Package ‘PopulateR’

January 29, 2025
Type Package

Title Create Data Frames for the Micro-Simulation of Human Populations
Version 1.13
Maintainer Michelle Gosse <michelle.a.gosse@gmail.com>

Description Tools for constructing detailed synthetic human populations
from frequency tables. Add ages based on age groups and sex, create households, add
students to education facilities, create employers, add employers to employees, and
create interpersonal networks.

Depends R (>=4.0)

Imports brainGraph (>= 3.1.0), data.table (>= 1.16.2), dplyr (>=
1.1.4), igraph (>= 2.1.1), magrittr (>= 2.0.3), PearsonDS (>=
1.3.1), plyr >=1.8.9), rlang (>= 1.1.4), sn (>=2.1.1), tidyr
(>=1.3.1), tidyselect (>= 1.2.1), withr (>= 3.0.2)

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

URL https://github.com/programgirl/PopulateR

BugReports https://github.com/programgirl/PopulateR/issues
NeedsCompilation no

Author Michelle Gosse [aut, cre, cph],
Jonathan Marshall [aut],
Mark Bebbington [ctb]

Repository CRAN
Date/Publication 2025-01-29 18:30:05 UTC

Contents

ABMToCova e e
addemp

https://github.com/programgirl/PopulateR
https://github.com/programgirl/PopulateR/issues

2 ABMToCova
addind 5
addnetwork e 7
addschool 9
AdultsNoID 11
agedis e 11
AllEmployers 13
BadRels 13
L0 LT 151 101 o A 14
diffsample 15
EmployerSet e 16
fastmatch 16
fixhours L 18
fixrelations 19
GroupInfo 21
InitialDataframe 21
interdiff 22
IntoSchools 23
LeftSchool 24
NetworkMatriX o o o e e 25
other 25
otherNum e 27
pairbetad . . . L L e e 28
pairbetadNum oL 31
pairmulto e e e 33
pairmultNum oL 35
PAITNOTI o o i e e e e e e e e e e e e e 37
pairnormNUM L oLl e e e e e e e 39
Ppldnetworks e 41
RegionalStructure 42
SchoolsToUse 43
SingleAges 43
Township e e e 44
WorkingAdolescents e 44

Index 46

ABMToCova Creates the four data frames of weighted contact pairs for use in Cov-
asim

Description

Creates the household, school, workplace, and contacts layers, from ABMPop, for use with the
Python package Covasim. A 1xn data frame of ages is also created.

ABMToCova

Usage

ABMToCova(
ABMPop,
ABMID,
ABMAge,
placel,
place2,

ECE = TRUE,

PSchool = TRUE,
SSchool = TRUE,
contacts = NULL,
excludeDF = NULL

Arguments

ABMPop
ABMID

ABMAge
place1l
place2
ECE
PSchool

SSchool

contacts

excludeDF

Details

The agent-based modelling data frame.

The variable containing the unique identifier for each person, in the ABMPop
data frame.

The variable containing the ages, in the in the ABMPop data frame.

The variable containing the Household ID.

The variable containing the school and workplace IDs.

Are ECE centres open? Default is TRUE, change to FALSE if ECEs are to close.

Are primary schools open? Default is TRUE, change to FALSE if primary
schools are to close.

Are secondary schools open? Default is TRUE, change to FALSE if secondary
schools are to close.

A data frame consisting of existing contact pairs. The first two variables define
the two people in the pair.

A data frame of industries to exclude. This must be the relevant IndNum variable
in the ABMPop data frame. If this data frame is not included, all industries will
be represented in the output data frame.

There are three restrictions for use. First, the place2 codes for preschool, primary school, and
secondary school must be set to "P801000", "P802100", and "P802200", respectively. Second, at
least one school type must be "TRUE" as Covasim requires a school layer. Third, the place2 value
for people who are not in school, and not in a workplace, must be "Not employed".

Value

A data frame of the household, school, workplace, contact layers, and people’s ages, for use in

Covasim.

4 addemp

addemp Add employers to people in employment

Description

Creates a data frame of people and matching employers, if employed. Two data frames are required:
one for the people and one for the employers. For people not in employment, a user-supplied
missing value is used instead of the employer information. A numeric or ordered factor for working
hours is required. The minimum value for being in employment must be specified. Anyone coded
under this value will be treated as unemployed. Thus, pre-cleaning the people data frame is not
required. The employer data frame can be either a summary in the form of the number of employees
by employer. The other option is that each row represents a vacancy for an employee. Thus, an
employer with 5 employees may be represented as either: a single row with an employee count of
5, or 5 rows with an employee count of 1 in each row.

Usage
addemp (
employers,
empid,
empcount,
people,
pplid,
wrkhrs,
hoursmin,
missval = NA,
userseed = NULL
)
Arguments
employers The data frame containing employer data.
empid The variable containing the unique identifier for each employer.
empcount The variable containing the count of employees for each employer.
people The data frame containing the people that require employers.
pplid The variable containing the unique ID for each person, in the people data frame.
wrkhrs The variable containing the hours worked by each person. Must be an ordered
factor or numeric. If the variable is an ordered factor, the levels/values must be
ascending for hours worked. This is output as an ordered factor.
hoursmin The wrkhrs value representing the minimum number of hours worked (numeric)
or lowest factor level/number. Any wrkhrs value lower than this number/level
will be treated as unemployed.
missval The value that will be used to replace any NA results in the output data frame.

If not supplied, NA will be used for all employer-related variables for the non-
working people.

addind 5

userseed The user-defined seed for reproducibility. If left blank the normal set.seed()
function will be used.

Value

A data frame of the people, with an employer ID attached to each person. Unemployed people will
have an employer ID of NA, or the value specified by missval. All columns in the employers data
frame, except for the employee counts, are included in the output data frame.

Examples
library("dplyr")
EmployedPeople <- addemp(EmployerSet, empid = "Company"”, empcount = "NumEmployees”, Township,

pplid = "ID", wrkhrs = "HoursWorked”, hoursmin = 2, missval = "NA",
userseed = 4)

addind Add a variable indicating whether the person is in education, or has
left education

Description

Creates a data frame with a variable indicating whether the person is a student, or is not in education.
This is an factor with two levels. Pre-cleaning so that only people inside the student age range is
not required. Three data frames are required. The first is the data frame that contains the people
("people") to whom the indicator will be applied. The other two data frames are counts: school
leaver counts ("leavers"), and the sex/age pyramid counts ("pyramid") that apply to the school leaver
counts. As cumulative proportions of school leavers are calculated, the leavers data frames must
contain multiple years of data. For example, if the minimum school leaving age is 17 and the
maximum age is 18, then there must be two years of data in the leavers data frame. The pyramid
data frame contains the sex/age counts for the relevant year. For example, if the people data frame
is based on 2021 data frame, then the pyramid data frame should be the counts for 2021, and the
value for pplyear would be 2021. The variables specifying sex can be numeric, character, or factor.
The sole requirement is that the same code is used in all three data frames. For example, if "F" and
"M" are used in the adolescents data frame to denote sex, then "F" and "M" are the codes required
in both the leavers and pyramid data frames. Any number of values can be used, so long as they are
unique.

Usage

addind(
people,
pplid,
pplsx,
pplage,
pplyear,
minedage = NULL,

6 addind
maxedage = NULL,
leavers,
lvrsx,
lvrage,
lvryear,
lvrcount,
pyramid,
pyrsx,
pyrage,
pyrcount,
stvarname = "Status”,
verbose = FALSE,
userseed = NULL
)
Arguments
people A data frame containing individual people.
pplid The variable containing the unique identifier for each person, in the people data
frame
pplsx The variable containing the codes for sex, in the people data frame.
pplage The variable containing the ages, in the people data frame.
pplyear The year associated with the people data frame.
minedage The minimum age that a person, normally a child, can enter education.
maxedage The maximum age that a person, normally an adolescent, can leave education.
leavers A data frame containing the counts, by sex, age, and year, of the people who
have left education.
lvrsx The variable containing the codes for sex, in the leavers data.
lvrage The variable containing the codes for sex, in the leavers data.
lvryear The variable containing the year for the lvrcount.
lvrcount The variable containing the counts for each sex/age combination in the leavers
data.
pyramid A data frame containing the sex/age pyramid to be used.
pyrsx The variable containing the codes for sex, in the pyramid data.
pyrage The variable containing the ages, in the pyramid data.
pyrcount The variable containing the counts for each sex/age combination, in the pyramid
data
stvarname The name of the variable to contain the education status. The output is "Y" for
those still in education and "N" for those not in education.
verbose If TRUE, the proportion of students who have left school by age and sex will be
printed to the console. Default is FALSE
userseed If specified, this will set the seed to the number provided. If not, the normal

set.seed() function will be used.

addnetwork 7

Details

The proportion of people, by age and sex, who have left school is printed to the console.

