0p2’). To
be internally passed to spom.

Parameter scaling emigration with patch area (if conn="op1’ or *op2’). To be
internally passed to spom.

Parameter scaling immigration with the focal patch area (if conn="0p2’). To be
internally passed to spom.

Parameter c in the option 3 of the colonization probability (if colnz="op3’). To
be internally passed to spom.

Parameter giving the strength of the Allee effect (if colnz="op3’). To be inter-
nally passed to spom.

Parameter giving the strength of the Rescue effect (if ext="op3’). To be inter-
nally passed to spom.

Returns a list of occupied landscapes, representing the same occupied landscape at different time

steps.



72 span.graph

Author(s)

Frederico Mestre and Fernando Canovas

See Also

spom, span.graph, rland.graph, iterate.graph

Examples

data(rland)
data(landscape_change)
data(param?)

siml <- simulate_graph(rl=rland,
rlist=landscape_change,
simulate.start=TRUE,
method="percentage”,
parm=50,

nsew="none",

succ = "none”,
param_df=paraml,
kern="op1",

conn="op1",
colnz="op1",

ext="op1",

betal=NULL,

b=1,

c1=NULL,

c2=NULL,

z=NULL,

R=NULL

)

span.graph Simulate landscape dynamics over a number of time steps

Description

This function gets an initial landscape graph and gradually applies changes. For a good review and
classification of such changes see Bogaert et al. (2004) (not all described changes have been applied
here). Future versions of the package should include other methods to change the landscape.

Usage

span.graph(rl, span = 100, parl = 'none', par2 = NULL,
par3 = NULL, par4 = NULL, par5 = NULL)



span.graph 73

Arguments
ri Object of class ’landscape’.
span Number of time steps (e.g. years) to simulate.
pari Parameter determining the dynamism type. One of the following (default 'none’):

* ’hab’ percentage of the number of patches to eliminate.

* “dincr’ minimal distance (between centroids of patches) increase over the
simulation (in meters).

* ’darea’ percentage of increase/decrease of the mean area of patches, without
changing SD. Patches with area <1 square meter are deleted.

* ’stoc’ simultaneous creation and destruction of patches with variation in the
number of created and destroyed patches.

* ’stoc2’ simultaneous creation and destruction of patches with the same
percentage of created and destroyed patches derived from the number of
patches of the landscape in the preceding time step.

* 'ncsd’ simultaneous creation and destruction of patches to the north and
south of the landscape.

* ’aggr’ correlated habitat destruction.
* ’none’ no change.

The percentage of patches to be generated or destroyed at each time step is not
fixed (except for ’stoc2’ in which case the percentage of created and destroyed
patches is the same and directly computed from the number of patches in the
preceeding time step, allowing to have landscape dynamism without change in
the number of patches). For example if the landscape at the time step t-1 has 200
patches and the user wishes to set up a destruction rate of 5%, than the number
of destroyed patches is given by a random number obtained from a Poisson
distribution with mean 10 (5% of 200).

par2 Parameter specifying details for the options in parl: percentage of patches do
delete (if parl="hab’); distance, in meters (if parl="dincr’); percentage of in-
crease/decrease (increase with negative sign) of the mean area of patches (if
parl="darea’); percentage of created/destroyed patches (if parl="stoc’); percent-
age of created patches (if parl="stoc2’); 'northerndness’ of created patches (if
parl="ncsd’); percentage of destroyed patches (if parl="aggr’).

par3 Additional parameter specifying details for the options in parl: percentage of
destroyed patches (if parl=’stoc2’); ’southerndness’ of destroyed patches (if
parl="ncsd’); aggregation of destruction (if parl="aggr’). Minimum area for
patch deletion, in hectares (if parl="darea’).

par4 Percentage of created patches (if parl="ncsd’).
parb Percentage of destroyed patches (if parl="ncsd’).
Value

Returns a list of data frames with the nodes characteristics of a given number of landscapes that
suffer a specified change. The fields of these data frames are the same as those from the nodes
characteristics resulting from rland.graph.



74 species.graph

Author(s)

Frederico Mestre and Fernando Canovas

References

Bogaert, J., Ceulemans, R., & Salvador-Van Eysenrode, D. (2004). Decision tree algorithm for
detection of spatial processes in landscape transformation. Environmental Management, 33(1): 62-
73.

