Package ‘OutcomeWeights’

January 20, 2025
Type Package

Title Outcome Weights of Treatment Effect Estimators
Version 0.1.1

Description Many treatment effect estimators can be written as weighted outcomes.
These weights have established use cases like checking covariate balancing via pack-
ages like 'cobalt'.
This package takes the original estimator objects and outputs these outcome weights.
It builds on the general framework of Knaus (2024) <doi:10.48550/arXiv.2411.11559>.
This version is compatible with the 'grf’ package and provides an internal implementa-
tion of Double Machine Learning.

License GPL-3
Encoding UTF-8

URL https://github.com/MCKnaus/OutcomeWeights

BugReports https://github.com/MCKnaus/OutcomeWeights/issues
Imports ggplot2, grf, methods

LinkingTo Rcpp, ReppArmadillo

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

Author Michael C. Knaus [aut, cre] (<https://orcid.org/0000-0002-7328-1363>),
Henri Pfleiderer [ctb]

Maintainer Michael C. Knaus <michael.knaus@uni-tuebingen.de>
Repository CRAN
Date/Publication 2024-12-20 10:10:02 UTC


https://doi.org/10.48550/arXiv.2411.11559
https://github.com/MCKnaus/OutcomeWeights
https://github.com/MCKnaus/OutcomeWeights/issues
https://orcid.org/0000-0002-7328-1363

2

dml_with_smoother

Contents
dml with_smoother . . . . . . . . . . e 2
get_outcome_weights . . . . . . . . L. e 4
get_outcome_weights.causal_forest . . . . . ... ... oL 0oL 4
get_outcome_weights.dml_with_smoother . . . . . . .. .. ... ... ... ... 6
get_outcome_weights.instrumental_forest . . . . . ... ... oo oL 7
NuPa_honest_forest . . . . . . . . . . e 8
pive_weight_maker . . . . . . . ... L 10
plot.dml_with_smoother . . . . . ... ... . ... ... 10
prep_cf_mat . . . . . 11
standardized_mean_differences . . . . . . . . . . ... 11
summary.dml_with_smoother . . . . .. . ... .. ... 12
summary.get_outcome_weights . . . . . . ... oL o oL 13
summary.standardized_mean_differences . . . . .. ... ... L. 14

Index 15

dml_with_smoother Double ML estimators with outcome smoothers
Description

Existing Double ML implementations are too general to easily extract smoother matrices required
to be compatible with the get_forest_weights() method. This motivates yet another Double ML
implementation.

Usage

dml_with_smoother(

Y,

D,

X,

Z = NULL,

estimators = c("PLR", "PLR_IV", "AIPW_ATE", "Wald_AIPW"),
smoother = "honest_forest”,

n_cf_folds = 5,
n_reps =1,

)
Arguments
Y Numeric vector containing the outcome variable.
D Optional binary treatment variable.
X Covariate matrix with N rows and p columns.
Z Optional binary instrumental variable.



dml_with_smoother 3

estimators String (vector) indicating which estimators should be run. Current menu: c("PLR","PLR_IV","AIPW_AT
smoother Indicate which smoother to be used for nuisance parameter estimation. Cur-
rently only available option "honest_forest” from the grf package.
n_cf_folds Number of cross-fitting folds. Default is 5.
n_reps Number of repetitions of cross-fitting. Default is 1.

Options to be passed to smoothers.

Value
A list with three entries:

* results: alist storing the results, influence functions, and score functions of each estimator

* NuPa.hat: alist storing the estimated nuisance parameters and the outcome smoother matrices

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J.
(2018). Double/debiased machine learning for treatment and structural parameters. The Economet-
rics Journal, 21(1), C1-C68.

Knaus, M. C. (2024). Treatment effect estimators as weighted outcomes, https://arxiv.org/
abs/2411.11559.