Value

A data frame of an observations, with an added column that contains the education status of each
person.

Examples

WithInd <- addind(Township, pplid = "ID", pplsx = "Sex", pplage = "Age", pplyear = 2018,

minedage = 5, maxedage = 18, LeftSchool, lvrsx = "Sex"”, lvrage = "Age",
lvryear = "YearlLeft”, lvrcount = "Total”, RegionalStructure,
pyrsx = "Sex", pyrage = "Age", pyrcount = "Value”, stvarname = "Status”,

verbose = TRUE, userseed = 4)

addnetwork Create a social network for people in a population

Description

Creates social networks between people, based on age differences. A data frame of people with
ages is required. These are the people who will have social relationships between each other. A
a 1x n matrix of counts must also be supplied, where n is the number of rows in the people data
frame. As person-to-person pairs are constructed, the sum of the matrix counts must be even. If it
is not, the function will randomly select one person’s social network size from the matrix and add
1 to it. If this correction happens, an explanation, including the index position of the count, will be
printed to the console.

Usage

addnetwork(
people,
pplid,
pplage,
netmax,
sdused = 0,
probsame = 0.5,
userseed = NULL,
numiters = 1e+06,
usematrix = FALSE,
verbose = FALSE

Arguments

people

pplid
pplage
netmax

sdused

probsame

userseed

numiters

usematrix

verbose

Details

addnetwork

A data frame containing people to be matched to each other using social net-
works.

The variable for each person’s unique ID.
The variable for each person’s age.

A data frame containing the 1-dimensional matrix of network sizes. Must con-
tain only integers and be the same length as the people data frame.

The standard deviation for the age differences between two people.

The probability that a friend of a friend is also a friend. For example, if A and B
and friends, and B and C are friends, this is the probability that C is also a friend
of A.

The user-defined seed for reproducibility. If left blank, the normal set.seed()
function will be used.

The maximum number of iterations used to construct the coupled data frame.
This has a default value of 100, and is the stopping rule if the algorithm does not
converge.

If an adjacency matrix is output instead of an igraph object. Default is FALSE
so an igraph object is output. If TRUE is used, the n x n dgCMatrix is output.

Whether a notification is printed to the console if the number of contacts must be
increased by one. Notification is that it has occurred, where the value has been
increased, and the original and new number of contacts. The default is FALSE,
so no information will be printed to the console.

A normal distribution is used, using the age differences between the pairs. This is centred on 0,
i.e. the people in the pair are the same age. If people B and C are in person A’s network, the value
of probsame is used to determine the likelihood that people B and C know each other. The larger
this probability, the more likely that people in one person’s network know each other, compared to
random construction of a network between them.

The two options for output are a dgCMatrix or an igraph. The dgCMatrix is output as n x n. For
a large data frame of people, this will be a large and sparse matrix, which may not be completed
due to RAM limitations. The igraph output only contains the pairs, and should be a smaller object
compared to the dgCMatrix.

Value

Either an igraph of social networks, or a dgCMatrix of n x n.

Examples

library("dplyr")

smaller sample for visualisation
set.seed(2) # small datasets can cause problems if a random seed is used for sampling
SmallDemo <- Township %>%

addschool 9

filter(between(Age, 20, 29)) %>%
slice_sample(n = 20)
Smallnetwork <- rpois(n = nrow(SmallDemo), lambda = 1.5)
NetworkSmallN <- addnetwork(SmallDemo, "ID", "Age", Smallnetwork, sdused=2,
probsame = .5, userseed=4, numiters = 10)
plot(NetworkSmallN)

addschool Match school children to schools

Description

Creates a data frame of people and matching schools. By default, all similarly-aged students in
the same household will be matched to the same school. If one student is matched to a same-sex
school, then all similarly aged students will also be matched to a same-sex school. This includes
opposite-sex children, with boys attending a same-sex boys school, and girls attending a same-sex
girls school. Two data frames are required: one for the people ("people) and one for the schools
("schools"). In the "people" data frame, a numeric or ordered factor for school status is required.
The smallest value/level will be treated as the code for non-students. If one value is used, everyone
in the data frame will be allocated a school. Thus, pre-cleaning a data frame is not required. The
"schools" data frame must be a summary in the form of roll counts by age within school. Each row
is one age only. For example, if a school has children aged 5 to 9 years, there should be 5 rows.
Any combination of co-educational and single-sex schools can be used, and the relevant value must
be on each row of the schools" data frame.

Usage

addschool (
people,
pplid,
pplage,
pplsx,
pplst = NULL,
hhid = NULL,
schools,
schid,
schage,
schroll,
schtype,
schmiss = 0,
sameprob = 1,
userseed = NULL

Arguments

people A data frame containing individual people.

10 addschool

pplid The variable containing the unique identifier for each person, in the people data
frame.

pplage The variable containing the ages, in the people data frame.

pplsx The variable containing the codes for sex, in the people data frame.

pplst The school status variable in the people data frame. Only two numeric val-

ues/factor levels can be used. The smallest number/level is the code for people
not in school.

hhid The household identifier variable, in the people data frame.

schools A data frame containing the schools.

schid The variable containing the unique identifier for each school, in the schools data
frame.

schage The variable containing the ages, in the schools data frame.

schroll The variable containing the number of places available for people at that school

age, within the school.

schtype The variable that indicates whether the school is co-educational or single-sex.
The expected value for a co-educational school is "C". The codes for female
and male must be the same as in the people data frame.

schmiss The school identifier value that will be given to those people not in school. If
left blank, the default value is 0. If the school IDs are numeric in the schools
data frame, a numeric missing value must be supplied.

sameprob The probability that students from the same household will be at the same
school, given age (and sex if there are same-sex schools). Results depend on
the number of students in each household, and student ages, combined with the
sizes of the school rolls. Value must be between 0 and 1. The default value is 1.

userseed If specified, this will set the seed to the number provided. If not,the normal
set.seed() function will be used.

Value

Two data frames, as a list. $Population contains the synthetic population with the schools added.
$Schools contains the remaining roll counts for the schools.

Examples

library(dplyr)

children in the same household will be added to the same school, if possible with a .8 probability
SchoolsAdded <- addschool(IntoSchools, pplid = "ID", pplage = "Age", pplsx = "SexCode",
pplst = "SchoolStatus”, hhid = "HouseholdID", SchoolsToUse,
schid = "School.Name", schage = "AgeInRoll"”, schroll = "RollCount”,
schtype = "Gender"”, schmiss = @, sameprob = .8, userseed = 4)

Population <- SchoolsAdded$Population
Schools <- SchoolsAdded$Schools

AdultsNolD 11

AdultsNoID Non-partnered synthetic people

Description

A subset of people from the Township data frame, aged 20 years and older with a relationship status
of "NonPartnered".

Usage

AdultsNoID

Format

A data frame of 2,213 rows and 5 variables:

Sex SEither Male or Female

Relationship Relationship status of the person
ID The unique identifier for the person

Age The age of the person

HoursWorked The number of hours worked in employment, per week

agedis Add a sex/age structure to a data frame of grouped ages

Description

Adds an age variable to a data frame that contains age groups, based on age group within sex. Two
data frames are required: the data frame that contains individuals with age bands ("individuals"),
and a data frame used as the basis for constructing a sex/age pyramid ("pyramid"). The individuals
data frame requires two columns relating to the age groups. One is the minimum age in the age
group. The second is the maximum age in the age group. For example, the age group O - 4 years
would have 0 as the minimum age value and 4 as the maximum age value. Each person in the
individuals data frame must have both the minimum and maximum age variables populated. The
pyramid data frame must contain counts by sex/age in the population of interest. The variables
specifying sex can be numeric, character, or factor. The sole requirement is that the codes must
match. For example, if "F" and "M" are used in the individuals data frame to denote sex, then "F"
and "M" are the codes required in the pyramid data frame. Any number of sex code values can be
used, so long as they are unique.