See Also

rland.graph, simulate_graph, iterate.graph
Examples
data(rland)
#Simulating a decrease of 5% in the number of patches through 100 time steps:

span1 <- span.graph(rl=rland, span=100, parl1="hab", par2=5, par3=NULL, par4=NULL, par5=NULL)

species.graph Simulate landscape occupation

Description

Given a set of parameters, this function allows to simulate the occupation of an empty landscape,
class "metapopulation”.

Usage
species.graph(rl, method = 'percentage', parm, nsew = 'none', plotG = TRUE)
Arguments
rl Object of class "landscape".
method One of the following (default ’percentage’): click - individually select the patches
with occurrence of the species by clicking on the map. Use only for individual
landscape simulations. percentage - percentage of the patches to be occupied
by the species. number - number of patches to be occupied by the species.
parm Parameter to specify the species occurrence - either percentage of occupied
patches or number of occupied patches, depending on the method chosen.
nsew 'N’,’S’, ’E’, "W’ or none - point of entry of the species in the landscape. By

default set to "none".
plotG TRUE/FALSE, to show graphic output.



spom 75

Value
Returns a list, with the following elements:
* mapsize - Landscape mosaic side length, in meters.
* minimum.distance - Minimum distance between patches centroids, in meters.
* mean.area - Mean patch area in hectares.
* SD.area - Standard deviation of patches area.
* number.patches - Total number of patches.
* dispersal - Species mean dispersal ability, in meters.
* distance.to.neighbours - Data frame with pairwise distance between patches, in meters.

* nodes.characteristics - Data frame with patch (node) information (coordinates, area, radius,
cluster, distance to nearest neighbour, ID and species).

An additional field, colour, has only graphical purposes.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, simulate_graph, remove. species
Examples
data(rland)
##Creating a 50% occupation in an empty landscape (using the "landscape” dataset):

spl <- species.graph(rl=rland, method="percentage"”, parm=50, nsew="none", plotG=TRUE)

spom Stochastic Patch Occupancy Model

Description

This function predicts the occupancy status of each patch in a landscape in the time step t+1, based
on the occupancy information on time step t.

Usage

spom(sp, kern, conn, colnz, ext, param_df,
betal = NULL, b = 1, ¢l = NULL, c2 = NULL,
z = NULL, R = NULL, succ="none", max_age=1)



76 spom

Arguments
sp Landscape with species occupancy, object of class *metapopulation’.
kern "opl’ or "op2’. Dispersal kernel. See details.
conn opl’ or "op2’. Connectivity function. See details.
colnz “opl’, "op2’ or "op3’. Colonization function. See details.
ext opl’, "op2’ or op3’. Extinction function. See details.
param_df Parameter data frame delivered by parameter.estimate, including:
* alpha - Parameter relating extinction with distance.
* y - Parameter y in the colonization probability.
* ¢ - Parameter defining the extinction probability in a patch of unit area.
* x - Parameter scaling extinction risk with patch area.
betal Parameter affecting long distance dispersal probability (if the Kern="0p2’).
b Parameter scaling emigration with patch area (if conn="op1’ or op2’). By de-
fault set to 1.
cl Parameter scaling immigration with the focal patch area (if conn="0p2’).
c2 Parameter c in the option 3 of the colonization probability (if colnz="op3’).
z Parameter giving the strength of the Allee effect (if colnz="op3’).
R Parameter giving the strength of the Rescue effect (if ext="op3’).
succ Set the preference of the species for patch successional stage: 'none’, ’early’,
’mid’ and ’late’.
max_age Default value set to 1. This argument should not be changed by the user. It is
used only when the function runs inside others.
Details

In order to visualize which parameter combination is valid for each option, please refer to the
following table (alpha, x, y and e are delivered by parameter.estimate, as a data frame):

parameter kern_1 kern_2 conn_l1 conn_2 colnz_1 colnz 2 «colnz_3 ext 1 ext 2
alpha X X

X X X

y X X

e X X
betal X

b X

cl X

c2 X

z X

R

A Stochastic Patch Occupancy Model (SPOM) is a type of model which models the occupancy
status of the species on habitat patches as a Markov chain (Moilanen, 2004). These models are a

ext 3



spom 77

good compromise between capturing sufficient biological detail and being easy to parametrize with
occupancy data. With SPOMs it is possible to predict the probability of extinction or colonization
of every patch in a landscape, given the current occupancy state of all the patches (Etienne et al.
2004).

Dispersal Kernel
Option 1 (Hanski, 1994 and 1999)

D(D;j, o) = exp(—a.d;j)

Option 2 (Shaw, 1995)
1

D Diﬁaaﬁ = 3
(D ) 1+oz.dfj

where dij is the distance between patches i and j.