Examples

# Sample from DGP borrowed from grf documentation
n = 200

p=5

X = matrix(rbinom(n * p, 1, @.5), n, p)

Z = rbinom(n, 1, 0.5)

Q = rbinom(n, 1, 0.5)

W=Q=*Z

tau = X[, 11/ 2

Y = rowSums(X[, 1:3]) + tau * W + Q + rnorm(n)

# Run outcome regression and extract smoother matrix
# Run DML and look at results

dml = dml_with_smoother(Y,W,X,2Z)

results_dml = summary(dml)

plot(dml)

# Get weights
omega_dml = get_outcome_weights(dml)

# Observe that they perfectly replicate the original estimates
all.equal(as.numeric(omega_dml$omega %*% Y),

as.numeric(as.numeric(results_dml[,11)))

# The weights can then be passed to the cobalt package for example.


https://arxiv.org/abs/2411.11559
https://arxiv.org/abs/2411.11559

4 get_outcome_weights.causal_forest

get_outcome_weights Outcome weights method

Description

This is a generic method for getting outcome weights. It calculates the outcome weights for objects
created by other packages. See get_outcome_weight.<compatible_fct> in the package documenta-
tion for compatible functions.

Usage
get_outcome_weights(object, ...)
Arguments
object An object, obtained from other packages.
Additional arguments specific to object class implementations. See the docu-
mentation which object requires which additional arguments.
Value

A list of at least these components:

* omega: matrix (number of point estimates x number of estimation units) of outcome weights

* treat: the treatment indicator to make it compatible with the cobalt package

References

Knaus, M. C. (2024). Treatment effect estimators as weighted outcomes, https://arxiv.org/
abs/2411.11559.

get_outcome_weights.causal_forest
Outcome weights for the causal_forest function

Description

Post-estimation command to extract outcome weights for causal forest implemented via the causal_forest
function from the grf package.


https://arxiv.org/abs/2411.11559
https://arxiv.org/abs/2411.11559

get_outcome_weights.causal_forest 5

Usage

## S3 method for class 'causal_forest
get_outcome_weights(

object,

S,

newdata = NULL,
S.tau = NULL,
target = "CATE",
checks = TRUE

)

Arguments

object An object of class causal_forest, i.e. the result of running causal_forest.
Pass potentially generic get_outcome_weights options.

S A smoother matrix reproducing the outcome predictions used in building the
instrumental_forest. Obtained by calling get_forest_weights() for the
regression_forest object producing the outcome predictions.

newdata Corresponds to newdata option in predict.causal_forest. If NULL, out-of-
bag outcome weights, otherwise for those for the provided test data returned.

S.tau Required if target != "CATE", then S.tau is the CATE smoother obtained from
running get_outcome_weights() with target == "CATE".

target Target parameter for which outcome weights should be extracted. Currently
c("CATE","ATE") implemented.

checks Default TRUE checks whether weights numerically replicate original estimates.
Only set FALSE if you know what you are doing and need to save computation
time.

Value

get_outcome_weights object with omega containing weights and treat the treatment

References

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forest. The Annals of Statistics,
47(2), 1148-1178.

Knaus, M. C. (2024). Treatment effect estimators as weighted outcomes, https://arxiv.org/
abs/2411.11559.

Examples
# Sample from DGP borrowed from grf documentation
n = 500
p =10
X = matrix(rnorm(n * p), n, p)
W = rbinom(n, 1, 0.5)


https://arxiv.org/abs/2411.11559
https://arxiv.org/abs/2411.11559

6 get_outcome_weights.dml_with_smoother

Y = pmax(X[, 11, @) * W + X[, 2] + pmin(X[, 3], @) + rnorm(n)

# Run outcome regression and extract smoother matrix
forest.Y = grf::regression_forest(X, Y)

Y.hat = predict(forest.Y)$predictions
outcome_smoother = grf::get_forest_weights(forest.Y)

# Run causal forest with external Y.hats
c.forest = grf::causal_forest(X, Y, W, Y.hat = Y.hat)

# Predict on out-of-bag training samples.
cate.oob = predict(c.forest)$predictions

# Predict using the forest.

X.test = matrix(@, 101, p)

X.test[, 1] = seq(-2, 2, length.out = 101)
cate.test = predict(c.forest, X.test)$predictions