12 agedis

Usage
agedis(
individuals,
indsx,
minage,
maxage,
pyramid,
pyrsx,
pyrage,
pyrcount,
agevarname,
userseed = NULL
)
Arguments
individuals A data frame containing observations with grouped ages. These are the obser-
vations to which the sex/age pyramid is applied.
indsx The variable containing the codes for sex, in the individuals data frame.
minage The variable containing the minimum age for the age group, in the individuals
data frame.
maxage The variable containing the maximum age for the age group, in the individuals
data frame.
pyramid A data frame containing the sex/age pyramid to be used.
pyrsx The variable containing the codes for sex, in the pyramid data frame.
pyrage The variable containing the ages, in the pyramid data frame.
pyrcount The variable containing the counts for each sex/age combination, in the pyramid
data frame.
agevarname The name to use for the constructed age variable in the output data frame. For
each row, this will contain one integer.
userseed The user-defined seed for reproducibility. If left blank the normal set.seed()
function will be used.
Value

A data frame of an observations, with an added column that contains the age.

Examples

library("dplyr™)

ReducedDF <- InitialDataframe %>%
slice_sample(n=200, replace = FALSE)
DisaggregateAge <- agedis(ReducedDF, indsx = "Sex"”, minage = "LowerAge"”, maxage = "UpperAge",
pyramid = SingleAges, pyrsx = "Sex", pyrage = "Age", pyrcount = "Value",
agevarname = "TheAge"”, userseed = 4)

AllIEmployers 13

AllEmployers Employers and employees, by industry

Description

The number of businesses and employees by industry, Timaru District, for 2018.

Usage

AllEmployers

Format

A data frame of 183 rows and 7 variables:

ANZSIC06 The code and associated name for each industry
BusinessCount The random-rounded count of employers in the industry
EmployeeCount The random-rounded count of employees in the industry
minCo The minimum number of employers in the industry

maxCo The maximum number of employers in the industry

minStaff The minimum number of people employed in the industry

maxStaff The maximum number of people employed in the industry

Source

Statistics New Zealand. Statistics New Zealand data are licensed by Stats NZ for reuse under the
Creative Commons Attribution 4.0 International licence. The data has been modified by adding in
four additional variables, representing the estimated minimum and maximum counts of businesses
and employees.

BadRels Synthetic people restricted to an age range

Description

A subset of people from the Township data frame, aged between 20 and 91 years. Age bands, and
the associated minimum and maximum ages, have been added.

Usage

BadRels

14 createemp

Format

A data frame of 7,568 rows and 8 variables:

Sex Either Male or Female

Relationship Relationship status of the person

ID The unique identifier for the person

Age The age of the person

HoursWorked The number of hours worked in employment, per week
AgeBand The ten-year age band for the age

MinAge The minimum age in the age band

MaxAge The maximum age in the age band

createemp Create employers, each with employee counts

Description

Constructs individual employers from aggregate counts, such as number of employers per employer
type. Employer type is often industry, such as "Sheep, Beef Cattle and Grain Farming". Within each
employer type, the number of employers is extracted. The number of employees is then randomly
assigned to each of those employers, using the total employee count for that industry. A randomisa-
tion method is used to ensure that the company counts can be quite dissimilar across the employers
within a type. However, this is constructed by the ratio of employers to employees. If the number
of employers is similar to the number of employees, the number of employees will tend to be 1 for
each employer.

Usage

createemp(
employers,
industry,
indsmin,
indsmax,
pplmin,
pplmax,
stffname = NULL,
cpyname = NULL,
userseed = NULL

diffsample 15

Arguments
employers A data frame containing aggregate data on employers.
industry The variable containing the types of employers. This can be an industry code.
indsmin The variable containing the minimum number of employees in each industry.
indsmax The variable containing the maximum number of employees in each industry.
pplmin The variable containing the minimum number of staff in each industry.
pplmax The variable containing the maximum number of staff in each industry.
stffname The variable name to use for the staff counts for each employer.
cpyname The variable name to use for the companies.
userseed If specified, this will set the seed to the number provided. If not, the normal

set.seed() function will be used.
Value

A data frames of synthetic companies, with the number of employees and a mock company name.

Examples
library("dplyr")
TownshipEmployment <- createemp(AllEmployers, industry = "ANZSIC@6", indsmin = "minCo",

indsmax = "maxCo"”, pplmin = "minStaff”, pplmax = "maxStaff"”,
stffname="NumEmployees"”, cpyname="Company", userseed = 4)

diffsample Sample from groups, when the sample size for each group is different

Description

Produces samples by group, enabling different sample sizes to be specified for each group. Sam-
pling without replacement is used. While the function example is based on sampling by age, in
practice sampling can be performed using any variable of choice. Only one grouping variable is
used.

Usage
diffsample(people, pplage, sampledf, smplage, smplcounts, userseed = NULL)

Arguments
people A data frame containing individual people.
pplage The variable containing the ages, in the people data frame.
sampledf A data frame containing ages and sample size counts.
smplage The variable containing the ages, in the sampledf data frame.
smplcounts The variable containing the sample size counts, in the sampledf data frame.
userseed If specified, this will set the seed to the number provided. If not, the normal

set.seed() function will be used.

16 fastmatch

Value

A data frame of people sampled according to the age sample sizes required.

Examples

SampleNeeded <- data.frame(Age = c(16, 17, 18),
NumNeeded = c(5, 10, 15))
SampledAdolescents <- diffsample(WorkingAdolescents, pplage = "Age", sampledf = SampleNeeded,
smplage = "Age", smplcounts = "NumNeeded”, userseed = 4)

table(SampledAdolescents$Age)

EmployerSet Synthetic employers and their employee counts

Description

Synthetic employers and their associated number of employees, randomly constructed using the
"AllEmployers" data frame.

Usage

EmployerSet

Format
A data frame of 225 rows and 3 variables:
ANZSICO06 The code and associated name for the industry associated with the employer

NumEmployees The count of employees for the employer

Company The name of the employer

fastmatch Create couples using a weighted age group structure

Description

Creates couples when the only information is the proportions of people in couples, by age group. If
there is an age range that should be up-sampled compared to other ages, this can be specified using
the uwProp, uwLA, and uwUA variables. If uwProp is not provided, a simple random sampling
without replacement is used. The number of couples that are output is determined by probSS. At
least one same-sex couple will be output.

fastmatch 17

Usage

fastmatch(
people,
pplage,
probSS = NULL,
uwProp = NULL,
uwLA = NULL,
uwUA = NULL,
HHStartNum = NULL,
HHNumVar = NULL,
userseed = NULL

)
Arguments
people A data frame containing individual people.
pplage The variable containing the ages.
probss The probability of a person being in a same-sex couple.
uwProp The proportion of individuals who are to be over-sampled. By default, no age
group is up-sampled, and people are selected based on simple random sampling,
without replacement.
uwLA The youngest age for the over-sampling. Required if uwProp value is provided.
uwUA The oldest age for the over-sampling. Required if uwProp value is provided.
HHStartNum The starting value for HHNumVar Must be numeric.
HHNumVar The name for the household variable.
userseed If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.
Value

A data frame of an even number of observations for allocation into same-sex couples. If HHStart-
Num is specified, household allocation will be performed.

Examples

library(dplyr)

PersonDataframe <- data.frame(cbind(PersonID = c(1:1000),
PersonAge = c(round(runif (200, min=18, max=23),0),
round(runif (300, min=24, max=50),0),
round(runif (500, min=51, max=90),0))))

unweighted example, probability of being in a same-sex couple is 0.03
Unweighted <- fastmatch(PersonDataframe, pplage = "PersonAge"”, probSS = 0.03, HHStartNum =1,
HHNumVar = "Household"”, userseed = 4)
NumUnweighted <- Unweighted %>%
filter(between(PersonAge, 25, 54))

18 fixhours

prop is
nrow(NumUnweighted)/nrow(Unweighted)

weighted example, same probability, 66% of people in a same-sex relationship are aged between 25
and 54
Weighted <- fastmatch(PersonDataframe, pplage = "PersonAge”, probSS = 0.03, uwProp = .66,
uwLA = 25, uwUA = 54, HHStartNum = 1, HHNumVar = "Household”, userseed = 4)
NumWeighted <- Weighted %>%
filter(between(PersonAge, 25, 54))
prop is
nrow(NumWeighted)/nrow(Weighted)

fixhours Reallocates working hours between people in education and people
not in education

Description

Reallocates working hours so that people in education work fewer hours than people not in educa-
tion. Pre-cleaning so that only people inside the student age range is not required. The hours of
work are reallocated so that shorter hours worked are prioritised to those in education. The variables
provided in the grpdef vector define the marginal totals that must be retained.

