Package ‘PMA’

January 20, 2025

Type Package
Title Penalized Multivariate Analysis

Version 1.2-4
Date 2024-09-03

URL https://github.com/bnaras/PMA

BugReports https://github.com/bnaras/PMA/issues

Description Performs Penalized Multivariate Analysis: a penalized
matrix decomposition, sparse principal components analysis,
and sparse canonical correlation analysis, described in
Witten, Tibshirani and Hastie (2009)
<doi:10.1093/biostatistics/kxp008> and Witten and Tibshirani
(2009) Extensions of sparse canonical correlation analysis,
with applications to genomic data
<doi:10.2202/1544-6115.1470>.

Depends R (>=2.10)
License GPL (>=2)
Encoding UTF-8
RoxygenNote 7.3.2
Imports utils
NeedsCompilation yes

Author Daniela Witten [aut],
Rob Tibshirani [aut],
Sam Gross [aut],
Balasubramanian Narasimhan [cre, aut]

Maintainer Balasubramanian Narasimhan <naras@stanford.edu>
Repository CRAN
Date/Publication 2024-09-03 21:10:02 UTC

https://github.com/bnaras/PMA
https://github.com/bnaras/PMA/issues
https://doi.org/10.1093/biostatistics/kxp008
https://doi.org/10.2202/1544-6115.1470

2 CCA

Contents
CCA . e 2
CCApermute ot e e e e e 6
download_breast_ data e 10
MultiCCA e 11
MultiCCA.permuteo 13
PlotCGH e 16
PMD . . . e e 17
PMD.cv . . e e 21
SPC . e 24
SPC.cv . o 26

Index 30

CCA Perform sparse canonical correlation analysis using the penalized ma-
trix decomposition.
Description

Given matrices X and Z, which represent two sets of features on the same set of samples, find sparse
u and v such that u’X’Zv is large. For X and Z, the samples are on the rows and the features are on
the columns. X and Z must have same number of rows, but may (and usually will) have different
numbers of columns. The columns of X and/or Z can be unordered or ordered. If unordered, then
a lasso penalty will be used to obtain the corresponding canonical vector. If ordered, then a fused
lasso penalty will be used; this will result in smoothness.

Usage

CCA(

X,
z,

typex = c("standard”,
typez = c("standard”,
penaltyx = NULL,
penaltyz = NULL,
K=1,

niter = 15,

v = NULL,

trace = TRUE,
standardize = TRUE,
xnames = colnames(x),
znames = colnames(z),
chromx = NULL,

chromz = NULL,

upos = FALSE,

uneg = FALSE,

"ordered"),
"ordered"),

CCA

Vpos FALSE,
vneg = FALSE,

outcome = NULL,

y = NULL,
cens = NULL

Arguments

X

typex

typez

penaltyx

penaltyz

niter

trace

standardize

Xnames

Data matrix; samples are rows and columns are features. Cannot contain missing
values.

Data matrix; samples are rows and columns are features. Cannot contain missing
values.

Are the columns of x unordered (type="standard") or ordered (type="ordered")?
If "standard", then a lasso penalty is applied to u, to enforce sparsity. If "ordered"
(generally used for CGH data), then a fused lasso penalty is applied, to enforce
both sparsity and smoothness.

Are the columns of z unordered (type="standard") or ordered (type="ordered")?
If "standard", then a lasso penalty is applied to v, to enforce sparsity. If "ordered"
(generally used for CGH data), then a fused lasso penalty is applied, to enforce
both sparsity and smoothness.

The penalty to be applied to the matrix X, i.e. the penalty that results in the
canonical vector u. If typex is "standard" then the L1 bound on u is penal-
tyx*sqrt(ncol(x)). In this case penaltyx must be between 0 and 1 (larger L1
bound corresponds to less penalization). If "ordered" then it’s the fused lasso
penalty lambda, which must be non-negative (larger lambda corresponds to
more penalization).

The penalty to be applied to the matrix z, i.e. the penalty that results in the
canonical vector v. If typez is "standard" then the L1 bound on v is penal-
tyz*sqrt(ncol(z)). In this case penaltyz must be between 0 and 1 (larger L1
bound corresponds to less penalization). If "ordered" then it’s the fused lasso
penalty lambda, which must be non-negative (larger lambda corresponds to
more penalization).

The number of u’s and v’s desired; that is, the number of canonical vectors to be
obtained.

How many iterations should be performed? Default is 15.

The first K columns of the v matrix of the SVD of X’Z. If NULL, then the SVD
of X’Z will be computed inside the CCA function. However, if you plan to run
this function multiple times, then save a copy of this argument so that it does not
need to be re-computed (since that process can be time-consuming if X and Z
both have high dimension).

Print out progress?

Should the columns of x and z be centered (to have mean zero) and scaled (to
have standard deviation 1)? Default is TRUE.

An optional vector of column names for x, defaults to colnames(x)

4 CCA

znames An optional vector of column names for z, defaults to colnames(z)

chromx Used only if typex is "ordered"; allows user to specify a vector of length ncol(x)
giving the chromosomal location of each CGH spot. This is so that smoothness
will be enforced within each chromosome, but not between chromosomes.

chromz Used only if typez is "ordered"; allows user to specify a vector of length ncol(z)
giving the chromosomal location of each CGH spot. This is so that smoothness
will be enforced within each chromosome, but not between chromosomes.

upos If TRUE, then require elements of u to be positive. FALSE by default. Can only
be used if type is "standard".

uneg If TRUE, then require elements of u to be negative. FALSE by default. Can only
be used if type is "standard".

vpos If TRUE, require elements of v to be positive. FALSE by default. Can only be
used if type is "standard".

vheg If TRUE, require elements of v to be negative. FALSE by default. Can only be
used if type is "standard".

outcome If you would like to incorporate a phenotype into CCA analysis - that is, you
wish to find features that are correlated across the two data sets and also corre-
lated with a phenotype - then use one of "survival", "multiclass", or "quantita-
tive" to indicate outcome type. Default is NULL.

y If outcome is not NULL, then this is a vector of phenotypes - one for each row
of x and z. If outcome is "survival" then these are survival times; must be non-
negative. If outcome is "multiclass” then these are class labels (1,2,3,...). Default
NULL.

cens If outcome is "survival" then these are censoring statuses for each observation.
1 is complete, O is censored. Default NULL.

Details

This function is useful for performing an integrative analysis of two sets of measurements taken
on the same set of samples: for instance, gene expression and CGH measurements on the same
set of patients. It takes in two data sets, called x and z, each of which have (the same set of)
samples on the rows. If z is a matrix of CGH data with ordered CGH spots on the columns, then
use typez="ordered". If z consists of unordered columns, then use typez="standard". Similarly for

typex.

This function performs the penalized matrix decomposition on the data matrix $X’Z$. Therefore,
the results should be the same as running the PMD function on t(x)\ using the CCA function is
much faster because it avoids computation of $X°Z$.

The CCA criterion is as follows: find unit vectors u and v such that $u’X’Zv$ is maximized
subject to constraints on u and v. If typex="standard" and typez="standard" then the constraints
on u and v are lasso (L_1). If typex="ordered" then the constraint on u is a fused lasso
penalty (promoting sparsity and smoothness). Similarly if typez="ordered".