# Calculate outcome weights
omega_oob = get_outcome_weights(c.forest,S = outcome_smoother)
omega_test = get_outcome_weights(c.forest,S = outcome_smoother,newdata = X.test)

# Observe that they perfectly replicate the original CATEs

all.equal(as.numeric(omega_oob$omega %*% Y),
as.numeric(cate.oob))

all.equal(as.numeric(omega_test$omega %*% Y),
as.numeric(cate.test))

# Also the ATE estimates are perfectly replicated
omega_ate = get_outcome_weights(c.forest,target = "ATE",
S = outcome_smoother,
S.tau = omega_oob$omega)
all.equal(as.numeric(omega_ate$omega %*% Y),
as.numeric(grf::average_treatment_effect(c.forest, target.sample = "all"”)[1]))

# The omega weights can be plugged into balancing packages like cobalt

get_outcome_weights.dml_with_smoother
Outcome weights for the dml_with_smoother function

Description

Post-estimation command to extract outcome weights for double ML run with an outcome smoother.

Usage

## S3 method for class 'dml_with_smoother'
get_outcome_weights(object, ..., all_reps = FALSE)



get_outcome_weights.instrumental_forest 7

Arguments
object An object of class dml_with_smoother,i.e. the result of running dml_with_smoother.
Pass potentially generic get_outcome_weights options.
all_reps If TRUE, outcomes weights of each repetitions passed. Default FALSE.
Value

e If all_reps == FALSE: get_outcome_weights object

» Ifall_reps == TRUE: additionally list omega_all_reps: A list containing the outcome weights
of each repetition.
References

Knaus, M. C. (2024). Treatment effect estimators as weighted outcomes, https://arxiv.org/
abs/2411.11559.

get_outcome_weights.instrumental_forest
Outcome weights for the instrumental_forest function

Description

Post-estimation command to extract outcome weights for instrumental forest implemented via the
instrumental_forest function from the grf package.

Usage
## S3 method for class 'instrumental_forest'
get_outcome_weights(object, ..., S, newdata = NULL, checks = TRUE)
Arguments
object An object of class instrumental_forest, i.e. the result of running instrumental_forest.

Pass potentially generic get_outcome_weights options.

S A smoother matrix reproducing the outcome predictions used in building the
instrumental_forest. Obtained by calling get_forest_weights() for the
regression_forest object producing the outcome predictions.

newdata Corresponds to newdata option in predict.instrumental_forest. If NULL,
out-of-bag outcome weights, otherwise for those for the provided test data re-
turned.

checks Default TRUE checks whether weights numerically replicate original estimates.

Only set FALSE if you know what you are doing and want to save computation
time.


https://arxiv.org/abs/2411.11559
https://arxiv.org/abs/2411.11559

8 NuPa_honest_forest

Value

get_outcome_weights object with omega containing weights and treat the treatment

References

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forest. The Annals of Statistics,
47(2), 1148-1178.

Knaus, M. C. (2024). Treatment effect estimators as weighted outcomes, https://arxiv.org/
abs/2411.11559.

Examples

# Sample from DGP borrowed from grf documentation
n = 2000

p=5

X = matrix(rbinom(n * p, 1, @.5), n, p)

Z = rbinom(n, 1, 0.5)

Q = rbinom(n, 1, 0.5)

W=0Q* Z

tau = X[, 1]/ 2

Y = rowSums(X[, 1:3]) + tau * W + Q + rnorm(n)

# Run outcome regression and extract smoother matrix
forest.Y = grf::regression_forest(X, Y)

Y.hat = predict(forest.Y)$predictions
outcome_smoother = grf::get_forest_weights(forest.Y)

# Run instrumental forest with external Y.hats
iv.forest = grf::instrumental_forest(X, Y, W, Z, Y.hat = Y.hat)

# Predict on out-of-bag training samples.
iv.pred = predict(iv.forest)$predictions

omega_if = get_outcome_weights(iv.forest, S = outcome_smoother)
# Observe that they perfectly replicate the original CLATEs

all.equal(as.numeric(omega_if$omega %*% Y),
as.numeric(iv.pred))