Usage

fixhours(people, pplid, pplstat, pplhours, hoursmax, grpdef, userseed = NULL)

Arguments

people A data frame containing individual people.

pplid The variable containing the unique identifier for each person, in the people data
frame.

pplstat The variable containing the indicator of whether a person is in education, in the
people data frame. This must consist of only two values, and can be either an
ordered factor or numeric. If this is a factor, factor level 2 must be for those in
education. If it is a numeric variable, the lowest number must be for those in
education.

pplhours The variable containing the hours worked by each adolescent. Must be a factor
or numeric. If this is a factor, it is assumed to be ordered. The levels/values must
be ascending for hours worked.

hoursmax The maximum hours worked by people in education. Must be the relevant factor
level/number from pplhours.

grpdef The vector containing any grouping variable to be used. If this is used, the
changes to the working hours will be performed using grouped data. Marginal
totals for the cross-tabulations of the grouping variables are retained.

userseed If specified, this will set the seed to the number provided. If not, the normal

set.seed() function will be used.

fixrelations 19

Value

A data of observations, with working hours reallocated so that people’s working hours are compat-
ible with their education status.

Examples

table of hours by schoolstatus
table(WorkingAdolescents$HoursWorked, WorkingAdolescents$SchoolStatus)

one grouping variable

Groupl <- "Age”

OneGroup <- fixhours(WorkingAdolescents, pplid = "ID", pplstat = "SchoolStatus”,
pplhours = "HoursWorked”, hoursmax = 3, grpdef = Groupl, userseed = 4)

table(OneGroup$HoursWorked, OneGroup$SchoolStatus)

two grouping variables
Group2 <- c("Age", "Sex")
TwoGroups <- fixhours(WorkingAdolescents, pplid = "ID", pplstat = "SchoolStatus”,

pplhours = "HoursWorked”, hoursmax = 3, grpdef = Group2, userseed = 4)
table (TwoGroups$HoursWorked, TwoGroups$SchoolStatus)
fixrelations Provide an age structure to relationship status, estimated from age

groups

Description

Redistributes a user-defined relationship status value between ages, using age groups and other
variables (if specified). Within the group definition provided, the marginal totals of the relationship
status values are retained. The data frame can include groups where all people have the same
relationship status. In this situation, there is no need to restrict the data frame to only those whose
relationship status must be redistributed.

Usage

fixrelations(

people,
pplid,
pplage,
pplstat,
stfixval,
props,
propcol,
grpdef,
matchdef,
userseed = NULL

20 fixrelations

Arguments

people A data frame containing individual people.

pplid The variable containing the unique identifier for each person.

pplage The variable containing the ages.

pplstat The relationship status variable in the people data frame.

stfixval The value of the relationship status, in the people data frame, that will be ad-
justed for age. If there are only two relationship status values, the choice does
not matter. But if there are three or more values, this is the one value that will
be age-corrected.

props The data frame containing the proportions of people with the stfixval value, by
the grpdef.

propcol The variable in the props data frame that contains the proportions for the rela-
tionship status value of interest.

grpdef A vector containing the combination of grouping variables, in the people dataframe,
that defines the marginal totals for relationship status counts. This can be one
variable or a string of multiple variables. Include the age-group variable, but not
the age variable.

matchdef A vector containing the same variables as grpdef, except the age variable is
substituted for the age-group variable.

userseed If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

Value

A data frame of observations, with one relationship status redistributed so that an age, rather than
age group, structure is created.

Examples

library("dplyr")
thegroups <- as.vector("Sex")
GroupInfo <- rbind(GroupInfo, list("Male”, "Under 20 Years"”, 19, 19, "Partnered”, 0, 19),
list("Female”, "Under 20 Years"”, 19, 19, "Partnered”, @, 19))
RelProps <- interdiff(GroupInfo, pplage = "MidPoints"”, pplprop = "RelProps”, endmin = "MinAge",
endmax = "MaxAge", grpdef = thegroups)
add in the age groups
RelProps <- RelProps %>%
mutate(AgeBand = ifelse(Age==19, "Under 20 Years",
ifelse(between(Age, 20, 29), "20-29 Years",
ifelse(between(Age, 30, 39), "30-39 Years”,
ifelse(between(Age, 40, 49), "40-49 Years",
ifelse(between(Age, 50, 59), "50-59 Years",
ifelse(between(Age, 60, 69), "60-69 Years”,
ifelse(between(Age, 70, 79), "70-79 Years”, "80-90 Years"))))))))

perform separately by sex
thejoindef <- c("Age", "Sex")

Grouplnfo 21

thegroups <- c("Sex", "AgeBand")

FinalRels <- fixrelations(BadRels, pplid = "ID", pplage = "Age", pplstat = "Relationship”,
stfixval = "Partnered”, props = RelProps, propcol = "Fits"”,
grpdef = thegroups, matchdef = thejoindef, userseed = 4)

GroupInfo The proportion of people in a relationship, by age band within sex

Description

The estimated proportion of people in a relationship, by age band within sex, for people aged
between 20 and 90 years.

Usage

GroupInfo

Format

A data frame of 14 rows and 7 variables:

Sex Either Male or Female

AgeBand The 10-year age band

MinAge The minimum age of the age band

MaxAge The maximum age of the age band

Relationship All people are Partnered

RelProps The proportion of people who have a relationship status of "Partnered"

MidPoints The median age in the age band

InitialDataframe People in age groups, in the Timaru District

Description

A data frame of 46,293 synthetic people. Age groups are present, but not ages.

Usage

InitialDataframe

22 interditf

Format

A data frame with 46,293 rows and 6 variables:

Sex Either Male or Female

Age.group Age group in five-year age bands
Relationship Relationship status of the person
LowerAge The youngest age in the Age.group
UpperAge The oldest age in the Age.group

ID The unique identifier for the person

Source

Timaru District 2018 census data (tablecodes 8277 and 8395), sourced from Statistics New Zealand.
Statistics New Zealand data are licensed by Stats NZ for reuse under the Creative Commons Attri-
bution 4.0 International licence.

interdiff Interpolate ages from age group medians

Description

The node ages for each age group are defined by the user, along with the age group values. The ages
are then imputed from these nodes. Zero values at both extremes must be included. For example,
for the age group 20-24 years, the pplprop value is for pplage. if the first non-zero relationship
probability is for the age group 20-24 years, and the previous age group is 15-19 years, pplprop==0
for pplage==19. For each age group, there must be a minimum and maximum age specified. This
provides the interpolation range for each age group. For the anchoring 0 values, the minimum and
maximum ages are the same. In this example, for pplage==19, endmin==19, and endmax==19. If
there is no zero for older ages, as the final node value occurs inside the age group, the function
assumes that the last node-to-node should be used to extrapolate for the ages older than the oldest
node value. For example, if the last node value is for 90 years of age, but the oldest age is 95 years,
the function will assume the same slope for ages 91 through 95 years. The function can perform a
separate interpolation for groups, for example, a separate interpolation can be performed for each
sex. The function is flexible for the number of variables that can be used to define groups. If only
one interpolation is required, the same grpdef value should be used for each row in the data frame.

Usage

interdiff(nodes, pplage, pplprop, endmin, endmax, grpdef)

IntoSchools 23

Arguments
nodes A data frame containing all grouping variables, the node ages for each group,
and the associated node values.
pplage The variable containing the node ages.
pplprop The variable containing the node values.
endmin The variable that contains the minimum age for each group.
endmax The variable that contains the maximum age for each group.
grpdef A character vector containing the names of the grouping variables.
Details

While the function is designed to interpolate proportions, in practice it can interpolate any values.
The limitation is that the function performs no rounding. Integer node values may produce non-
integer estimates.

Value

A data frame containing the fitted values, by age within group.

Examples
library("dplyr")

create the expected proportion of people in relationships, by age within sex

thegroups <- as.vector(”Sex")

RelProps <- interdiff(GroupInfo, pplage = "MidPoints"”, pplprop = "RelProps”, endmin = "MinAge",
endmax = "MaxAge", grpdef = thegroups)

IntoSchools Four person households, with a school status for each person

Description

Four-person households, consisting of one parent and three children, with a combination of people
in school and not in school. Ages 15 through 18 contain a mixture of people in school and those
who have left school. This has been constructed from the Township data frame.

Usage

IntoSchools

24 LeftSchool

Format

A data frame of 980 rows and 8 variables:

Sex Either Male or Female

Relationship Relationship status of the person

ID The unique identifier for the person

Age The age of the person

HoursWorked The number of hours worked in employment, per week
SchoolStatus The indicator of whether the person is in school (Y) or not (N)
HouseholdID The household identifier for the person

SexCode Either (F)emale or (M)ale

LeftSchool School leavers

Description

School leavers in the Canterbury Region, counts by age and sex, for the period 2009 to 2018.