When type x is "standard": the L1 bound of u is penaltyx*sqrt(ncol(x)).

When typex is "ordered": penaltyx controls the amount of sparsity and smoothness in u, via the
fused lasso penalty: $lambda sum_j lu_jl + lambda sum_j lu_j - u_(j-1)I$. If NULL, then it will be
chosen adaptively from the data.

CCA 5

Value
u u is output. If you asked for multiple factors then each column of u is a factor. u
has dimension nxK if you asked for K factors.
v v is output. If you asked for multiple factors then each column of v is a factor. v
has dimension pxK if you asked for K factors.
d A vector of length K, which can alternatively be computed as the diagonal of
the matrix $u"X’Zv$.
v.init The first K factors of the v matrix of the SVD of x’z. This is saved in case this
function will be re-run later.
References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),
515-534, Jul 2009

See Also
PMD,CCA .permute

Examples

first, do CCA with type="standard"

A simple simulated example

set.seed(3189)

u <- matrix(c(rep(1,25),rep(@,75)),ncol=1)

vl <- matrix(c(rep(1,50),rep(0,450)),ncol=1)

v2 <- matrix(c(rep(@,50),rep(1,50),rep(0,900)),ncol=1)

X <= u%*%t(v1) + matrix(rnorm(100*500),ncol=500)

z <= u%*%t(v2) + matrix(rnorm(100*1000),ncol=1000)

Can run CCA with default settings, and can get e.g. 3 components

out <- CCA(x,z,typex="standard”, typez="standard",f K=3)

print(out,verbose=TRUE) # To get less output, just print(out)

Or can use CCA.permute to choose optimal parameter values

perm.out <- CCA.permute(x,z,typex="standard"”,typez="standard",6nperms=7)

print(perm.out)

plot(perm.out)

out <- CCA(x,z,typex="standard",typez="standard",K=1,
penaltyx=perm.out$bestpenaltyx,penaltyz=perm.out$bestpenaltyz,
v=perm.out$v.init)

print(out)

#i#t### The remaining examples are commented out, but uncomment to run: #i#####

Not run, to save time:

Not run:

Now try CCA with a constraint that elements of u must be negative and
elements of v must be positive:

perm.out <- CCA.permute(x,z,typex="standard",typez="standard",nperms=7,

CCA .permute

penaltyxs=seq(.1,.7,1len=10), penaltyzs=seq(.1,.7,len=10), uneg=TRUE, vpos=TRUE)

print(perm.out)
plot(perm.out)
out <- CCA(x,z,typex="standard",typez="standard",K=1,
penaltyx=perm.out$bestpenaltyx,penaltyz=perm.out$bestpenaltyz,
v=perm.out$v.init, uneg=TRUE, vpos=TRUE)
print(out)

Suppose we also have a quantitative outcome, y, and we want to find
features in x and z that are correlated with each other and with the
outcome:

y <= rnorm(nrow(x))

perm.out <- CCA.permute(x,z,typex="standard"”,typez="standard",
outcome="quantitative”,y=y, nperms=6)

print(perm.out)

out<-CCA(x,z,typex="standard", typez="standard"”,outcome="quantitative”,
y=y,penaltyx=perm.out$bestpenaltyx,penaltyz=perm.out$bestpenaltyz)
print(out)

now, do CCA with type="ordered”
Example involving the breast cancer data: gene expression + CGH
set.seed(22)
breastdata <- download_breast_data()
with(breastdata, {
dna <- t(dna)
rna <- t(rna)
perm.out <- CCA.permute(x=rna,z=dnal,chrom==1], typex="standard",
typez="ordered" ,nperms=5,penaltyxs=seq(.02,.7,1len=10))
We run CCA using all gene exp. data, but CGH data on chrom 1 only.
print(perm.out)
plot(perm.out)
out <- CCA(x=rna,z=dnal,chrom==1], typex="standard”, typez="ordered",
penaltyx=perm.out$bestpenaltyx,
v=perm.out$v.init, penaltyz=perm.out$bestpenaltyz,
xnames=substr(genedesc,1,20),
znames=paste("Pos"”, sep="", nuc[chrom==1]))
Save time by inputting lambda and v
print(out) # could do print(out,verbose=TRUE)
print(genechrout$u!=0]1) # Cool! The genes associated w/ gain or loss
on chrom 1 are located on chrom 1!!
par(mfrow=c(1,1))
PlotCGH(out$v, nuc=nuc[chrom==1], chrom=chrom[chrom==1],
main="Regions of gain/loss on Chrom 1 assoc'd with gene expression")

i)

End(Not run)

CCA .permute 7

CCA.permute Select tuning parameters for sparse canonical correlation analysis us-
ing the penalized matrix decomposition.

Description

This function can be used to automatically select tuning parameters for sparse CCA using the pe-
nalized matrix decompostion. For each data set x and z, two types are possible: (1) type "standard",
which does not assume any ordering of the columns of the data set, and (2) type "ordered", which as-
sumes that columns of the data set are ordered and thus that corresponding canonical vector should
be both sparse and smooth (e.g. CGH data).

Usage

CCA.permute(
X,
z,
typex = c("standard”, "ordered"),
typez = c("standard”, "ordered"),
penaltyxs = NULL,
penaltyzs = NULL,

niter = 3,
v = NULL,
trace = TRUE,

nperms = 25,
standardize = TRUE,
chromx = NULL,
chromz = NULL,

upos = FALSE,
uneg = FALSE,
vpos = FALSE,
vneg = FALSE,
outcome = NULL,
y = NULL,
cens = NULL
)

Arguments

X Data matrix; samples are rows and columns are features.

z Data matrix; samples are rows and columns are features. Note that x and z
must have the same number of rows, but may (and generally will) have different
numbers of columns.

typex Are the columns of x unordered (type="standard") or ordered (type="ordered")?

If "standard", then a lasso penalty is applied to v, to enforce sparsity. If "ordered"
(generally used for CGH data), then a fused lasso penalty is applied, to enforce
both sparsity and smoothness.

typez

penaltyxs

penaltyzs

niter

trace

nperms

standardize

chromx

chromz

upos

uneg

vpos

CCA .permute

Are the columns of z unordered (type="standard") or ordered (type="ordered")?
If "standard", then a lasso penalty is applied to v, to enforce sparsity. If "ordered"
(generally used for CGH data), then a fused lasso penalty is applied, to enforce
both sparsity and smoothness.

The set of x penalties to be considered. If typex="standard", then the L1 bound
on u is penaltyxs*sqrt(ncol(x)). If "ordered", then it’s the lambda for the fused
lasso penalty. The user can specify a single value or a vector of values. If
penaltyxs is a vector and penaltyzs is a vector, then the vectors must have the
same length. If NULL, then the software will automatically choose a single
lambda value if type is "ordered", or a grid of (L1 bounds)/sqrt(ncol(x)) if type
is "standard".

The set of z penalties to be considered. If typez="standard", then the L1 bound
on v is penaltyzs*sqrt(ncol(z)). If "ordered", then it’s the lambda for the fused
lasso penalty. The user can specify a single value or a vector of values. If
penaltyzs is a vector and penaltyzs is a vector, then the vectors must have the
same length. If NULL, then the software will automatically choose a single
lambda value if type is "ordered", or a grid of (.1 bounds)/sqrt(ncol(z)) if type
is "standard".

