Package ‘NUSS’

January 20, 2025
Title Mixed N-Grams and Unigram Sequence Segmentation
Version 0.1.0

Description Segmentation of short text sequences - like hashtags - into the
separated words sequence, done with the use of dictionary, which may be
built on custom corpus of texts. Unigram dictionary is used to find most
probable sequence, and n-grams approach is used to determine possible
segmentation given the text corpus.

License GPL (>=3)
URL https://github.com/theogrost/NUSS

BugReports https://github.com/theogrost/NUSS/issues
Depends R (>=3.5)

Imports dplyr, magrittr, Rcpp, stringr, text2vec, textclean, utils
Suggests testthat (>= 3.0.0)

LinkingTo BH, Rcpp

Config/testthat/edition 3

Encoding UTF-8

Language en

LazyData true

RoxygenNote 7.3.1

NeedsCompilation yes

Author Oskar Kosch [aut, cre] (<https://orcid.org/0000-0003-2697-1393>)
Maintainer Oskar Kosch <contact@oskarkosch.com>
Repository CRAN

Date/Publication 2024-08-19 08:20:16 UTC

https://github.com/theogrost/NUSS
https://github.com/theogrost/NUSS/issues
https://orcid.org/0000-0003-2697-1393

2 igrepl

Contents
base_dictionary e e e e e e 2
1grepl . . o e e e 2
ngrams_dictionary L. L e e e e 3
ngrams_segmentation et e e e e e 4
DUSS « . v o e 6
unigram_dictionary Lol e e e e e e e 7
unigram_sequence_segmentation Lo 7

Index 10

base_dictionary Base dictionary with unigrams
Description

Data contains English unigrams, with their replacements, points and ids.

Usage

data(base_dictionary)

Format

A data.frame with four columns: to_search, to_replace, points, id.

References

Created based on Wikipedia unigrams.

Examples

data(base_dictionary)

igrepl Perform inverse regex search (C++)

Description

This function takes character vector patterns with regex patterns (or fixed strings), and searches
for match in the x string. It is inverse in the meaning, that in grepl single pattern is used against
multiple strings; instead, this function takes multiple patterns to fit on a single string.

Usage
igrepl(patterns, x, fixed = FALSE)

ngrams_dictionary 3

Arguments

patterns a character vector of regex or fixed patterns.

X a string to search for the match.

fixed a logical, indicating whether patterns are fixed strings.
Value

Logical vector of length as patterns with true if pattern was found.

Examples
igrepl(c("today”,"b.*x fox", "jumps over”, "vigorous"),
"The quick brown fox jumps over the lazy dog"”, FALSE)
igrepl(c("today"”, "brown fox", "jumps over”, "vigorous"),

"The quick brown fox jumps over the lazy dog”, TRUE)

ngrams_dictionary Create n-grams dictionary

Description

ngrams_dictionary returns the data.frame containing dictionary for ngrams_segmentation.

Usage
ngrams_dictionary(
texts,
clean = TRUE,

ngram_min = 1,
ngram_max = 5,
points_filter = 1

)
Arguments

texts character vector, these are the texts used to create n-grams dictionary. Case-
sensitive.

clean logical, indicating if the texts should be cleaned before creating n-grams dictio-
nary.

ngram_min numeric, sets the minimum number of words in creating the dictionary.

ngram_max numeric, sets the maximum number of words in creating the dictionary.

points_filter numeric, sets the minimal number of points (occurrences) of an n-gram to be
included in the dictionary.

4 ngrams_segmentation

Value

The output always will be data.frame with 4 columns: 1) to_search, 2) to_replace, 3) id, 4) points.

Examples

texts <- c("this is science”,

"science is #fascinatingthing”,

"this is a scientific approach”,

"science is everywhere”,

"the beauty of science”)
ngrams_dictionary(texts)
ngrams_dictionary(texts,

clean = FALSE)
ngrams_dictionary(texts,

clean = TRUE,

ngram_min = 2,

ngram_max = 2)

ngrams_segmentation Segmenting sequences with n-grams.