Usage

LeftSchool

Format
A data frame with 120 rows and 4 variables:
YearLeft The year for the school leaver count
Sex The sex for the school leaver count

Age The age for the school leaver count

Total The count of adolescents who left school in that year, of that age and sex

Source

Ministry of Education. The Ministry of Education’s data are licensed by the Ministry of Education
for reuse under the Creative Commons Attribution 4.0 International licence.

NetworkMatrix 25

NetworkMatrix The number of contacts for 5000 person

Description
A matrix of 1,000 integers constricted using a Poisson distribution. Each value is the number of
contacts for a person.

Usage

NetworkMatrix

Format

A list of 1,000 integers

other Match people into new households

Description

This function creates a data frame of household inhabitants, with the specified number of inhabi-
tants. One data frame, containing the people to match, is required. The use of an age distribution
for the matching ensures that an age structure is present in the households. A less correlated age
structure can be produced by entering a larger standard deviation. The output data frame of matches
will only contain households of the required size. If the number of rows in the people data frame is
not divisible by household size, the overcount will be output to a separate data frame.

Usage

other(
people,
pplid,
pplage,
numppl = NULL,
sdused,
HHStartNum,
HHNumVar,
userseed = NULL,
ptostop = NULL,
numiters = 1e+06,
verbose = FALSE

26

Arguments

people
pplid

pplage
numppl

sdused

HHStartNum
HHNumVar

userseed

ptostop

numiters

verbose

Value

other

A data frame containing the people to be matched into households.
The variable containing the unique ID for each person.

The age variable.

The number of people in the households.

The standard deviation of the normal distribution for the distribution of ages in
a household.

The starting value for HHNumVar. Must be numeric.
The name for the household variable.

If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

The critical p-value stopping rule for the function. If this value is not set, the
critical p-value of .01 is used.

The maximum number of iterations used to construct the output data frame
($Matched) containing the household inhabitants. The default value is 1000000,
and is the stopping rule if the algorithm does not converge.

Whether the number of iterations used, the critical chi-squared value, and the fi-
nal chi-squared value are printed to the console. The information will be printed
for each set of pairs. For example, if there are three people in each household,
the information will be printed twice. The default is FALSE, so no information
will be printed to the console.

A list of two data frames $Matched contains the data frame of households containing matched
people. All households will be of the specified size. $Unmatched, if populated, contains the people
that were not allocated to households. If the number of rows in the people data frame is divisible by
the household size required, $Unmatched will be an empty data frame.

Examples

library(dplyr)

creating three-person households toy example with few iterations
NewHouseholds <- other(AdultsNoID, pplid = "ID", pplage = "Age"”, numppl = 3, sdused = 3,

HHStartNum = 1, HHNumVar = "Household”, userseed=4, ptostop = .05,
numiters = 500, verbose = TRUE)

PeopleInHouseholds <- NewHouseholds$Matched
PeopleNot <- NewHouseholds$Unmatched # 2213 not divisible by 3

otherNum 27

otherNum Match people into existing households

Description

Creates a data frame of household inhabitants, with the specified number of inhabitants. Two data
frames are required. The ’existing’ data frame contains the people already in households. The
’additions’ data frame contains the people. The use of an age distribution for the matching ensures
that an age structure is present in the households. A less correlated age structure can be produced by
entering a larger standard deviation. The output data frame of matches will only contain households
of the required size.

Usage

otherNum(
existing,
exsid,
exsage,
HHNumVar = NULL,
additions,
addid,
addage,
numadd = NULL,
sdused = NULL,
userseed = NULL,
attempts = 10,
numiters = 10000,
verbose = FALSE

)
Arguments

existing A data frame containing the people already in households.

exsid The variable containing the unique ID for each person, in the existing data frame.

exsage The age variable, in the existing data frame.

HHNumVar The household identifier variable. This must exist in only one data frame.

additions A data frame containing the people to be added to the existing households.

addid The variable containing the unique ID for each person, in the additions data
frame.

addage The age variable, in the additions data frame.

numadd The number of people to be added to the household.

sdused The standard deviation of the normal distribution for the distribution of ages in
a household.

userseed The user-defined seed for reproducibility. If left blank the normal set.seed()

function will be used.

28

pairbeta4

attempts The number of times the function will randomly change two matches to improve
the fit.

numiters The maximum number of iterations used to construct the household data frame.
This has a default value of 10000, and is the stopping rule if the algorithm does
not converge.

verbose Whether the number of iterations used, the critical chi-squared value, and the fi-
nal chi-squared value are printed to the console. The information will be printed
for each set of pairs. For example, if there are two people being added to each
household, the information will be printed twice. The default is FALSE, so no
information will be printed to the console.

Value

A list of three data frames $Matched contains the data frame of households containing matched
people. All households will be of the specified size. $Existing, if populated, contains the excess
people in the existing data frame, who could not be allocated additional people. $Additions, if
populated, contains the excess people in the additions data frame who could not be allocated to an
existing household.

Examples

library("dplyr")

AdultsID <- IntoSchools %>%

filter(Age > 20) %>%

select(-c(SchoolStatus, SexCode))

set.seed(2)

NoHousehold <- Township %>%
filter(Age > 20, Relationship == "NonPartnered”, !(ID %in% c(AdultsID$ID))) %>%
slice_sample(n = 1500)

toy example with few iterations
OldHouseholds <- otherNum(AdultsID, exsid = "ID"”, exsage = "Age", HHNumVar = "HouseholdID",
NoHousehold, addid = "ID", addage = "Age", numadd = 2, sdused = 3,
userseed=4, attempts= 10, numiters = 80)
CompletedHouseholds <- OldHouseholds$Matched # will match even if critical p-value not met
IncompleteHouseholds <- OldHouseholds$Existing # no-one available to match in
UnmatchedOthers <- OldHouseholds$Additions # all people not in households were matched

pairbeta4 Pair two people, using a four-parameter beta distribution, into house-
holds

Description

Creates a data frame of paired people, based on a distribution of age differences. The function uses
a four-parameter beta distribution to create the pairs. Two data frames are required. One person
from each data frame will be matched, based on the age difference distribution specified. If the data

pairbeta4

29

frames are different sizes, the "smalldf" data frame must be the smaller of the two. In this situation,
a random subsample of the "largedf" data frame will be used. Both data frames must be restricted

to only those people that will be paired.

Usage

pairbeta4(
smalldf,
smlid,
smlage,
largedf,
lrgid,
lrgage,
shapeA = NULL,
shapeB = NULL,
locationP = NULL,
scaleP = NULL,
HHStartNum,
HHNumVar,
userseed = NULL,

ptostop = NULL,
attempts = 10,

numiters
verbose

Arguments

smalldf

smlid
smlage

largedf

lrgid
lrgage
shapeA

shapeB

locationP
scaleP
HHStartNum

1e+06,
FALSE

The data frame containing one set of people to be paired. If the two data frames
contain different numbers of people, this must be the data frame containing the
smallest number.

The variable containing the unique ID for each person, in the smalldf data frame.
The age variable, in the smalldf data frame.

A data frame containing the second set of people to be paired. If the two data
frames contain different numbers of people, this must be the data frame contain-
ing the largest number.

The variable containing the unique ID for each person, in the largedf data frame.
The age variable, in the largedf data frame.

This is the first shape parameter of the four-parameter beta distribution If this
value is negative, smalldf has the oldest ages. If this value is positive, smalldf
has the youngest ages.

This is the second shape parameter of the four-parameter beta distribution This
value must be positive.

The location parameter of the four-parameter beta distribution.
The scale parameter of the four-parameter beta distribution.

The starting value for HHNumVar. Must be numeric.