How many iterations should be performed each time CCA is called? Default
is 3, since an approximate estimate of u and v is acceptable in this case, and
otherwise this function can be quite time-consuming.

The first K columns of the v matrix of the SVD of X’Z. If NULL, then the SVD
of X’Z will be computed inside this function. However, if you plan to run this
function multiple times, then save a copy of this argument so that it does not
need to be re-computed (since that process can be time-consuming if X and Z
both have high dimension).

Print out progress?

How many times should the data be permuted? Default is 25. A large value of
nperms is very important here, since the formula for computing the z-statistics
requires a standard deviation estimate for the correlations obtained via permuta-
tion, which will not be accurate if nperms is very small.

Should the columns of X and Z be centered (to have mean zero) and scaled (to
have standard deviation 1)? Default is TRUE.

Used only if typex="ordered"; a vector of length ncol(x) that allows you to spec-
ify which chromosome each CGH spot is on. If NULL, then it is assumed that
all CGH spots are on same chromosome.

Used only if typex="ordered"; a vector of length ncol(z) that allows you to spec-
ify which chromosome each CGH spot is on. If NULL, then it is assumed that
all CGH spots are on same chromosome.

If TRUE, then require all elements of u to be positive in sign. Default is FALSE.
Can only be used if type is standard.

If TRUE, then require all elements of u to be negative in sign. Default is FALSE.
Can only be used if type is standard.

If TRUE, then require all elements of v to be positive in sign. Default is FALSE.
Can only be used if type is standard.

CCA . permute 9

vheg If TRUE, then require all elements of v to be negative in sign. Default is FALSE.
Can only be used if type is standard.

outcome If you would like to incorporate a phenotype into CCA analysis - that is, you
wish to find features that are correlated across the two data sets and also corre-
lated with a phenotype - then use one of "survival", "multiclass", or "quantita-
tive" to indicate outcome type. Default is NULL.

y If outcome is not NULL, then this is a vector of phenotypes - one for each row
of x and z. If outcome is "survival" then these are survival times; must be non-
negative. If outcome is "multiclass" then these are class labels. Default NULL.

cens If outcome is "survival" then these are censoring statuses for each observation.
1 is complete, 0 is censored. Default NULL.

Details

For X and Z, the samples are on the rows and the features are on the columns.

The tuning parameters are selected using a permutation scheme. For each candidate tuning param-
eter value, the following is performed: (1) The samples in X are randomly permuted nperms times,
to obtain matrices $X*_1,X*_2...$. (2) Sparse CCA is run on each permuted data set $(X*_i,7)$
to obtain factors $(u*_i, v*_i)$. (3) Sparse CCA is run on the original data (X,Z) to obtain factors
u and v. (4) Compute $c*_i=cor(X*_i u*_i,Z v*_i)$ and $c=cor(Xu,Zv)$. (5) Use Fisher’s trans-
formation to convert these correlations into random variables that are approximately normally dis-
tributed. Let Fisher(c) denote the Fisher transformation of c. (6) Compute a z-statistic for Fisher(c),
using $(Fisher(c)-mean(Fisher(c*)))/sd(Fisher(c*))$. The larger the z-statistic, the "better" the cor-
responding tuning parameter value.

This function also gives the p-value for each pair of canonical variates (u,v) resulting from a given
tuning parameter value. This p-value is computed as the fraction of $c*_i$’s that exceed c (using
the notation of the previous paragraph).

Using this function, only the first left and right canonical variates are considered in selection of the
tuning parameter.

Note that x and z must have same number of rows. This function performs just a one-dimensional
search in tuning parameter space, even if penaltyxs and penaltyzs both are vectors: the pairs
(penaltyxs[1]1,penaltyzs[1]), (penaltyxs[2],penaltyzs[2]).,.... are considered.

Value
zstat The vector of z-statistics, one per element of sumabss.
pvals The vector of p-values, one per element of sumabss.

bestpenaltyx The x penalty that resulted in the highest z-statistic.
bestpenaltyz The z penalty that resulted in the highest z-statistic.
cors The value of cor(Xu,Zv) obtained for each value of sumabss.

corperms The nperms values of cor(Xu,Zv*) obtained for each value of sumabss, where
X* indicates the X matrix with permuted rows, and u* and v* are the output of
CCA using data (X*,Z).

ft.cors The result of applying Fisher transformation to cors.

ft.corperms The result of applying Fisher transformation to corperms.

10 download_breast_data

nnonzerous Number of non-zero u’s resulting from applying CCA to data (X,Z) for each
value of sumabss.

nnonzerouv Number of non-zero v’s resulting from applying CCA to data (X,Z) for each
value of sumabss.

v.init The first factor of the v matrix of the SVD of x’z. This is saved in case this
function (or the CCA function) will be re-run later.

References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),
515-534, Jul 2009

See Also

PMD,CCA

Examples

See examples in CCA function

download_breast_data Download and return the breast data

Description

Breast cancer gene expression + DNA copy number data set from Chin et. al. and used in Witten,
et. al. See references below.

This data set consists of gene expression and DNA copy number measurements on a set of 89
samples. The data set can be used to perform integrative analysis of gene expression and DNA
copy number data, as in . That is, we can look for sets of genes that are associated with regions of
chromosomal gain/loss.

Missing values were imputed using 5-nearest neighbors (see library pamr).

Usage

download_breast_data(url = "https://tibshirani.su.domains/PMA/breastdata.rda")

Arguments

url source, default "https://tibshirani.su.domains/PMA/breastdata.rda”

MultiCCA 11

Value

a list containing the following elements:

* dna: a 2149x89 matrix of CGH spots x Samples

* rna: a 19672x89 matrix of Genes x Samples

* chrom: a 2149-vector of chromosomal location of each CGH spot

* nuc: a 2149-vector of nucleotide position for each CGH spot

* gene: a 19672-vector wiith an accession number for each gene

* genenames: a 19672-vector with a name for each gene

* genechr: a 19672-vector with a chromosomal location for each gene
* genedesc: a 19672-vector with a description for each gene

* genepos: a 19672-vector with a nucleotide position for each gene.

References

Chin K., et. al. (2006) doi:10.1016/j.ccr.2006.10.009.
Witten D. M., Tibshirani R., and Hastie, T. (2009) doi:10.1093/biostatistics/kxp008.

MultiCCA Perform sparse multiple canonical correlation analysis.

Description

Given matrices $X1,...,XK$, which represent K sets of features on the same set of samples, find
sparse $w1,...,wK$ such that $sum_(i<j) (wi’ Xi’ Xj wj)$ is large. If the columns of Xk are ordered
(and type="ordered") then wk will also be smooth. For $X1,...,.XK$, the samples are on the rows
and the features are on the columns. $XI1,...,XK$ must have same number of rows, but may (and
usually will) have different numbers of columns.