NuPa_honest_forest Nuisance parameter estimation via honest random forest

Description

This function estimates different nuisance parameters using the honest random forest implementa-
tion of the ’grf” package


https://arxiv.org/abs/2411.11559
https://arxiv.org/abs/2411.11559

NuPa_honest_forest

Usage

NuPa_honest_forest(
NuPa = c("Y.hat”, "Y.hat.d”, "Y.hat.z", "D.hat”, "D.hat.z", "Z.hat"),

’

NULL,
NULL,
NULL,
n_cf_folds
n_reps =1,

N O < X
1

5,

cluster = NULL,
progress = FALSE,

Arguments

NuPa
X
Y
D
Z

n_cf_folds
n_reps
cluster

progress

Value

List of two lists.

String vector specifying the nuisance parameters to be estimated. Currently sup-
ported: c("Y.hat","Y.hat.d"”,"Y.hat.z","D.hat","D.hat.z","Z.hat")

Covariate matrix with N rows and p columns.

Optional numeric vector containing the outcome variable.

Optional binary treatment variable.

Optional binary instrumental variable.

Number of cross-fitting folds. Default is 5.

Number of repetitions of cross-fitting. Default is 1.

Optional vector of cluster variable if cross-fitting should account for clusters.
If TRUE, progress of nuisance parameter estimation reported.

Options passed to the regression_forest.

* predictions contains the requested nuisance parameters

* smoothers contains the smoother matrices of requested outcome nuisance parameters

e cf_mat Array of dimension n_reps x N x n_cf_folds storing indicators representing the folds
used in estimation.

References

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523), 1228-1242.



10 plot.dml_with_smoother

pive_weight_maker Outcome weights maker for pseudo-1V estimators.

Description

This is a generic function taking pseudo-instrument, pseudo-treatment and the transformation ma-
trix as inputs and returning outcome weights

Usage
pive_weight_maker(Z.tilde, D.tilde, T_mat)

Arguments
Z.tilde Numeric vector of pseudo-instrument outcomes.
D.tilde Numeric vector of pseudo-treatment.
T_mat Transformation matrix

Value

A vector of outcome weights.

References

Knaus, M. C. (2024). Treatment effect estimators as weighted outcomes, soon on ’arXiv’.

plot.dml_with_smoother
plot method for class dml_with_smoother

Description

plot method for class dml_with_smoother

Usage
## S3 method for class 'dml_with_smoother'
plot(x, ..., alpha = 0.05, contrast = FALSE)
Arguments
X Object of class dml_with_smoother.

Pass generic plot options.
alpha Significance level for confidence intervals (default 0.05).

contrast Shows the differences between the coefficients.



prep_cf_mat

11
Value
ggplot with point estimates and confidence intervals.
prep_cf_mat Creates matrix of binary cross-fitting fold indicators (N x # cross-
folds)
Description
Creates matrix of binary cross-fitting fold indicators (N x # cross-folds)
Usage
prep_cf_mat(n, cf, w_mat = NULL, cl = NULL)
Arguments
n Number of observations.
cf Number of cross-fitting folds.
w_mat Optional logical matrix of treatment indicators (N x T+1). If specified, cross-
fitting folds will preserve the treatment ratios from full sample.
cl Optional vector of cluster variable if cross-fitting should account for clusters.
Value

Logical matrix of cross-fitting folds (N x # folds).

standardized_mean_differences

Calls C++ implementation to calculate standardized mean differ-
ences.

Description

Calculates standardized mean differences between treated and controls and towards target means
for an outcome weights matrix with potentially many rows like for CATEs.