30 pairbeta4
HHNumVar The column name for the household variable.
userseed If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.
ptostop The critical p-value stopping rule for the function. If this value is not set, the
critical p-value of .01 is used.
attempts The maximum number of times largedf will be sampled to draw an age match
from the correct distribution, for each observation in the smalldf. The default
number of attempts is 10.
numiters The maximum number of iterations used to construct the output data frame
($Matched) containing the pairs. The default value is 1000000, and is the stop-
ping rule if the algorithm does not converge.
verbose Whether the number of iterations used, the critical chi-squared value, and the
final chi-squared value are printed to the console. The default value is FALSE.
Value
A list of three data frames. $Matched contains the data frame of pairs. $Smaller contains the
unmatched observations from smalldf. $Larger contains the unmatched observations from largedf.
Examples

library(dplyr)

the children data frame is smaller
set.seed(1)
sample a combination of females and males to be parents
Parents <- Township %>%
filter(Relationship == "Partnered”, Age > 18) %>%
slice_sample(n = 500)
Children <- Township %>%
filter(Relationship == "NonPartnered”, Age < 20) %>%
slice_sample(n = 200)

ChildAl1lMatched <- pairbeta4(Children, smlid = "ID"”, smlage = "Age", Parents, lrgid = "ID",
lrgage = "Age", shapeA = 2.2, shapeB = 3.7, locationP = 16.5,

scaleP = 40.1, HHStartNum = 1, HHNumVar = "Household”,

userseed=4, ptostop = .01, attempts = 2, numiters = 8)

MatchedPairs <- ChildAllMatched$Matched
UnmatchedChildren <- ChildAllMatched$Smaller
UnmatchedAdults <- ChildAllMatched$Larger

children data frame is larger, the locationP and scaleP values are negative

Parents2 <- Township %>%

filter(Relationship == "Partnered”, Age > 18) %>%
slice_sample(n = 100)

Children2 <- Township %>%

filter(Relationship == "NonPartnered”, Age < 20) %>%
slice_sample(n = 500)

pairbeta4dNum 31

ChildMatched <- pairbeta4(Parents2, smlid = "ID", smlage = "Age", Children2, lrgid = "ID",
lrgage = "Age", shapeA = 2.2, shapeB = 3.7, locationP = -16.5,
scaleP = -40.1, HHStartNum = 1, HHNumVar = "Household”,
userseed=4, ptostop = .05, attempts = 2, numiters = 8)

MatchedPairs2 <- ChildMatched$Matched
UnmatchedChildren2 <- ChildMatched$Smaller
UnmatchedAdults2 <- ChildMatched$Larger

pairbeta4Num Pair two people, using a four-parameter beta distribution, households
already exist

Description

This function creates a data frame of pairs, based on a distribution of age differences. The function
will use either a skew normal or normal distribution, depending on whether a skew ("locationP")
parameter is provided. The default value for the skew is 0, and using the default will cause a normal
distribution to be used. Two data frames are required. One person from each data frame will be
matched, based on the age difference distribution specified. If the data frames are different sizes,
the smalldf data frame must be the smaller of the two. In this situation, a random subsample of the
largedf data frame will be used. The household identifier variable can exist in either data frame.
The function will apply the relevant household identifier once each pair is constructed. Both data
frames must be restricted to only those people that are successfully paired. At least 30 matched
pairs are required for the function to run. This is to reduce the proportion of empty cells.

Usage

pairbetad4Num(
smalldf,
smlid,
smlage,
largedf,
lrgid,
lrgage,
shapeA = NULL,
shapeB = NULL,
locationP = NULL,
scaleP = NULL,
HHNumVar,
userseed = NULL,
attempts = 10,
numiters = 1e+06,
verbose = FALSE

32

Arguments

smalldf

smlid
smlage

largedf

lrgid
lrgage
shapeA

shapeB

locationP
scaleP
HHNumVar

userseed

attempts

numiters

verbose

Value

pairbeta4dNum

The data frame containing one set of people to be paired. If the two data frames
contain different numbers of people, this must be the data frame containing the
smallest number.

The variable containing the unique ID for each person, in the smalldf data frame.
The age variable, in the smalldf data frame.

A data frame containing the second set of people to be paired. If the two data
frames contain different numbers of people, this must be the data frame contain-
ing the largest number.

The variable containing the unique ID for each person, in the largedf data frame.
The age variable, in the largedf data frame.

This is the first shape parameter of the four-parameter beta distribution If this
value is negative, smalldf has the oldest ages. If this value is positive, smalldf
has the youngest ages.

This is the second shape parameter of the four-parameter beta distribution This
value must be positive.

The location parameter of the four-parameter beta distribution
The scale parameter of the four-parameter beta distribution
The household identifier variable. This must exist in only one data frame.

If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

The maximum number of times largedf will be sampled to draw an age match
from the correct distribution, for each observation in the smalldf. The default
number of attempts is 10.

The maximum number of iterations used to construct the output data frame
($Matched) containing the pairs. The default value is 1000000, and is the stop-
ping rule if the algorithm does not converge.

Whether the number of iterations used, the critical chi-squared value, and the
final chi-squared value are printed to the console. The default value is FALSE.

A list of three data frames $Matched contains the data frame of pairs. $Smaller contains the un-
matched observations from smalldf. $Larger contains the unmatched observations from largedf.

Examples

library(dplyr)

demonstrate matched dataframe sizes first

set.seed(1)

sample a combination of females and males to be parents
Parents <- Township %>%
filter(Relationship == "Partnered”, Age > 18) %>%

slice_sample(n

= 500) %%

pairmult 33

mutate(Household = row_number())

Children <- Township %>%
filter(Relationship == "NonPartnered”, Age < 20) %>%
slice_sample(n = 200)

match the children to the parents, toy example with few iterations
ChildAlIlMatched <- pairbetad4Num(Children, smlid = "ID", smlage = "Age", Parents, lrgid = "ID",
lrgage = "Age", shapeA = 2.2, shapeB = 3.7, locationP = 16.5,
scaleP = 40.1, HHNumVar = "Household"”, userseed=4, attempts = 8,
numiters = 90)

MatchedPairs <- ChildAllMatched$Matched
UnmatchedChildren <- ChildAllMatched$Smaller # all children matched
UnmatchedAdults <- ChildAllMatched$Larger

children data frame is larger, the locationP and scaleP values are negative

#

Parents2 <- Township %>%

filter(Relationship == "Partnered”, Age > 18) %>%

slice_sample(n = 200) %>%

mutate(Household = row_number())

Children2 <- Township %>%

filter(Relationship == "NonPartnered”, Age < 20) %>%

slice_sample(n = 500)

#

ChildMatched <- pairbeta4Num(Parents2, smlid = "ID", smlage = "Age"”, Children2, lrgid = "ID",
lrgage = "Age", shapeA = 2.2, shapeB = 3.7, locationP = -16.5,
scaleP = -40.1, HHNumVar = "Household"”, userseed=4,

attempts = 10, numiters = 80)

#

MatchedPairs2 <- ChildMatched$Matched
UnmatchedChildren2 <- ChildMatched$Smaller
UnmatchedAdults2 <- ChildMatched$Larger

pairmult Create many-to-one pairs of people and place them into households

Description

Creates a data frame of many-to-one pairs, based on a distribution of age differences. Designed
to match multiple children to the same parent, the function can be used for any situation where a
many-to-one match is required based on a range of age differences. For clarity and brevity, the
terms "children" and "parents" will be used. Two data frames are required: the first contains the
people representing the many (e.g children). The second contains the people that will be paired
with multiple others (e.g. the parents of two or more children). The minimum and maximum ages
of parents must be specified. This ensures that there are no parents who were too young (e.g. 11
years) or too old (e.g. 70 years) at the time the child was born. The presence of too young and
too old parents is tested throughout this function. Thus, pre-cleaning the parents data frame is not
required. Both data frames must be restricted to only those people that will be paired.

34

Usage

pairmult(
children,
chlid,
chlage,
numchild
twinprob
parents,
parid,
parage,

1
SN

pairmult

minparage = NULL,
maxparage = NULL,

HHStartNum =

NULL,

HHNumVar = NULL,
userseed = NULL,
maxdiff = 1000

Arguments

children
chlid
chlage
numchild
twinprob

parents

parid
parage

minparage

maxparage

HHStartNum
HHNumVar

userseed

maxdiff

The data frame containing the children to be paired with a parent/guardian.
The variable containing the unique ID for each person,in the children data frame.
The age variable, in the children data frame.

The number of children that are required in each household.

The probability that a person is a twin.

The data frame containing the potential parents.(This data frame must contain
at least the same number of observations as the children data frame.)

The variable containing the unique ID for each person,in the parents data frame.
The age variable, in the parent data frame.

The youngest age at which a person becomes a parent. The default value is
NULL, which will cause the function to stop.

The oldest age at which a person becomes a parent. The default value is NULL,
which will cause the function to stop.

The starting value for HHNumVar. Must be numeric.
The name for the household variable.

If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

The maximum age difference for the children in a household ages. This is ap-
plied to the first child randomly selected for the household, so overall age differ-
ences may be 2* maxdiff. Default value is no constraints on child age differences
in the household.

pairmultNum 35

Value

A list of three data frames. $Matched contains the data frame of child-parent matches. $Adults con-
tains any unmatched observations from the parents data frame. $Children contains any unmatched
observations from the children data frame. $Adults and/or $Children may be empty data frames.