Usage

MultiCCA(
xlist,
penalty = NULL,
ws = NULL,
niter = 25,
type = "standard”,
ncomponents = 1,
trace = TRUE,
standardize = TRUE

https://doi.org/10.1016/j.ccr.2006.10.009
https://doi.org/10.1093/biostatistics/kxp008

12 MultiCCA

Arguments

xlist A list of length K, where K is the number of data sets on which to perform
sparse multiple CCA. Data set k should be a matrix of dimension $n x p_k$
where p_k is the number of features in data set k.

penalty The penalty terms to be used. Can be a single value (if the same penalty term is
to be applied to each data set) or a K-vector, indicating a different penalty term
for each data set. There are 2 possible interpretations for the penalty terms: If
type="standard" then this is an L1 bound on wk, and it must be between 1 and
$sqrt(p_k)$ (p_k is the number of features in matrix Xk). If type="ordered"
then this is the parameter for the fused lasso penalty on wk.

WS A list of length K. The kth element contains the first ncomponents columns of
the v matrix of the SVD of Xk. If NULL, then the SVD of $X1,...,.XK$ will
be computed inside the MultiCCA function. However, if you plan to run this
function multiple times, then save a copy of this argument so that it does not
need to be re-computed.

niter How many iterations should be performed? Default is 25.

type Are the columns of $x1,...,.xK$ unordered (type="standard") or ordered (type="ordered")?
If "standard", then a lasso penalty is applied to v, to enforce sparsity. If "or-
dered" (generally used for CGH data), then a fused lasso penalty is applied, to
enforce both sparsity and smoothness. This argument can be a vector of length
K (if different data sets are of different types) or it can be a single value "or-
dered"/"standard" (if all data sets are of the same type).

ncomponents How many factors do you want? Default is 1.
trace Print out progress?

standardize Should the columns of $X1,...,XK$ be centered (to have mean zero) and scaled
(to have standard deviation 1)? Default is TRUE.

Value

ws A list of length K, containg the sparse canonical variates found (element k is a
$p_k x ncomponents$ matrix).

ws.init A list of length K containing the initial values of ws used, by default these are
the v vector of the svd of matrix Xk.
References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),
515-534, Jul 2009

See Also

MultiCCA.permute, CCA, CCA.permute

MultiCCA.permute 13

Examples

Generate 3 data sets so that first 25 features are correlated across
the data sets...

set.seed(123)

u <- matrix(rnorm(50),ncol=1)

vl <- matrix(c(rep(.5,25),rep(0,75)),ncol=1)

v2 <- matrix(c(rep(1,25),rep(@,25)),ncol=1)

v3 <- matrix(c(rep(.5,25),rep(0,175)),ncol=1)

X1 <= u%*x%t(vl) + matrix(rnorm(50%100),ncol=100)
X2 <- u%*%t(v2) + matrix(rnorm(50%50),ncol=50)
X3 <= u%*%t(v3) + matrix(rnorm(50%200),ncol=200)

xlist <- list(x1, x2, x3)

Run MultiCCA.permute w/o specifying values of tuning parameters to
try.

The function will choose the lambda for the ordered data set.

Then permutations will be used to select optimal sum(abs(w)) for

standard data sets.

We assume that x1 is standard, x2 is ordered, x3 is standard:
perm.out <- MultiCCA.permute(xlist, type=c("standard”, "ordered”,
"standard"))

print(perm.out)

plot(perm.out)

out <- MultiCCA(xlist, type=c("”standard”, "ordered”, "standard”),
penalty=perm.out$bestpenalties, ncomponents=2, ws=perm.out$ws.init)
print(out)

Or if you want to specify tuning parameters by hand:

this time, assume all data sets are standard:

perm.out <- MultiCCA.permute(xlist, type="standard"”,
penalties=cbind(c(1.1,1.1,1.1),c(2,3,4),c(5,7,10)), ws=perm.out$ws.init)
print(perm.out)

plot(perm.out)

Making use of the fact that the features are ordered:
out <- MultiCCA(xlist, type="ordered”, penalty=.6)
par(mfrow=c(3,1))

PlotCGH(out$ws[[11], chrom=rep(1,ncol(x1)))
PlotCGH(out$ws[[2]], chrom=rep(2,ncol(x2)))
PlotCGH(out$ws[[3]1]1, chrom=rep(3,ncol(x3)))

MultiCCA.permute Select tuning parameters for sparse multiple canonical correlation
analysis using the penalized matrix decomposition.

Description

This function can be used to automatically select tuning parameters for sparse multiple CCA. This
is the analog of sparse CCA, when >2 data sets are available. Each data set may have features

14

MultiCCA.permute

of type="standard" or type="ordered" (e.g. CGH data). Assume that there are K data sets, called

$X1.....XK$.

Usage

MultiCCA.permute(

xlist,

penalties = NULL,

ws = NULL,

type = "standard”,

nperms = 10,
niter = 3,
trace = TRUE,

standardize = TRUE

Arguments

xlist

penalties

WS

type

nperms

A list of length K, where K is the number of data sets on which to perform
sparse multiple CCA. Data set k should be a matrix of dimension $n x p_k$
where p_k is the number of features in data set k.

The penalty terms to be considered in the cross-validation. If the same penalty
term is desired for each data set, then this should be a vector of length equal
to the number of penalty terms to be considered. If different penalty terms are
desired for each data set, then this should be a matrix with rows equal to the
number of data sets, and columns equal to the number of penalty terms to be
considered. For a given data set Xk, if type is "standard" then the penalty term
should be a number between 1 and $sqrt(p_k)$ (the number of features in data
set k); itis a L1 bound on wk. If type is "ordered", on the other hand, the penalty
term is of the form lambda in the fused lasso penalty. Therefore, the interpreta-
tion of the argument depends on whether type is "ordered" or "standard" for this
data set.

A list of length K; the kth element contanis the first ncomponents columns of
the v matrix of the SVD of Xk. If NULL, then the SVD of Xk will be computed
inside this function. However, if you plan to run this function multiple times,
then save a copy of this argument so that it does not need to be re-computed.

A K-vector containing elements "standard" or "ordered" - or a single value. If a
single value, then it is assumed that all elements are the same (either "standard"
or "ordered"). If columns of v are ordered (e.g. CGH spots ordered along the
chromosome) then "ordered", otherwise use "standard". "standard" will result
in a lasso ($L._1$) penalty on v, which will result in smoothness. "ordered" will
result in a fused lasso penalty on v, yielding both sparsity and smoothness.

How many times should the data be permuted? Default is 25. A large value of
nperms is very important here, since the formula for computing the z-statistics
requires a standard deviation estimate for the correlations obtained via permuta-
tion, which will not be accurate if nperms is very small.

MultiCCA.permute 15

niter How many iterations should be performed each time CCA is called? Default
is 3, since an approximate estimate of u and v is acceptable in this case, and
otherwise this function can be quite time-consuming.

trace Print out progress?

standardize Should the columns of X and Z be centered (to have mean zero) and scaled (to
have standard deviation 1)? Default is TRUE.