Description

ngrams_segmentation segments input sequence into possible segmented text based on n-grams
segmentation approach.

Usage

ngrams_segmentation(
sequences,
ngrams_dictionary,
retrieve = "most-scored”,
simplify = TRUE,
omit_zero = TRUE,

score_formula = "points / words.number * 2"
)
Arguments
sequences character vector, sequence to be segmented (e.g., hashtag) or without it.

ngrams_dictionary
data.frame, containing ids, n-grams to search, words to use for segmentation,
and their points. See details.

retrieve character vector of length 1, with formula to calculate score.

simplify logical, if adjacent numbers should be merged into one, and underscores re-
moved. See simplification section.

ngrams_segmentation 5

omit_zero logical, if words with O points should be omitted from word count. See simpli-
fication section.

score_formula character vector of length 1, with formula to calculate score.

Value

The output always will be data.frame. If retrieve="all"' is used, then the return will include all
possible segmentation of the given sequence.

If retrieve="first-shortest' is used, the first of the shortest segmentations (with respect to the
order of word’s appearance in the dictionary, 1 row).

If retrieve="most-pointed’ is used, segmentation with most total points is returned (1 row).

If retrieve="most-scored"' is used, segmentation with the highest score calculated as

score = points/words.number? (or as specified by the user).

The output is not in the input order. If needed, use lapply

ngrams_dictionary

Dictionary has to be data.frame with four named columns: 1) to_search, 2) to_replace, 3) id, 4)
points.

’to_search’ should be column of type character, containing n-grams to look for. Word case might
be used.

’to_replace’ should be column of type character, containing n-grams that should be used for creating
segmentation vector, if ’to_search’ matches text.

’id’ should be column of type numeric, containing id of unigram.

’points’ should be column of type numeric, containing number of points for the word - the higher,
the better. Unigrams with O points might be removed from the word count with omit_zero argument.
ngrams_dictionary might be created with ngrams_dictionary.

Simplification

Two arguments are possible for simplification:

* simplify - removes spaces between numbers and removes underscores,

* omit_zero - removes ids of 0-pointed unigrams, and omits them in the word count.
By default segmented sequence will be simplified, and numbers and underscores will be re-
moved from word count for score computing, since they are neutral as they are necessary.

Examples

texts <- c("this is science”,
"science is #fascinatingthing”,
"this is a scientific approach”,
"science is everywhere”,
"the beauty of science"”)
ndict <- ngrams_dictionary(texts)
ngrams_segmentation(”thisisscience”, ndict)
ngrams_segmentation("this_is_science”, ndict)
ngrams_segmentation("ThisIsScience”, ndict)

6 nuss

ngrams_segmentation(”"thisisscience”,
ndict,
simplify=FALSE,
omit_zero=FALSE)

nuss Mixed N-Grams and Unigram Sequence Segmentation (NUSS) func-
tion

Description
nuss returns the data.frame containing hashtag, its segmented version, ids of dictionary words,
number of words it have taken to segment the hashtag, total number of points, and computed score.
Usage

nuss(sequences, texts)

Arguments
sequences character vector, sequence to be segmented, (e.g., hashtag) or without it. Case-
insensitive.
texts character vector, these are the texts used to create n-grams and unigram dictio-
nary. Case-insensitive.
Details

This function is an arbitrary combination of ngrams_dictionary, unigram_dictionary, ngrams_segmentation,
unigram_sequence_segmentation, created to easily segment short texts based on text corpus.

Value

The output always will be data.frame with sequences, that were
The output is not in the input order. If needed, use lapply

Examples

texts <- c("this is science”,
"science is #fascinatingthing”,
"this is a scientific approach”,
"science is everywhere”,
"the beauty of science”)
nuss(c("thisisscience”, "scienceisscience”), texts)

unigram_dictionary 7

unigram_dictionary Create unigram dictionary

Description

unigram_dictionary returns the data.frame containing dictionary for unigram_sequence_segmentation.

Usage

unigram_dictionary(texts, points_filter = 1)

Arguments

texts character vector, these are the texts used to create ngrams dictionary. Case-
sensitive.

points_filter numeric, sets the minimal number of points (occurrences) of an unigram to be
included in the dictionary.