* Option 1 - Negative exponential. Earlier studies (until the end of the 1990) frequently used
this type of thin-tailed kernels (Nathan et al. 2012).

* Option 2 - Fat-tailed kernel. The shape of the dispersal kernel is highly significant only when
the metapopulation consists of several moderately small patch clusters, which are relatively
far from each other. In this kind of a system, a patch cluster may go extinct, and long-distance
dispersal will be important in determining the recolonization probability of the empty cluster
(Shaw, 1995 and Moilanen, 2004). This type of fat-tailed kernels has become more frequent
in recent works (Nathan et al. 2012). For

f=2
this is the Cauchy distribution.

Connectivity
Option 1 (Moilanen, 2004)
S,‘ = ij.D(dij, Oz)A?

Option 2 (Moilanen and Nieminen, 2002)

where Ai and Aj are the areas of patches i(focal patch) and j(other patches), respectively; dij is the
distance between patches i and j and pj is the occupation status (0/1) of patch j

* Option 1 - In the version of Hanski (1994), de kernel is the negative exponential (option 1)
and b is set to 1. In this more flexible version, the parameter b scales emigration with patch
area (Moilanen, 2004).

* Option 2 - In Moilanen & Nieminen (2002) the kernel is the negative exponential (option 1).
This metric considers the value of the focal patch’s area, which was found to provide better
results by Moilanen & Nieminen (2002), being less sensitive to errors in the estimation of a.
Parameters b and c scale, respectively emigration and immigration, as a function of patch area
(focal patch in the case of ¢). See 'note’.



78

spom

Colonization function
Option 1 (Hanski, 1994, 1999)
S7
R
Option 2 (Moilanen, 2004)
Ci =1— exp(—y.5)

Option 3 (Ovaskainen, 2002)

where Si is connectivity.

* Option 1 - It’s the first version of the colonization probability, it includes Allee effect (however
the strength of this effect cannot be modified) Hanski (1994). Colonization probability is
defined as a sigmoid function of the connectivity of patch i.

* Option 2 - This option assumes that immigrating individuals originate colonization events
independently, therefore, with no Allee effect. Adequate for species (plants) with passive
dispersal (Moilanen, 2004).

* Option 3 - Here, as in option 1, the colonization probability is defined as a sigmoid function of
the connectivity of patch i, and the user can change the strength of the Allee effect, by changing
the parameter z, with values >1 reflecting the presence of this effect (Ovaskainen, 2002). In
the original version of the IFM (option 1) Hanski (1994) assumed a relatively strong Allee
effect (z=2). Parameter ¢ describes the species ability to colonize (Ovaskainen & Hanski,
2001 and Ovaskainen ,2002).

Extinction function

Option 1 (Hanski, 1994, 1999)
e
E; =min(l, —
; = min( AZ)

Option 2 (Hanski and Ovaskainen, 2000 and Ovaskainen and Hanski, 2002)

—e
E;=1-— —
Option 3 (Ovaskainen, 2002)

e

AF’

K2

(1-C)f]

E; = min[l,

where Ai is the area of the focal patch and Ci is the colonization probability of the focal patch.

* Option 1 - Original version developed by Hanski (1994).

* Option 2 - Used e.g. in the spatially realistic Levins model (Hanski & Ovaskainen, 2000 and
Ovaskainen & Hanski, 2002). Parameter x scales extinction probability with patch area.

* Option 3 - Same as option 1, but considering the Rescue effect (with the strength of this
effect being given by R). If R=0 there is no Rescue effect, however, if R>0, the Rescue effect
grows exponentially with the probability of not being colonized. In the original version of this
function Hanski (1994) assumed R=1.



spom 79

Here, parameter x defines de degree to which the extinction rate is sensitive to the patch area. If
x>1, with the increase of Ai the extinction rate rapidly approximates zero. The populations in the
larger patches becomes almost impossible to extinguish. However, if x is small the extinction rate
decreases slower with increasing Ai.

Value

Delivers a list similar to the class *metapopulation’ but with two additional columns in the data
frame nodes.characteristics: ’species2’(which is the occupation in the next time step) and turn
(turnover between occupancies).

Author(s)

Frederico Mestre and Fernando Canovas

References

Etienne, R. S., ter Braak, C. J., and Vos, C. C. (2004). Application of stochastic patch occupancy
models to real metapopulations. In Hanski, I. and Gaggiotti, O.E. (Eds.) Ecology, Genetics, and
Evolution of Metapopulations. Elsevier Academic Press. 696 pp.