Details

The tuning parameters are selected using a permutation scheme. For each candidate tuning parame-
ter value, the following is performed: (1) Repeat the following n times, for n large: (a) The samples
in $(X1,...,XK)$ are randomly permuted to obtain data sets $(X1%,...,.XK*)$. (b) Sparse multiple
CCA is run on the permuted data sets $(X1%,...,.XK*)$ to get canonical variates $(w1*,..., wK*)$.
(c) Record $t* = sum_(i<j) Cor(Xi* wi*, Xj* wj*)$. (2) Sparse CCA is run on the original data
$(X1,...,.XK)$ to obtain canonical variates $(wl,...,wK)$. (3) Record $t = sum_(i<j) Cor(Xi wi,
Xj wj)$. (4) The resulting p-value is given by $mean(t* > t)$; that is, the fraction of permuted
totals that exceed the total on the real data. Then, choose the tuning parameter value that gives the
smallest value in Step 4.

This function only selets tuning parameters for the FIRST sparse multiple CCA factors.

Note that $x1,...,xK$ must have same number of rows. This function performs just a one-dimensional
search in tuning parameter space.

Value
zstat The vector of z-statistics, one per element of penalties.
pvals The vector of p-values, one per element of penalties.

bestpenalties The best set of penalties (the one with the highest zstat).

cors The value of $sum_(j<k) cor(Xk wk, Xj wj)$ obtained for each value of penal-
ties.
corperms The nperms values of $sum_(j<k) cor(Xk* wk*, Xj* wj*)$ obtained for each

value of penalties, where Xk* indicates the Xk matrix with permuted rows, and
wk* is the canonical variate corresponding to the permuted data.

ws.init Initial values used for ws in sparse multiple CCA algorithm.

References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),
515-534, Jul 2009

See Also

MultiCCA, CCA.permute, CCA

16 PlotCGH

Examples

See examples in MultiCCA function

PlotCGH Plot CGH data

Description

Given a vector of gains/losses at CGH spots, this makes a plot of gain/loss on each chromosome.

Usage
PlotCGH(array, chrom = NULL, nuc = NULL, main = "", scaleEachChrom = TRUE)
Arguments
array A vector containing the chromosomal location of each CGH spot.
chrom A numeric vector of the same length as "array"; its values should indicate the
chromosome that each CGH spot is on (for instance, for human genomic data,
values of chrom should range from 1 to 24). If NULL, then it is assumed that
all elements of ’array’ are on the same chromosome.
nuc A numeric vector of same length as "array", indicating the nucleotide position
of each CGH spot. If NULL, then the function assumes that each CGH spot
corresponds to a consecutive position. E.g. if there are 200 CGH spots on
chromosome 1, then they are located at positions 1,2,...,199,200.
main Give your plot a title.

scalekachChrom Default is TRUE. This means that each chromosomes CGH spots are divided by
1.1 times the max of the CGH spots on that chromosome. This way, the CGH
spots on each chromosome of the plot are as big as possible (i.e. easy to see).
If FALSE, then all of the CGH spots are divided by 1.1 times the max of ALL
the CGH spots. This means that on some chromosomes CGH spots might be
hard to see, but has the advantage that now relative magnitudes of CGH spots
on different chromosomes can be seen from figure.

Details

This function makes a plot of regions of genomic gain/loss.

References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),
515-534, Jul 2009

PMD 17

See Also
PMD, PMD.cv, CCA, CCA.permute

Examples

Not run:

Use breast data

breastdata <- download_breast_data()

with(breastdata, {

dna contains CGH data and chrom contains chromosome of each CGH spot;
nuc contains position of each CGH spot.

dna <- t(dna)

chl <- which(chrom == 1)
PlotCGH(dna[1,], chrom=chrom,nuc=nuc,main="Sample 1: All Chromosomes")
PlotCGH(dnal[1,ch1], chrom=chrom[ch1], nuc=nuc[ch1],

main= "Sample 1: Chrom 1")

chlt3 = which(chrom <= 3)

PlotCGH(dna[1,chl1t3], chrom=chrom[chlt3], nuc=nuc[chlt3],
main="Sample 1: Chroms 1, 2, and 3")

)

End(Not run)

PMD Get a penalized matrix decomposition for a data matrix.

Description

Performs a penalized matrix decomposition for a data matrix. Finds factors u and v that summarize
the data matrix well. u and v will both be sparse, and v can optionally also be smooth.

Usage

PMD(
X,
type = c("standard”, "ordered"),
sumabs = 0.4,
sumabsu = 5,
sumabsv = NULL,
lambda = NULL,

niter = 20,
K=1,

v = NULL,
trace = TRUE,
center = TRUE,
chrom = NULL,

rnames = NULL,
cnames = NULL,

18

upos
uneg
vpos
vneg

Arguments

X

type

sumabs

sumabsu

sumabsv

lambda

niter

trace
center

chrom

FALSE,
FALSE,
FALSE,
FALSE

PMD

Data matrix of dimension $n x p$, which can contain NA for missing values.

"standard" or "ordered": Do we want v to simply be sparse, or should it also be
smooth? If the columns of x are ordered (e.g. CGH spots along a chromosome)
then choose "ordered". Default is "standard". If "standard", then the PMD func-
tion will make use of sumabs OR sumabsu&sumabsv. If "ordered", then the
function will make use of sumabsu and lambda.

Used only if type is "standard". A measure of sparsity for u and v vectors, be-
tween 0 and 1. When sumabs is specified, and sumabsu and sumabsv are NULL,
then sumabsu is set to $sqrt(n)*sumabs$ and sumabsv is set to $sqrt(p)*sumabs$.
If sumabs is specified, then sumabsu and sumabsv should be NULL. Or if sum-
absu and sumabsyv are specified, then sumabs should be NULL.

Used for types "ordered" AND "standard". How sparse do you want u to be?
This is the sum of absolute values of elements of u. It must be between 1 and
the square root of the number of rows in data matrix. The smaller it is, the
sparser u will be.

Used only if type is "standard". How sparse do you want v to be? This is the
sum of absolute values of elements of v. It must be between 1 and square root
of number of columns of data. The smaller it is, the sparser v will be.

Used only if type is "ordered". This is the tuning parameter for the fused lasso
penalty on v, which takes the form $lambda IIvll/ + lambda v_j - v(G-1)I$.
$lambda$ must be non-negative. If NULL, then it is chosen adaptively from
the data.

How many iterations should be performed. It is best to run at least 20 of so.
Default is 20.

The number of factors in the PMD to be returned; default is 1.

The first right singular vector(s) of the data. (If missing data is present, then the
missing values are imputed before the singular vectors are calculated.) v is used
as the initial value for the iterative PMD algorithm. If x is large, then this step
can be time-consuming; therefore, if PMD is to be run multiple times, then v
should be computed once and saved.

Print out progress as iterations are performed? Default is TRUE.
Subtract out mean of x? Default is TRUE.

If type is "ordered", then this gives the option to specify that some columns of
x (corresponding to CGH spots) are on different chromosomes. Then v will
be sparse, and smooth within each chromosome but not between chromosomes.
Length of chrom should equal number of columns of x, and each entry in chrom
should be a number corresponding to which chromosome the CGH spot is on.

PMD

rnames
cnames
upos
uneg

Vpos

vneg

Details

19

An optional vector containing a name for each row of x.

An optional vector containing a name for each column of x.
Constrain the elements of u to be positive? TRUE or FALSE.
Constrain the elements of u to be negative? TRUE or FALSE.