Examples

library(dplyr)

set.seed(1)

Parents <- Township %>%
filter(Relationship == "Partnered”, Age > 18) %>%
slice_sample(n = 500)

Children <- Township %>%
filter(Relationship == "NonPartnered”, Age < 20) %>%
slice_sample(n = 400)

example with assigning two children to a parent
the same number of children is assigned to all parents
adding two children to each parent
ChildMatched <- pairmult(Children, chlid = "ID", chlage = "Age"”, numchild = 2, twinprob = 0.03,
Parents, parid = "ID"”, parage = "Age", minparage = 18, maxparage = 54,
HHStartNum = 1, HHNumVar = "Household”, userseed=4, maxdiff = 3)
MatchedFamilies <- ChildMatched$Matched

pairmultNum Create many-to-one pairs, when there are existing households

Description

Creates a data frame of many-to-one pairs, based on a distribution of age differences. Designed
to match multiple children to the same parent, the function can be used for any situation where a
many-to-one match is required based on a range of age differences. For clarity and brevity, the
terms "children" and "parents" will be used. Two data frames are required: one for children and one
for potential parents. The data frame of potential parents must contain household identifiers The
minimum and maximum ages of parents must be specified. This ensures that there are no parents
who were too young (e.g. 11 years) or too old (e.g. 70 years) at the time the child was born. The
presence of too young and too old parents is tested throughout this function. Thus, pre-cleaning the
parents data frame is not required. Both data frames must be restricted to only those people that
will be paired.

Usage

pairmultNum(
children,
chlid,
chlage,

36

numchild =
twinprob
parents,
parid,
parage,
minparage

1
S N

pairmultNum

NULL,

maxparage = NULL,
HHNumVar = NULL,
userseed = NULL,
maxdiff = 1000

Arguments

children
chlid
chlage
numchild
twinprob

parents

parid
parage

minparage

maxparage

HHNumVar

userseed

maxdiff

Value

The data frame containing the children to be paired with a parent/guardian.
The variable containing the unique ID for each person,in the children data frame.
The age variable, in the children data frame.

The number of children that are required in each household.

The probability that a person is a twin.

The data frame containing the potential parents.(This data frame must contain
at least the same number of observations as the children data frame.)

The variable containing the unique ID for each person,in the parents data frame.
The age variable, in the parent data frame.

The youngest age at which a person becomes a parent. The default value is
NULL, which will cause the function to stop.

The oldest age at which a person becomes a parent. The default value is NULL,
which will cause the function to stop.

The name of the household identifier variable in the parents data frame.

If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

The maximum age difference for the children in a household ages. This is ap-
plied to the first child randomly selected for the household, so overall age differ-
ences may be 2* maxdiff. Default value is no constraints on child age differences
in the household.

A list of three data frames. $Matched contains the data frame of child-parent matches. $Adults con-
tains any unmatched observations from the parents data frame. $Children contains any unmatched
observations from the children data frame. $Adults and/or $Children may be empty data frames.

Examples

library(dplyr)

set.seed(1)

pairnorm 37

Parents <- Township %>%
filter(Relationship == "Partnered”, Age > 18) %>%
slice_sample(n = 500) %>%
mutate(Household = row_number())

Children <- Township %>%
filter(Relationship == "NonPartnered”, Age < 20) %>%
slice_sample(n = 400)

example with assigning two children to a parent
the same number of children is assigned to all parents
adding two children to each parent

ChildMatched <- pairmultNum(Children, chlid = "ID", chlage = "Age", numchild = 2, twinprob = 0.03,
Parents, parid = "ID", parage = "Age", minparage = 18, maxparage = 54,
HHNumVar = "Household”, userseed =4, maxdiff = 3)
MatchedFamilies <- ChildMatched$Matched
UnmatchedChildren <- ChildMatched$Children
UnmatchedAdults <- ChildMatched$Adults

pairnorm Pair two people, using either a normal or skew-normal distribution,
into households

Description

Creates a data frame of couples, based on a distribution of age differences. The function will use
either a skew normal or normal distribution, depending on whether a skew ("alphaused") parameter
is provided. The default value for the skew is 0, and using the default will cause a normal distribu-
tion to be used. Two data frames are required. One person from each data frame will be matched,
based on the age difference distribution specified. If the data frames are different sizes, the smalldf
data frame must be the smaller of the two. In this situation, a random subsample of the largedf data
frame will be used. Both data frames must be restricted to only those people that will have a couples
match performed.

Usage

pairnorm(
smalldf,
smlid,
smlage,
largedf,
lrgid,
lrgage,
directxi = NULL,
directomega = NULL,
alphaused = 0,
HHStartNum,
HHNumVar,
userseed = NULL,

38 pairnorm

ptostop = NULL,
numiters = 1e+06,
verbose = FALSE

)
Arguments

smalldf A data frame containing one set of people to be paired. If the two data frames
contain different numbers of people, this must be the data frame containing the
smallest number.

smlid The variable containing the unique ID for each person, in the smalldf data frame.

smlage The age variable, in the smalldf data frame.

largedf A data frame containing the second set of people to be paired. If the two data
frames contain different numbers of people, this must be the data frame contain-
ing the largest number.

lrgid The variable containing the unique ID for each person, in the largedf data frame.

lrgage The age variable, in the largedf data frame.

directxi If a skew-normal distribution is used, this is the location value. If the default
alphaused value of O is used, this defaults to the mean value for the normal
distribution.

directomega If a skew-normal distribution is used, this is the scale value. If the default al-
phaused value of 0 is used, this defaults to the standard deviation value for the
normal distribution.

alphaused The skew. If a normal distribution is to be used, this can be omitted as the default
value is 0 (no skew).

HHStartNum The starting value for HHNumVar Must be numeric.

HHNumVar The name for the household variable.

userseed If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

ptostop The critical p-value stopping rule for the function. If this value is not set, the
critical p-value of .01 is used.

numiters The maximum number of iterations used to construct the output data frame
($Matched) containing the couples. The default value is 1000000, and is the
stopping rule if the algorithm does not converge.

verbose Whether the distribution used, number of iterations used, the critical chi-squared
value, and the final chi-squared value are printed to the console. The default
value is FALSE.

Value

A list of two data frames. $Matched contains the data frame of pairs. $Unmatched contains the
unmatched observations from largedf. If there are no unmatched people, $Unmatched will be an
empty data frame.

pairnormNum 39

Examples

library(dplyr)

matched dataframe sizes first, using a normal distribution
females younger by a mean of -2 and a standard deviation of 3
set.seed(1)
PartneredFemales1 <- Township %>%
filter(Sex == "Female”, Relationship == "Partnered”) %>%
slice_sample(n=120, replace = FALSE)
PartneredMales1 <- Township %>%
filter(Sex == "Male"”, Relationship == "Partnered”) %>%
slice_sample(n = nrow(PartneredFemales1), replace = FALSE)

partners females and males, using a normal distribution, with the females
being younger by a mean of -2 and a standard deviation of 3
OppSexCouples1 <- pairnorm(PartneredFemales1, smlid = "ID", smlage = "Age", PartneredMalesT,
lrgid = "ID", lrgage = "Age", directxi = -2, directomega = 3,
HHStartNum = 1, HHNumVar = "HouseholdID", userseed = 4, ptostop=.3)
Couples1 <- OppSexCouplesi$Matched

different size dataframes

there are more partnered males than partnered females

so all partnered males will have a matched female partner

but not all females will be matched

being the smallest data frame, the female one must be the first

PartneredFemales2 <- Township %>%
filter(Sex == "Female"”, Relationship == "Partnered”) %>%
slice_sample(n=120, replace = FALSE)

PartneredMales2 <- Township %>%
filter(Sex == "Male”, Relationship == "Partnered”) %>%
slice_sample(n=140, replace = FALSE)

OppSexCouples?2 <- pairnorm(PartneredFemales2, smlid = "ID", smlage = "Age", PartneredMales?2,
lrgid = "ID", lrgage = "Age", directxi = -2, directomega = 3,
HHStartNum = 1, HHNumVar="HouseholdID", userseed = 4, ptostop=.3)
Couples2 <- OppSexCouples2$Matched

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

pairnormNum Fair two people, using either a normal or skew-normal distribution,
households already exist

Description

Creates a data frame of pairs, based on a distribution of age differences. The function will use either
a skew normal or normal distribution, depending on whether a skew ("locationP") parameter is
provided. The default value for the skew is 0, and using the default will cause a normal distribution
to be used. Two data frames are required. One person from each data frame will be matched, based
on the age difference distribution specified. If the data frames are different sizes, the smalldf data

40

pairnormNum

frame must be the smaller of the two. In this situation, a random subsample of the largedf data
frame will be used. The household identifier variable can exist in either data frame. The function
will apply the relevant household identifier once each pair is constructed. Both data frames must be
restricted to only those people that are successfully paired. At least 30 matched pairs are required
for the function to run. This is to reduce the proportion of empty cells.