Hanski, 1. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63:
151-162.

Hanski, 1. (1999). Metapopulation Ecology. Oxford University Press. 313 pp.

Hanski, 1., Alho, J., and Moilanen, A. (2000). Estimating the parameters of survival and migration
of individuals in metapopulations. Ecology, 81(1), 239-251.

Hanski, I., and Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape.
Nature, 404: 755-758.

Moilanen, A. (2004). SPOMSIM: software for stochastic patch occupancy models of metapopula-
tion dynamics. Ecological Modelling, 179(4), 533-550.

Moilanen, A., and Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology,
83(4): 1131-1145.

Nathan, R., Klein, E., Robledo-Arnuncio, J.J. and Revilla, E. (2012). Dispersal kernels: review. in
Clobert, J., Baguette, M., Benton, T. and Bullock, J.M. (Eds.) Dispersal Ecology and Evolution.
Oxford University Press. Oxford, UK. 462 pp.

Ovaskainen, O. (2002). The effective size of a metapopulation living in a heterogeneous patch
network. The American Naturalist: 160(5), 612-628.

Ovaskainen, O. and Hanski, I. (2001). Spatially structured metapopulation models: global and local
assessment of metapopulation capacity. Theoretical Population Biology, 60(4), 281-302.

Ovaskainen, O., and Hanski, I. (2002). Transient dynamics in metapopulation response to pertur-
bation. Theoretical Population Biology, 61(3): 285-295.

Ovaskainen, O. and Hanski, 1. (2004). Metapopulation dynamics in highly fragmented landscapes.
In Hanski, I. & Gaggiotti, O.E. (Eds.) Ecology, Genetics, and Evolution of Metapopulations. Else-
vier Academic Press. 696 pp.

Shaw, M.W., (1995). Simulation of population expansion and spatial pattern when individual dis-
persal distributions do not decline exponentially with distance. Proc. R. Soc. London B: 259,
243-248.



80

See Also

species.graph, simulate_graph, iterate.graph

Examples

data(occ.landscape)
data(paraml)

#Simulating the occupation in the next time step:

landscape2 <- spom(sp=occ.landscape,

kern="op1",
conn="op1",
colnz="op1",
ext="op1",
param_df=paraml,
betal=NULL,

b=1,

cl=
c2=

NULL,
NULL,

z=NULL,
R=NULL,
succ="none"

)

summary_landscape

#The output has two new columns in the data frame nodes.characteristics: species2
#(occupation in the next time step) and turn (turnover - change of occupation status,

#1 if changed and @ if not).:
head(landscape2)

# X y areas
#1 718.5011 228.47190 0.05741039
#2 494.3624 73.29165 0.08755563
#3 809.2326 245.90046 0.09384384
#4 638.8057 149.35122 0.08858989
#5 874.2010 19.78104 0.03621793
#6 605.3937 70.34944 0.03066018
# 1ID species species2 turn

#1 1 1 1 ]

#2 2 Q 1 1

#3 3 1 1 0

#4 4 0 [} 0

#5 5 Q 1 1

#6 6 1 1 0

13.
16.
17.
16.
10.
.878987

radius cluster
518245
694257
283351
792569

1
1
1
1
737097 1
1

colour nneighbour
#FFQQOOFF  91.80452
#FFQQOOFF  98.98432
#FFQQOOFF 166.68205
#FFQQOOFF  82.60306
#FFQQOOFF  92.26625
#FFQQOOFF 131.22261

summary_landscape

Summarize ’landscape’ class objects




summary_landscape 81

Description

This function summarizes a landscape class object.

Usage

summary_landscape(object)

Arguments

object Object of class 1andscape

Details

This function can be used to retrieve basic information on the objects of class "landscape’.