Constrain the elements of v to be positive? TRUE or FALSE. Cannot be used if
type is "ordered".

Constrain the elements of v to be negative? TRUE or FALSE. Cannot be used if
type is "ordered."

The criterion for the PMD is as follows: we seek vectors u and v such that $u’XvS$ is large,
subject to $llull_2=1, livll_2=1$ and additional penalties on u and v. These additional penalties
are as follows: If type is "standard", then lasso (L_1) penalties (promoting sparsity) are placed on
u and v. If type is "ordered", then lasso penalty is placed on u and a fused lasso penalty (promoting
sparsity and smoothness) is placed on v.

If type is "standard", then arguments sumabs OR sumabsu&sumabsv are used. If type is "ordered",
then sumabsu AND lambda are used. Sumabsu is the bound of absolute value of elements of u.
Sumabsv is bound of absolute value of elements of v. If sumabs is given, then sumabsu is set to
sqrt(nrow(x))*sumabs and sumabsv is set to sqrt(ncol(x))*sumabs. $lambda$ is the parameter for
the fused lasso penalty on v when type is "ordered": $lambda(llvil] + sum_j Iv_j - v(j-1))$.

Value

u

v.init

meanx

References

u is output. If you asked for multiple factors then each column of u is a factor. u
has dimension nxK if you asked for K factors.

v is output. If you asked for multiple factors then each column of v is a factor. v
has dimension pxK if you asked for K factors.

d is output. Computationally, $d=u’Xv$ where u and v are the sparse fac-
tors output by the PMD function and X is the data matrix input to the PMD
function. When K=1, the residuals of the rank-1 PMD are given by $X - duv’$.

The first right singular vector(s) of the data; these are returned to save on com-
putation time if PMD will be run again.

Mean of x that was subtracted out before PMD was performed.

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),

515-534, Jul 2009

See Also
PMD.cv, SPC

20 PMD

Examples

Try PMD with L1 penalty on rows and columns: type="standard”

A simple simulated example

set.seed(1)

Our data is a rank-one matrix, plus noise. The underlying components

contain 50 and 75 non-zero elements, respectively.

u <- matrix(c(rnorm(50), rep(0,150)),

ncol=1)

v <- matrix(c(rnorm(75),rep(@,225)), ncol=1)

X <= u%*%t(v)+

matrix(rnorm(200%300),ncol=300)

We can use cross-validation to try to find optimal value of sumabs
cv.out <- PMD.cv(x, type="standard”, sumabss=seq(@.1, 0.6, len=20))
print(cv.out)

plot(cv.out)

The optimal value of sumabs is ©0.4157, but we can get within one

standard error of that CV error using sumabs=0.337, which corresponds to
an average of 45.8 and 71.8 non-zero elements in each component - pretty
close to the true model.

We can fit the model corresponding to the lowest cross-validation error:
out <- PMD(x, type="standard"”, sumabs=cv.out$bestsumabs, K=1, v=cv.out$v.init)
print(out)
par(mfrow=c(2,2))
par(mar=c(2,2,2,2))
plot(out$ul,1], main="Est. u")

plot(out$v[,1], main="Est. v")

plot(u, main="True u")

plot(v, main="True v")

And if we want to control sumabsu and sumabsv separately, we can do
that too. Let's get 2 components while we're at it:

out2 <- PMD(x, type="standard”, K=2, sumabsu=6, sumabsv=8, v=out$v.init,
cnames=paste("v", sep=" ", 1:ncol(x)), rnames=paste("u”, sep=" ", T:nrow(x)))
print(out2)

Now check out PMD with L1 penalty on rows and fused lasso penalty on
columns: type="ordered”. We'll use the Chin et al (2006) Cancer Cell
data set; try "?breastdata” for more info.

Not run:

breastdata <- download_breast_data()

with(breastdata, {

dna contains CGH data and chrom contains chromosome of each CGH spot;
nuc contains position of each CGH spot.

dna <- t(dna) # Need samples on rows and CGH spots on columns

First, look for shared regions of gain/loss on chromosome 1.

Use cross-validation to choose tuning parameter value
par(mar=c(2,2,2,2))

ch1l = which(chrom == 1)

cv.out <- PMD.cv(dna[, ch1],type="ordered”,chrom=chrom[ch1],
nuc=nuc[ch1],

sumabsus=seq(1, sqrt(nrow(dna)), len=15))

print(cv.out)

PMD.cv 21

plot(cv.out)

out <- PMD(dna[l,chrom==1],type="ordered”,
sumabsu=cv.out$bestsumabsu, chrom=chrom{chrom==1],K=1,v=cv.out$v.init,
cnames=paste("Pos",sep="",

nuc[chrom==1]), rnames=paste(”Sample”, sep=" ", 1:nrow(dna)))
print(out, verbose=TRUE)

Which samples actually have that region of gain/loss?
par(mfrow=c(3,1))

par(mar=c(2,2,2,2))

PlotCGH(dna[which.min(out$ul,1]),chrom==1], chrom=chrom[chrom==1],
main=paste(paste(paste(”Sample ", sep="", which.min(out$ul,1])),
sep="; u=", round(min(out$ul,11),3))),nuc=nucfchrom==1])
PlotCGH(dna[88,chrom==1], chrom=chrom[chrom==1],

main=paste("”Sample 88; u=", sep="", round(out$ul[88,1],3)),
nuc=nuc[chrom==11])

PlotCGH(out$v[, 1], chrom=chrom[chrom==1], main="V" nuc=nuc[chrom==1])

i)

End(Not run)

PMD.cv Do tuning parameter selection for PMD via cross-validation

Description

Performs cross-validation to select tuning parameters for rank-1 PMD, the penalized matrix decom-
position for a data matrix.

Usage

PMD. cv(
X,
type = c("standard”, "ordered"),
sumabss = seq(@.1, 0.7, len = 10),
sumabsus = NULL,
lambda = NULL,

nfolds = 5,
niter = 5,

v = NULL,
chrom = NULL,
nuc = NULL,
trace = TRUE,
center = TRUE,
upos = FALSE,
uneg = FALSE,
vpos = FALSE,
vheg = FALSE

22 PMD.cv

Arguments

X Data matrix of dimension $n x p$, which can contain NA for missing values.

type "standard" or "ordered": Do we want v to simply be sparse, or should it also be
smooth? If the columns of x are ordered (e.g. CGH spots along a chromosome)
then choose "ordered". Default is "standard". If "standard", then the PMD func-
tion will make use of sumabs OR sumabsu&sumabsv. If "ordered", then the
function will make use of sumabsu and lambda.

sumabss Used only if type is "standard". A vector of sumabs values to be used. Sumabs
is a measure of sparsity for u and v vectors, between 0 and

1. When sumabss is specified, and sumabsus and sumabsvs are NULL, then
sumabsus is set to $sqrt(n)*sumabss$ and sumabsvs is set at $sqrt(p)*sumabss$.
If sumabss is specified, then sumabsus and sumabsvs should be NULL. Or
if sumabsus and sumabsvs are specified, then sumabss should be NULL.

sumabsus Used only for type "ordered". A vector of sumabsu values to be used. Sumabsu
measures sparseness of u - it is the sum of absolute values of elements of u.
Must be between 1 and sqrt(n).

