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1. Definitions and basic results

1.1. Description of the data. Before defining the oncogenetic tree model, we first describe the data that it is
designed to model and that will be used for model fitting. Let M1,M2, . . . ,Mn denote the genetic alterations of
interest. These could be point mutations, gain or loss of chromosomal regions or other genetic events. N independent
specimens (“tumors”) are obtained and the presence or absence of the alterations of interest is recorded as a binary
vector xj = (xj1, xj2, . . . , xjn), where

xjℓ =

{
0, if Mℓ is absent in the jth tumor

1, if Mℓ is present in the jth tumor,
j = 1, . . . , N ; ℓ = 1, . . . , n

The reconstruction algorithm will only use the marginal and pairwise frequencies of occurrence of the alterations,
so we introduce the following notations:

• pi = P (Mi occurs), i = 1, . . . , n; p0 = 1

• pij =

{
P (both Mi and Mj occur), i, j = 1, . . . n; i 6= j

pi, i = 1, . . . n; j = 0, i

• pi|j = P (Mi occurs given Mj has occurred), i, j = 1, . . . n; i 6= j
• pi∨j = P (Mi or Mj or both occur), i, j = 1, . . . n; i 6= j

We will assume that only actually observed alterations are modeled, so pi > 0 always.

1.2. The oncogenetic tree model. In this section we give a short description of an oncogenetic tree and provide
some pertinent definitions. For a more complete treatment we refer the reader to Desper et al. [1999]. An oncogenetic
tree models the process of occurrence of genetic alterations in carcinogenesis using a directed tree structure. In this
paper we will use the words tree and branching for a directed graph T with vertex set {M0}∪V = {M0,M1, . . . ,Mn}
such that for every vertex Mi ∈ V there is a unique directed path from M0 to Mi along the edges of T . In the
literature such a structure is also called an arborescence. We will use the common “arrow” notation to denote the
edges of the tree:

−−−−→
MiMj denotes the directed edge from vertex Mi to vertex Mj .

Intuitively, vertex M0 (the root of the tree) represents the ‘no alterations’ event and each of the vertices of V
represent a certain mutation or other genetic alteration. Thus the alteration status of a tumor is described by a
set of the vertices that correspond to the alterations that are present in the tumor.
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Figure 1. An example of an untimed oncogenetic tree with seven possible alterations.
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2 A. SZABO

First we give an intuitive description of the oncogenetic tree using a simple example given in Figure 1; here
M1,M2, . . . ,M7 represent hypothetical alterations of interest. The development of a tumor according to this tree
could be the following: the tumor starts as {M0}, that is none of the alterations have occurred. Now the events
M1 and M2 can occur, and their appearance is independent of each other, that is the occurrence of one of them
does not change the probability of occurrence for the other one. Suppose M2 has occurred and so the status of the
tumor becomes {M0,M2}. Now in addition to M1, the alterations M3, M4 and M5 can also occur, so the tumor
can move to the status {M0,M1,M2}, {M0,M2,M3}, {M0,M2,M4} or {M0,M2,M5} and so on. The observed
status of the tumor depends on the time of the observation. The values πij on the edges are the probabilities of
transition along the given edge by the time of observation. These values allow to find the model-based probability
of observing any combination of the alterations in a tumor; for example, the probability of the set highlighted with
grey is P ({M0,M1,M2,M4}) = π01π02π24(1 − π23)(1 − π25)(1 − π46)(1 − π47) and P ({M0,M4}) = 0 as according
to the tree M2 had to occur before M4 could. This intuitive description is formalized by the following definitions:

Definition 1. A pure untimed oncogenetic tree is a tree T with a probability π(e) attached to each edge e. This tree
generates observations on mutation presence/absence the following way: each edge e is independently retained with
probability π(e); the set of vertices that are still reachable from M0 gives the set of the observed genetic alterations.

A somewhat more realistic model incorporates the progression of time.

Definition 2. A pure timed oncogenetic tree is a tree T with a rate λ(e) attached to each edge and an observation-
time distribution ϕ on R+. This tree generates observations on mutation presence/absence the following way: first
the time of observation τ is drawn from ϕ and the transition time along each edge e is drawn independently from
an exponential distribution with rate λ(e). The set of vertices that are reachable from M0 along a path for which
the sum of transition times is less than τ gives the set of the observed genetic alterations.

While the above definition of an oncogenetic tree gives a clearly interpretable model for the process of occurrence
of genetic events during carcinogenesis, real data never quite follows prescribed models. Thus before a tree model
can be fitted, an error structure describing the character of random deviations from the model has to be defined.
There are several sources of errors in the context of this model. Some of the observations xjℓ might be incorrect due
to the imperfection of the detection technology or the spatial heterogeneity of the tumor. A more fundamental source
of “errors” is the truly random occurrence of genetic alteration unrelated to the causal process of carcinogenesis.
The error model introduced by Szabo and Boucher [2002] suggests combining the possible errors regardless of their
source into two basic types: false positives and false negatives, and base the error model on the probabilities of
occurrence of these errors.

Error model

• The tumor develops according to the pure oncogenetic tree model
• The presence/absence of each alteration is independently measured
• If the alteration is present it is not observed with probability ǫ−.
If the alteration is absent it is observed with probability ǫ+.

2. Reconstruction

The main goal of the analysis is the reconstruction of the topology of the oncogenetic tree T ; the estimation of
the edge transition probabilities and error probabilities is of secondary importance. First we will concentrate on
the conceptual aspects of reconstruction and assume that there is no sampling error (the sample size N → ∞).
One of the main results of the theory of oncogenetic trees is the Reconstruction Algorithm given in Figure 2 that
provides an explicit construction method for T [Szabo and Boucher, 2002]. This algorithm takes a greedy bottom-up
approach: it assigns the parent of each node by finding the maximum-weight in-edge starting from the leaves.
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Reconstruction algorithm

1. Estimate pi and pij , i, j = 0, . . . , n from the marginal frequencies in the data using the definitions (Section 1.1).
2. Construct a complete directed graph on vertices {M0,M1, . . . ,Mn} representing the occurrence of individual events with weight

w(Mi,Mj) = log
pij

pj(pi + pj)
for the directed edge

−−−−→
MiMj .

3. Build a directed spanning tree (branching) B by defining the ancestor of each vertex the following way:
a. Let S denote the set of vertices with assigned parent. Start with S = ∅.
b. Find the vertex Mi /∈ S with the smallest probability pi (in case of a tie, choose randomly).
c. Let its parent in B be the vertex Mj /∈ S such that w(Mj ,Mi) is maximal. Set S = S ∪ {Mi}.
d. Repeat steps 3b-3c until all vertices have an assigned parent, that is S = V (vertex M0 does not need a parent).

Figure 2. Algorithm for reconstructing the oncogenetic tree from marginal and pairwise joint
distribution of alterations.
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