Usage

standardized_mean_differences(X, treat, omega, target = NULL)



12 summary.dml_with_smoother

Arguments
X Covariate matrix with N rows and p columns.
treat Binary treatment variable.
omega Outcome weights matrix with dimension number of weight vectors for which
balancing should be checked x number of training units.
target Optional matrix with dimension number of weight vectors for which balanc-
ing should be checked x p indicating the target values the covariates should be
balanced towards. If NULL, average of X used as target of ATE.
Value

3D-array of dimension p x 6 x number of weight vectors for which balancing should be checked
where the second dimension provides the following quantities:

* "Mean 0": The weighted control mean

* "Mean 1": The weighted treated mean

* "SMD balancing": Standardized mean differences for covariate balancing (Mean 1 - Mean 0)
/sd(X)

* "SMD targeting 0": Standardized mean difference to assess targeting of control (Mean O -
target) / sd(X)

» "SMD targeting 1": Standardized mean difference to assess targeting of treated (Mean 1 -
target) / sd(X)

References

Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassifi-
cation on the propensity score. Journal of the American Statistical Association, 79 (387), 516-524.

summary.dml_with_smoother
summary method for class dml_with_smoother

Description

summary method for class dml_with_smoother

Usage
## S3 method for class 'dml_with_smoother'
summary(object, contrast = FALSE, quiet = FALSE, ...)
Arguments
object Object of class dml_with_smoother.
contrast Tests the differences between the coefficients.
quiet If TRUE, results are passed but not printed.

further arguments passed to printCoefmat



summary.get_outcome_weights 13

Value

Invisible matrix with estimator(s) in the rows and c("Estimate","SE","t","p") in the columns.

summary.get_outcome_weights
summary method for class outcome_weights

Description

Calculates several summary measures of potentially many outcome weights.

Usage
## S3 method for class 'get_outcome_weights'
summary(object, quiet = FALSE, digits = 4, epsilon = 1e-04, ...)
Arguments
object get_outcome_weights object.
quiet If TRUE, results are passed but not printed.
digits Number of digits to be displayed. Default 4.
epsilon Threshold below which in absolute values non-zero but small values should be
displayed as < ...

further arguments passed to printCoefmat

Value

3D-array of dimension

e c("Control","Treated") x

* number of point estimates x

non

e ¢("Minimum weight","Maximum weight","% Negative","Sum largest 10%","Sum of weights","Sum
of absolute weights")



14 summary.standardized_mean_differences

summary.standardized_mean_differences
summary method for class standardized_mean_differences

Description

Calls a C++ function to quickly summarize potentially many standardized mean differences.

Usage
## S3 method for class 'standardized_mean_differences'’
summary(object, ...)

Arguments
object Object of class standardized_mean_differences.

further arguments passed to summary method.

Value
3D-array of dimension

¢ ¢("Maximum absolute SMD","Mean absolute SMD","Median absolute SMD", / % of absolute
SMD > 20", "#/ % of absolute SMD > 10","# / % of absolute SMD > 5") x

* c("Balancing","Targeting") x

* number of weight vectors for which balancing should be checked

References

Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassifi-
cation on the propensity score. Journal of the American Statistical Association, 79 (387), 516-524.



Index

causal_forest, 4, 5
dml_with_smoother, 2,6, 7, 10, 12

get_outcome_weights, 4,5,7, 8, 13
get_outcome_weights.causal_forest, 4
get_outcome_weights.dml_with_smoother,
6
get_outcome_weights.instrumental_forest,
7

instrumental_forest, 5, 7
NuPa_honest_forest, 8

pive_weight_maker, 10

plot, 10
plot.dml_with_smoother, 10
predict.causal_forest, 5
predict.instrumental_forest, 7
prep_cf_mat, 11

regression_forest, 5,7, 9

standardized_mean_differences, 11, /4

summary.dml_with_smoother, 12

summary.get_outcome_weights, 13

summary.standardized_mean_differences,
14

15



	dml_with_smoother
	get_outcome_weights
	get_outcome_weights.causal_forest
	get_outcome_weights.dml_with_smoother
	get_outcome_weights.instrumental_forest
	NuPa_honest_forest
	pive_weight_maker
	plot.dml_with_smoother
	prep_cf_mat
	standardized_mean_differences
	summary.dml_with_smoother
	summary.get_outcome_weights
	summary.standardized_mean_differences
	Index