Value
Returns a data frame with the following information on a landscape class object:

landscape area (hectares)

Landscape mosaic area, in hectares
number of patches

Number of patches in the landscape
mean patch area (hectares)

Mean patch area, in hectares

SD patch area SD of the patch area
mean distance amongst patches (meters)

Mean inter-patch distance, in meters
minimum distance amongst patches (meters)

Minimum inter-patch distance, in meters

Note

The minimum distance between patches is different from that given in the object of class ’land-
scape’, in the slot 'minimum.distance’. This is because this output is computed from the landscape
structure and the one in the ’landscape’ object was the parameter used to built the landscape. The
minimum inter-patch distance given as a parameter in the function rland.graph will consider dis-
tance between patch centroids. The minimum inter-patch distance returned here considers the edge-
to-edge distance, so this might be smaller that the parameter of rland.graph. In order to see the
difference between centroid-to-centroid and edge-to-edge inter-patch distance compute both using
the matrix.graph function (methods are ’centr_distance’ and ’euc_distance’, respectively).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, landscape, matrix.graph



82 summary_metapopulation

Examples

data(rland)

summary_landscape(object=rland)

# Value
#landscape area (hectares) 100.000
#number of patches 60.000
#mean patch area (hectares) 0.061
#SD patch area 0.041
#mean distance amongst patches (meters) 528.345

#minimum distance amongst patches (meters) 51.780

summary_metapopulation
Summarize 'metapopulation’ class objects

Description

This function summarizes a metapopulation class object.

Usage

summary_metapopulation(object)

Arguments

object Object of class metapopulation

Details

This function can be used to retrieve basic information on the objects of class *'metapopulation’.

Value

Returns a data frame with the following information on a metapopulation class object:

landscape area (hectares)

Landscape mosaic area, in hectares
number of patches

Number of patches in the landscape
mean patch area (hectares)

Mean patch area, in hectares
SD patch area SD of the patch area
mean distance amongst patches (meters)

Mean inter-patch distance, in meters



summary_metapopulation

minimum distance amongst patches (meters)

Minimum inter-patch distance, in meters

species occurrence - snapshot

83

Occupation data of the focal species, numbered from 1 to the number of snap-

shots

Note

The minimum distance between patches is different from that given in the object of class ’land-
scape’, in the slot "'minimum.distance’. This is because this output is computed from the landscape
structure and the one in the ’landscape’ object was the parameter used to built the landscape. The
minimum inter-patch distance given as a parameter in the function rland. graph will consider dis-
tance between patch centroids. The minimum inter-patch distance returned here considers the edge-
to-edge distance, so this might be smaller that the parameter of rland.graph. In order to see the
difference between centroid-to-centroid and edge-to-edge inter-patch distance compute both using

the matrix.graph function (methods are ’centr_distance’ and ’euc_distance’, respectively).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

species.graph, metapopulation, matrix.graph

Examples

data(occ. landscape)
data(occ.landscape?2)

summary_metapopulation(object=occ.landscape)

# Value
#landscape area (hectares) 100.000
#number of patches 60.000
#mean patch area (hectares) 0.061
#SD patch area 0.041
#mean distance amongst patches (meters) 528.345
#minimum distance amongst patches (meters) 51.780@
#species occurrence - snapshot 1 50.000

summary_metapopulation(object=occ.landscape?2)

# Value
#landscape area (hectares) 100.000
#number of patches 60.000
#mean patch area (hectares) 0.069
#SD patch area 0.039
#mean distance amongst patches (meters) 521.717

#minimum distance amongst patches (meters) 45.

905



84

#species occurrence
#species occurrence
#species occurrence
#species occurrence
#species occurrence
#species occurrence
#species occurrence
#species occurrence
#species occurrence
#species occurrence

snapshot
snapshot
shapshot
snapshot
snapshot
shapshot
snapshot
snapshot
shapshot
snapshot

- O 0O NO Ul h WN =

50.
58.
.667
.667
58.
60.
70.
68.
68.
56.

61
61

000
333

333
000
000
333
333
667

z.sim.20

z.sim

Occupancy data generated with perfect detection.

Description

By loading simulatedifm this object is loaded.

Format

z.sim nyear x nsite occupancy data generated with perfect detection.

Details

This dataset was created using the code included in Examples, in simulatedifm.

z.sim. 20

Occupancy data generated with perfect detection with approximately

20% of data missing at random.

Description

By loading simulatedifm this object is loaded.

Format

z.sim.20 nyear x nsite occupancy data generated with perfect detection with approximately 20%
of data missing at random.

Details

This dataset was created using the code included in Examples, in simulatedifm.



z.sim.20.fa 85

z.sim.20.fa Occupancy data containing false absences

Description

By loading simulatedifm this object is loaded.

Format
z.sim.20.fa nyear x nsite occupancy data containing false absences, which can be used to explore
the bias of ifm.missing. MCMC and ifm.naive. MCMC when there is imperfect detection.
Details

This dataset was created using the code included in Examples, in simulatedifm.