lambda Used only if type is "ordered". This is the tuning parameter for the fused lasso
penalty on v, which takes the form $lambda Ilvll/ + lambda v_j - v(G-1)I$.
$lambda$ must be non-negative. If NULL, then it is chosen adaptively from
the data.

nfolds How many cross-validation folds should be performed? Default is 5.

niter How many iterations should be performed. For speed, only 5 are performed by
default.

v The first right singular vector(s) of the data. (If missing data is present, then the
missing values are imputed before the singular vectors are calculated.) v is used
as the initial value for the iterative PMD algorithm. If x is large, then this step
can be time-consuming; therefore, if PMD is to be run multiple times, then v
should be computed once and saved.

chrom If type is "ordered", then this gives the option to specify that some columns of
x (corresponding to CGH spots) are on different chromosomes. Then v will
be sparse, and smooth within each chromosome but not between chromosomes.
Length of chrom should equal number of columns of x, and each entry in chrom
should be a number corresponding to which chromosome the CGH spot is on.

nuc If type is "ordered", can specify the nucleotide position of each CGH spot (col-
umn of x), to be used in plotting. If NULL, then it is assumed that CGH spots
are equally spaced.

trace Print out progress as iterations are performed? Default is TRUE.
center Subtract out mean of x? Default is TRUE

upos Constrain the elements of u to be positive? TRUE or FALSE.
uneg Constrain the elements of u to be negative? TRUE or FALSE.

vpos Constrain the elements of v to be positive? TRUE or FALSE. Cannot be used if
type is "ordered".

vheg Constrain the elements of v to be negative? TRUE or FALSE. Cannot be used if
type is "ordered."

PMD.cv 23

Details

If type is "standard", then lasso (L_1) penalties (promoting sparsity) are placed on u and v. If
type is "ordered", then lasso penalty is placed on u and a fused lasso penalty (promoting sparsity
and smoothness) is placed on v.

Cross-validation of the rank-1 PMD is performed over sumabss (if type is "standard") or over sum-
absus (if type is "ordered"). If type is "ordered", then lambda is chosen from the data without
cross-validation.

The cross-validation works as follows: Some percent of the elements of x is removed at random
from the data matrix. The PMD is performed for a range of tuning parameter values on this partially-
missing data matrix; then, missing values are imputed using the decomposition obtained. The value
of the tuning parameter that results in the lowest sum of squared errors of the missing values if
"best".

To do cross-validation on the rank-2 PMD, first the rank-1 PMD should be computed, and then this
function should be performed on the residuals, given by $x-udv’$.

Value
cv Average sum of squared errors obtained over cross-validation folds.
cv.error Standard error of average sum of squared errors obtained over cross-validation
folds.
bestsumabs If type="standard", then value of sumabss resulting in smallest CV error is re-
turned.
bestsumabsu If type="ordered", then value of sumabsus resulting in smallest CV error is re-
turned.
v.init The first right singular vector(s) of the data; these are returned to save on com-
putation time if PMD will be run again.
References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),
515-534, Jul 2009

See Also

PMD, SPC

Examples

See examples in PMD help file

24

SPC

SPC

Perform sparse principal component analysis

Description

Performs sparse principal components analysis by applying PMD to a data matrix with lasso (L_1)
penalty on the columns and no penalty on the rows.

Usage

SPC(
X,
sumabsv = 4,
niter = 20,
K=1,
orth = FALSE,
trace = TRUE,
v = NULL,
center = TRUE
cnames = NULL
vpos = FALSE,
vneg = FALSE,
compute.pve =

Arguments

X

sumabsv

niter

orth

trace

center

chames

’

’

TRUE

Data matrix of dimension $n x p$, which can contain NA for missing values.
We are interested in finding sparse principal components of dimension p.

How sparse do you want v to be? This is the sum of absolute values of elements
of v. It must be between 1 and square root of number of columns of data. The
smaller it is, the sparser v will be.

How many iterations should be performed. It is best to run at least 20 of so.
Default is 20.

The number of factors in the PMD to be returned; default is 1.

If TRUE, then use method of Section 3.2 of Witten, Tibshirani and Hastie (2008)
to obtain multiple sparse principal components. Default is FALSE.

Print out progress as iterations are performed? Default is TRUE.

The first right singular vector(s) of the data. (If missing data is present, then the
missing values are imputed before the singular vectors are calculated.) v is used
as the initial value for the iterative PMD(L_1, L_1) algorithm. If x is large,
then this step can be time-consuming; therefore, if PMD is to be run multiple
times, then v should be computed once and saved.

Subtract out mean of x? Default is TRUE

An optional vector containing a name for each column.

SPC 25

vpos Constrain the elements of v to be positive? TRUE or FALSE.
vheg Constrain the elements of v to be negative? TRUE or FALSE.
compute.pve Compute percent variance explained? Default TRUE. If not needed, then choose

FALSE to save time.

Details

PMD(x,sumabsu=sqrt(nrow(x)), sumabsv=3, K=1) and SPC(x,sumabsv=3, K=1) give the same re-
sult, since the SPC method is simply PMD with an L1 penalty on the columns and no penalty on
the rows.

In Witten, Tibshirani, and Hastie (2008), two methods are presented for obtaining multiple factors
for SPC. The methods are as follows:

(1) If one has already obtained factors $k-1$ factors then oen can compute residuals by subtracting
out these factors. Then u_k and v_k can be obtained by applying the SPC/PMD algorithm to
the residuals.

(2) One can require that u_k be orthogonal to u_i’s with $i<k$; the method is slightly more
complicated, and is explained in WT&H(2008).

Method 1 is performed by running SPC with option orth=FALSE (the default) and Method 2 is
performed using option orth=TRUE. Note that Methods 1 and 2 always give identical results for the
first component, and often given quite similar results for later components.

Value
u u is output. If you asked for multiple factors then each column of u is a factor. u
has dimension nxK if you asked for K factors.
v v is output. These are the sparse principal components. If you asked for multiple
factors then each column of v is a factor. v has dimension pxK if you asked for
K factors.
d d is output; it is the diagonal of the matrix D in the penalized matrix decom-

position. In the case of the rank-1 decomposition, it is given in the formulation
$IIX-duv’ll_FA2$ subject to $llull_1 <= sumabsu$, $llvl_1 <= sumabsv$. Com-
putationally, $d=u’Xv$ where u and v are the sparse factors output by the
PMD function and X is the data matrix input to the PMD function.
prop.var.explained

A vector containing the proportion of variance explained by the first 1, 2, ..., K
sparse principal components obtaineds. Formula for proportion of variance ex-
plained is on page 20 of Shen & Huang (2008), Journal of Multivariate Analysis
99: 1015-1034.

v.init The first right singular vector(s) of the data; these are returned to save on com-
putation time if PMD will be run again.

meanx Mean of x that was subtracted out before SPC was performed.