Value

The output always will be data.frame with 4 columns: 1) to_search, 2) to_replace, 3) id, 4) points.

Examples

texts <- c("this is science”,
"science is #fascinatingthing”,
"this is a scientific approach”,
"science is everywhere”,
"the beauty of science"”)
unigram_dictionary(texts)

unigram_sequence_segmentation
Segmenting sequences with unigrams

Description

unigram_sequence_segmentation segments input sequence into possible segmented text based
on unigram sequence segmentation approach.

8 unigram_sequence_segmentation

Usage
unigram_sequence_segmentation(
sequences,
unigram_dictionary = NUSS::base_dictionary,
retrieve = "most-scored”,

simplify = TRUE,
omit_zero = TRUE,

score_formula = "points / words.number * 2"
)
Arguments
sequences character vector, sequence to be segmented (e.g., hashtag). Case-sensitive.

unigram_dictionary
data.frame, containing ids, words to search, words to use for segmentation, and
their points. See details.

retrieve character vector of length 1, the type of the result data.frame to be returned:
“all’, *first-shortest’, most-pointed” or *most-scored’. See value section.

simplify logical, if adjacent numbers should be merged into one, and underscores re-
moved. See simplification section.

omit_zero logical, if words with O points should be omitted from word count. See simpli-
fication section.

score_formula character vector of length 1, with formula to calculate score.

Details

This function is not intended for long strings segmentation - 70 characters should be considered too
long and may take hours to complete. 15 characters takes about 0.02s, 30 characters about 0.03s.

Value

The output always will be data.frame. If retrieve="all" is used, then the return will include all
possible segmentation of the given sequence.

Ifretrieve="'first-shortest' is used, the first of the shortest segmentations (with respect to the
order of word’s appearance in the dictionary, 1 row).

If retrieve="most-pointed’ is used, segmentation with most total points is returned (1 row).

If retrieve="most-scored' is used, segmentation with the highest score calculated as

score = points/words.number? (or as specified by the user).

The output is not in the input order. If needed, use lapply

unigram_dictionary

Dictionary has to be data.frame with four named columns: 1) to_search, 2) to_replace, 3) id, 4)
points.

’to_search’ should be column of type character, containing unigram to look for. Word case might
be used.

’to_replace’ should be column of type character, containing word that should be used for creating

unigram_sequence_segmentation 9

segmentation vector, if to_search’ matches text.

’id’” should be column of type numeric, containing id of unigram.

’points’ should be column of type numeric, containing number of points for the word - the higher,
the better. Unigrams with O points might be removed from the word count with omit_zero argument.

Simplification

Two arguments are possible for simplification:

* simplify - removes spaces between numbers and removes underscores,

* omit_zero - removes ids of 0-pointed unigrams, and omits them in the word count.
By default segmented sequence will be simplified, and numbers and underscores will be re-
moved from word count for score computing, since they are neutral as they are necessary.

Examples

With custom dictionary
texts <- c("this is science”,
"science is #fascinatingthing”,
"this is a scientific approach”,
"science is everywhere”,
"the beauty of science"”)
udict <- unigram_dictionary(texts)
unigram_sequence_segmentation('thisisscience', udict)

With built-in dictionary (English, only lowercase)
unigram_sequence_segmentation('thisisscience')
unigram_sequence_segmentation('thisisscience2024"')
unigram_sequence_segmentation('thisisscience2024', simplify=FALSE, omit_zero=FALSE)

Index

x datasets
base_dictionary, 2

base_dictionary, 2

grepl, 2

igrepl, 2

lapply, 5, 6, 8
ngrams_dictionary, 3,5, 6
ngrams_segmentation, 3,4, 6

nuss, 6

unigram_dictionary, 6,7

unigram_sequence_segmentation, 6, 7,7

10

	base_dictionary
	igrepl
	ngrams_dictionary
	ngrams_segmentation
	nuss
	unigram_dictionary
	unigram_sequence_segmentation
	Index