Usage

pairnormNum(

smalldf,
smlid,
smlage,
largedf,
lrgid,
lrgage,

directxi = NULL,

directomega = NULL,
alphaused = 0,
HHNumVar,
userseed = NULL,
attempts = 10,
numiters 1e+06,
verbose = FALSE
)
Arguments
smalldf The data frame containing one set of people to be paired. If the two data frames
contain different numbers of people, this must be the data frame containing the
smallest number.
smlid The variable containing the unique ID for each person, in the smalldf data frame.
smlage The age variable, in the smalldf data frame.
largedf A data frame containing the second set of people to be paired. If the two data
frames contain different numbers of people, this must be the data frame contain-
ing the largest number.
lrgid The variable containing the unique ID for each person, in the largedf data frame.
lrgage The age variable, in the largedf data frame.
directxi If a skew-normal distribution is used, this is the location value. If the default
alphaused value of O is used, this defaults to the mean value for the normal
distribution. Use a positive value if the older ages are in smldf.
directomega If a skew-normal distribution is used, this is the scale value. If the default al-
phaused value of O is used, this defaults to the standard deviation value for the
normal distribution.
alphaused The skew. If a normal distribution is to be used, this can be omitted as the default
value is 0 (no skew)
HHNumVar The household identifier variable. This must exist in only one data frame.

Ppl4networks 41

userseed If specified, this will set the seed to the number provided. If not, the normal
set.seed() function will be used.

attempts The maximum number of times largedf will be sampled to draw an age match
from the correct distribution, for each observation in the smalldf. The default
number of attempts is 10.

numiters The maximum number of iterations used to construct the output data frame
($Matched) containing the pairs. The default value is 1000000, and is the stop-
ping rule if the algorithm does not converge.

verbose Whether the distribution used, number of iterations used, the critical chi-squared
value, and the final chi-squared value are printed to the console. The default
value is FALSE.
Value

A list of three data frames $Matched contains the data frame of pairs. $Smaller contains the un-
matched observations from smalldf. $Larger contains the unmatched observations from largedf.

Examples

library(dplyr)

parents are older than the children using a normal distribution of mean = 30,
standard deviation of 5
set.seed(1)
Parents <- Township %>%
filter(between(Age, 24, 60)) %>%
slice_sample(n=120, replace = FALSE) %>%
mutate (HouseholdID = row_number())
Children <- Township %>%
filter(Age < 20) %>%
slice_sample(n = nrow(Parents), replace = FALSE)

PrntChld <- pairnormNum(Parents, smlid = "ID"”, smlage = "Age", Children, lrgid = "ID",
lrgage = "Age", directxi = 30, directomega = 5, HHNumVar = "HouseholdID",
userseed = 4, attempts=10, numiters = 80)
Matched <- PrntChld$Matched # all matched but not the specified distribution
UnmatchedAdults <- PrntChld$Smaller
UnmatchedChildren <- PrntChld$Larger

Ppl4networks Synthetic people living in the Timaru District

Description

1000 synthetic people, to match the number of people in the NetworkMatrix data frame.

Usage

Ppl4networks

42 RegionalStructure

Format

A data frame with 1,000 rows and 5 variables:

Sex Either Male or Female

Relationship Relationship status of the person
ID The unique identifier for the person

Age The age of the person

HoursWorked The number of hours worked in employment, per week

Source

Timaru District 2018 census data (tablecodes 8277, 8395, and 8460), sourced from Statistics New
Zealand. Statistics New Zealand data are licensed by Stats NZ for reuse under the Creative Com-
mons Attribution 4.0 International licence.

RegionalStructure Sex/Age pyramid for teenagers in the Canterbury Region

Description

The number of people, by age and sex, living in the Canterbury region, restricted to ages 13 to 19
years.

Usage

RegionalStructure

Format

A data frame with 14 observations and 4 variables:

Sex The sex relating to the count
Age.group String variable of age plus the text " years"
Value The count of adolescents

Age The age relating to that count

Source

Canterbury region 2018 census data (tablecode 8277), sourced from Statistics New Zealand. Statis-
tics New Zealand data are licensed by Stats NZ for reuse under the Creative Commons Attribution
4.0 International licence.

SchoolsToUse 43

SchoolsToUse Schools and their roll counts

Description

Nineteen schools in the Canterbury region, with their 2018 roll counts.

Usage

SchoolsToUse

Format
A data frame with 266 rows and 5 variables:
School.ID The numeric ID for the school
School.Name The name for the school
Gender Indicator of whether the school is (C)o-ed, (F)emale-only, or (M)ale-only

AgeInRoll The age of possible students
RollCount The number of students. The value is O if no students that age attend.

Source

The Ministry of Education. The Ministry of Education’s data are licensed by the Ministry of Edu-
cation for reuse under the Creative Commons Attribution 4.0 International licence.

SingleAges Sex/Age pyramid data for Timaru District

Description

The number of people, by age and sex, living in the Timaru District.

Usage
SingleAges

Format
A data frame with 190 rows and 4 variables:

Age.group Age group, in five-year age bands
Sex Either Male or Female

Value The number of people that age and sex
Age Age at last birthday

44 WorkingAdolescents

Source

Timaru District 2018 census data (tablecode 8277), sourced from Statistics New Zealand. Statistics
New Zealand data are licensed by Stats NZ for reuse under the Creative Commons Attribution 4.0
International licence.

Township Simulated township

Description

10,000 simulated people.

Usage

Township

Format

A data frame with 10,000 rows and 5 variables

Sex Sex of the person

Relationship Relationship status of the person
ID The unique identifier for the person

Age The age of the person

HoursWorked The number of hours worked in employment, per week

Source

Timaru District 2018 census data, using tablecodes 8277, 8395, and 8460, sourced from Statistics
New Zealand. Statistics New Zealand data are licensed by Stats NZ for reuse under the Creative
Commons Attribution 4.0 International licence.

WorkingAdolescents Adolescents with a school status and employment hours

Description

A set of synthetic adolescents aged between 15 and 18.

Usage

WorkingAdolescents

WorkingAdolescents 45

Format

A data frame of 478 observations and 6 variables:

Sex Either Male or Female

Relationship Relationship status of the person

ID The unique identifier for the person

Age Age of the person

HoursWorked The number of hours worked in employment, per week

SchoolStatus The indicator of whether the person is in school (Y) or not (N)

Source

Timaru District 2018 census data (tablecodes 8277, 8395, and 8460). School status was added using
school leavers data produced by the Ministry of Education. Statistics New Zealand and the Ministry
of Education’s data are licensed, separately, for reuse under the Creative Commons Attribution 4.0
International licence.

Index

+ datasets
AdultsNoID, 11
AllEmployers, 13
BadRels, 13
EmployerSet, 16
GroupInfo, 21

InitialDataframe, 21

IntoSchools, 23
LeftSchool, 24
NetworkMatrix, 25
Ppl4networks, 41

RegionalStructure, 42

SchoolsToUse, 43
SingleAges, 43
Township, 44

WorkingAdolescents, 44

ABMToCova, 2
addemp, 4
addind, 5
addnetwork, 7
addschool, 9
AdultsNoID, 11
agedis, 11
AllEmployers, 13

BadRels, 13
createemp, 14
diffsample, 15
EmployersSet, 16

fastmatch, 16
fixhours, 18
fixrelations, 19

GroupInfo, 21

InitialDataframe, 21

46

interdiff, 22
IntoSchools, 23

LeftSchool, 24
NetworkMatrix, 25

other, 25
otherNum, 27

pairbeta4, 28
pairbeta4Num, 31
pairmult, 33
pairmultNum, 35
pairnorm, 37
pairnormNum, 39
Ppl4networks, 41

RegionalStructure, 42

SchoolsToUse, 43
SingleAges, 43

Township, 44

WorkingAdolescents, 44

	ABMToCova
	addemp
	addind
	addnetwork
	addschool
	AdultsNoID
	agedis
	AllEmployers
	BadRels
	createemp
	diffsample
	EmployerSet
	fastmatch
	fixhours
	fixrelations
	GroupInfo
	InitialDataframe
	interdiff
	IntoSchools
	LeftSchool
	NetworkMatrix
	other
	otherNum
	pairbeta4
	pairbeta4Num
	pairmult
	pairmultNum
	pairnorm
	pairnormNum
	Ppl4networks
	RegionalStructure
	SchoolsToUse
	SingleAges
	Township
	WorkingAdolescents
	Index