References

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),

26 SPC.cv

515-534, Jul 2009

See Also
SPC.cv, PMD, PMD.cv

Examples

A simple simulated example

#NOT RUN

#set.seed(1)

#u <- matrix(c(rnorm(50), rep(@,150)),ncol=1)

#v <- matrix(c(rnorm(75),rep(@,225)), ncol=1)

#x <- u%*%t(v)+matrix(rnorm(200%300),ncol=300)

Perform Sparse PCA - that is, decompose a matrix w/o penalty on rows
and w/ L1 penalty on columns

First, we perform sparse PCA and get 4 components, but we do not

require subsequent components to be orthogonal to previous components
#out <- SPC(x,sumabsv=3, K=4)

#print(out,verbose=TRUE)

We could have selected sumabsv by cross-validation, using function SPC.cv
Now, we do sparse PCA using method in Section 3.2 of WT&H(2008) for getting
multiple components - that is, we require components to be orthogonal
#out.orth <- SPC(x,sumabsv=3, K=4, orth=TRUE)
#print(out.orth,verbose=TRUE)

#par (mfrow=c(1,1))

#plot(out$ul,1], out.orth$ul,1], xlab="", ylab="")

Note that the first components w/ and w/o orth option are identical,
since the orth option only affects the way that subsequent components
are found

#print(round(t(out$u)%*%out$u,4)) # not orthogonal
#print(round(t(out.orth$u)%x%out.orth$u,4)) # orthogonal

#

Use SPC.cv to choose tuning parameters:

#cv.out <- SPC.cv(x)

#print(cv.out)

#plot(cv.out)

#out <- SPC(x, sumabsv=cv.out$bestsumabsv)

#print(out)

or we could do

#out <- SPC(x, sumabsv=cv.out$bestsumabsvise)

#print(out)

#

#

SPC.cv Perform cross-validation on sparse principal component analysis

SPC.cv 27

Description

Selects tuning parameter for the sparse principal component analysis method of Witten, Tibshirani,
and Hastie (2008), which involves applying PMD to a data matrix with lasso (L_1) penalty on
the columns and no penalty on the rows. The tuning parameter controls the sum of absolute values
- or $L._1$ norm - of the elements of the sparse principal component.

Usage
SPC.cv(

X,
sumabsvs = seq(1.2, 5, len = 10),
nfolds = 5,
niter = 5,
v = NULL,
trace = TRUE,
orth = FALSE,
center = TRUE,
vpos = FALSE,
vneg = FALSE

)

Arguments

X Data matrix of dimension $n x p$, which can contain NA for missing values.
We are interested in finding sparse principal components of dimension p.

sumabsvs Range of sumabsv values to be considered in cross-validation. Sumabsv is the
sum of absolute values of elements of v. It must be between 1 and square root
of number of columns of data. The smaller it is, the sparser v will be.

nfolds Number of cross-validation folds performed.

niter How many iterations should be performed. By default, perform only 5 for speed
reasons.

Y% The first right singular vector(s) of the data. (If missing data is present, then the
missing values are imputed before the singular vectors are calculated.) v is used
as the initial value for the iterative PMD(L_1, $L._1$) algorithm. If x is large,
then this step can be time-consuming; therefore, if PMD is to be run multiple
times, then v should be computed once and saved.

trace Print out progress as iterations are performed? Default is TRUE.

orth If TRUE, then use method of Section 3.2 of Witten, Tibshirani and Hastie (2008)
to obtain multiple sparse principal components. Default is FALSE.

center Subtract out mean of x? Default is TRUE

vpos Constrain elements of v to be positive? Default is FALSE.

vneg Constrain elements of v to be negative? Default is FALSE.

28

Details

SPC.cv

This method only performs cross-validation for the first sparse principal component. It does so
by performing the following steps nfolds times: (1) replace a fraction of the data with missing
values, (2) perform SPC on this new data matrix using a range of tuning parameter values, each
time getting a rank-1 approximationg $udv’$ where v is sparse, (3) measure the mean squared
error of the rank-1 estimate of the missing values created in step 1.

Then, the selected tuning parameter value is that which resulted in the lowest average mean squared

error in step 3.

In order to perform cross-validation for the second sparse principal component, apply this function
to $X-udv’$ where $udv’$ are the output of running SPC on the raw data X.

Value

Ccv

cv.error

bestsumabsv

nonzerovs

v.init

bestsumabsvise

References

Average sum of squared errors that results for each tuning parameter value.

Standard error of the average sum of squared error that results for each tuning
parameter value.

Value of sumabsv that resulted in lowest CV error.

Average number of non-zero elements of v for each candidate value of sumab-
SVS.

Initial value of v that was passed in. Or, if that was NULL, then first right
singular vector of X.

The smallest value of sumabsv that is within 1 standard error of smallest CV
€erTor.

Witten D. M., Tibshirani R., and Hastie, T. (2009) A penalized matrix decomposition, with applica-
tions to sparse principal components and canonical correlation analysis, Biostatistics, Gol 10 (3),

515-534, Jul 2009

See Also

SPC, PMD, PMD.cv

Examples

#NOT RUN

A simple simulated example

#set.seed(1)

#u <- matrix(c(rnorm(50), rep(@,150)),ncol=1)

#v <- matrix(c(rnorm(75),rep(@,225)), ncol=1)

#x <- u%*%t(v)+matrix(rnorm(200%300),ncol=300)

Perform Sparse PCA - that is, decompose a matrix w/o penalty on rows
and w/ L1 penalty on columns

First, we perform sparse PCA and get 4 components, but we do not

require subsequent components to be orthogonal to previous components
#cv.out <- SPC.cv(x, sumabsvs=seq(1.2, sqrt(ncol(x)), len=6))

SPC.cv 29

#print(cv.out)

#plot(cv.out)

#out <- SPC(x,sumabsv=cv.out$bestsumabs, K=4) # could use

cv.out$bestsumabvsvise instead

#print(out,verbose=TRUE)

Now, we do sparse PCA using method in Section 3.2 of WT&H(2008) for getting
multiple components - that is, we require components to be orthogonal
#cv.out <- SPC.cv(x, sumabsvs=seq(1.2, sqrt(ncol(x)), len=6), orth=TRUE)
#print(cv.out)

#plot(cv.out)

#out.orth <- SPC(x,sumabsv=cv.out$bestsumabsv, K=4, orth=TRUE)
#print(out.orth,verbose=TRUE)

#par(mfrow=c(1,1))

#plot(out$ul,1], out.orth$ul,1], xlab="", ylab="")

#

#

Index

CCA,2,10,12,15,17
CCA.permute, 5,6, 12, 15,17

download_breast_data, 10

MultiCCA, 11, 15
MultiCCA.permute, 12,13

plot.MultiCCA.permute
(MultiCCA.permute), 13
plot.SPC.cv (SPC.cv), 26
PlotCGH, 16
PMD, 5, 10, 17,17, 23, 26, 28
PMD.cv, 17, 19,21, 26, 28
print.CCA (CCA), 2
print.MultiCCA (MultiCCA), 11
print.MultiCCA.permute
(MultiCCA.permute), 13
print.SPC (SPC), 24
print.SPC.cv (SPC.cv), 26

SPC, 19, 23, 24, 28
SPC.cv, 26, 26

30

	CCA
	CCA.permute
	download_breast_data
	MultiCCA
	MultiCCA.permute
	PlotCGH
	PMD
	PMD.cv
	SPC
	SPC.cv
	Index