Index

+ datasets
cabrera, 7
landscape_change, 35
mc_df, 42
occ.landscape, 49
occ.landscape2, 50
paraml, 51
param2, 52
rg_exp, 63
rland, 64
sim.area, 66
sim.det.20, 66
sim.distance, 67
simulatedifm, 67
z.sim, 84
z.sim. 20, 84
z.sim.20.fa, 85

* ifm
ifm.missing.MCMC, 19
ifm.naive .MCMC, 23
ifm.robust.MCMC, 26
sim.area, 66
sim.det. 20, 66
sim.distance, 67
simulatedifm, 67
z.sim, 84
z.sim. 20, 84
z.sim.20.fa, 85

* metapopulation
ifm.missing.MCMC, 19
ifm.naive.MCMC, 23
ifm.robust.MCMC, 26

* missing
ifm.robust.MCMC, 26

* occupancy
ifm.missing.MCMC, 19
ifm.robust.MCMC, 26

* robust
ifm.robust.MCMC, 26

86

accept.calculate, 5
addpoints, 6, 62

cabrera, 7

calcmode, 8

cluster.graph, 9

cluster.id, 10

coda.create, 11
combine.chains, 13
components.graph, 14
convert.graph, 7, 15, 31, 34, 42, 44
create.parameter.df, 16, 54, 55, 65

edge.graph, 17
expansion, 3, 18, 38
extract.graph, 18

ifm.missing.MCMC, 19
ifm.naive.MCMC, 23

ifm.robust.MCMC, 26
import.shape, 7, 30, 34, 44
iterate.graph, 3, 31, 39, 54, 55, 72, 74, 80

landscape, 3, 34, 81
landscape_change, 35
list.stats, 35

manage_expansion_sim, 4, 36
manage_landscape_sim, 3, 39
matrix.graph, 41, 81, 83

mc_df, 42

merge_order (MetaLandSim-internal), 43
MetalandSim (MetalLandSim-package), 3
MetalLandSim-internal, 43
MetalLandSim-package, 3
metapopulation, 44, 82, 83
metrics.graph, 45, 65
min_distance, 49

occ. landscape, 49
occ.landscape2, 50



INDEX

paraml, 51

param2, 52

parameter.estimate, 16, 17, 33, 37,40, 51,
52,53,58,71,76

plot_expansion, 56

plot_graph, 56, 57

plotlL.graph, 55

range_expansion, 3, 4, 18, 37, 38, 54-56, 58,
60, 61, 63

range_raster, 3, 4, 58, 59, 60

remove.species, 61, 75

removepoints, 7, 62

rg_exp, 63

rland, 64

rland.graph, 7,9, 11, 14, 18, 19, 31, 32, 34,
37, 38,40, 42, 48, 49, 56, 57, 62, 64,
72-75,81, 83

sim.area, 66

sim.det. 20, 66

sim.distance, 67

simulate_graph, 31, 33-35,70, 71, 74, 75, 80

simulatedifm, 67

span.graph, 18, 19, 32, 34, 36, 40, 55, 56, 65,
70, 72,72

species.graph, 7, 15, 33, 34, 40, 44, 57, 62,
65,71,74, 80, 83

spom, 33, 34, 37,40, 51, 52, 54, 55, 58, 70-72,
75

summary_landscape, 80

summary_metapopulation, 82

z.sim, 84
z.sim. 20, 84
z.sim.20.fa, 85

87



	MetaLandSim-package
	accept.calculate
	addpoints
	cabrera
	calcmode
	cluster.graph
	cluster.id
	coda.create
	combine.chains
	components.graph
	convert.graph
	create.parameter.df
	edge.graph
	expansion
	extract.graph
	ifm.missing.MCMC
	ifm.naive.MCMC
	ifm.robust.MCMC
	import.shape
	iterate.graph
	landscape
	landscape_change
	list.stats
	manage_expansion_sim
	manage_landscape_sim
	matrix.graph
	mc_df
	MetaLandSim-internal
	metapopulation
	metrics.graph
	min_distance
	occ.landscape
	occ.landscape2
	param1
	param2
	parameter.estimate
	plotL.graph
	plot_expansion
	plot_graph
	range_expansion
	range_raster
	remove.species
	removepoints
	rg_exp
	rland
	rland.graph
	sim.area
	sim.det.20
	sim.distance
	simulatedifm
	simulate_graph
	span.graph
	species.graph
	spom
	summary_landscape
	summary_metapopulation
	z.sim
	z.sim.20
	z.sim.20.fa
	Index

