Package 'Qploidy'

May 1, 2025

Title Estimation of Ploidy and Detection of Aneuploidy Using Genotyping Data

Version 1.0.1

Description

Provides functions for estimating ploidy levels and detecting aneuploidy in individuals using allele intensities or allele count data from high-throughput genotyping platforms, including single nucleotide polymorphism (SNP) arrays and sequencing-based technologies. Implements an extended version of the 'PennCNV' signal standardization method by Wang et al. (2007) <doi:10.1101/gr.6861907> for higher ploidy levels. Computes B-allele frequencies (BAF), z-scores, and identifies copy number variation patterns.

License AGPL (>= 3)

Depends R (>= 3.6.0)

Imports dplyr, ggplot2, tidyr, vroom, ggpubr, multtest, vcfR, stringr

Encoding UTF-8

URL https://github.com/Cristianetaniguti/Qploidy

BugReports https://github.com/Cristianetaniguti/Qploidy/issues

RoxygenNote 7.3.2

Suggests covr, spelling, updog, rmdformats, knitr (>= 1.10), rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Language en-US

VignetteBuilder knitr

NeedsCompilation no

Author Cristiane Taniguti [cre, aut], Jeekin Lau [ctb], David Byrne [ctb], Oscar Riera-Lizarazu [ctb]

Maintainer Cristiane Taniguti <cht47@cornell.edu>

Repository CRAN

Date/Publication 2025-05-01 10:40:05 UTC

Contents

all_resolutions_plots Plot graphics for ploidy visual inspection for each resolution

Description

Index

This function generates and saves plots for visual inspection of ploidy at different resolutions: chromosome, chromosome-arm, and sample levels. It is designed for parallelization purposes and supports customization of centromere positions and chromosome selection.

all_resolutions_plots

Usage

```
all_resolutions_plots(
  data_standardized,
  sample,
  ploidy,
  centromeres,
  types_chromosome = c("Ratio_hist", "BAF_hist", "zscore"),
  types_chromosome_arm = c("Ratio_hist", "BAF_hist", "zscore"),
  types_sample = c("Ratio_hist_overall", "BAF_hist_overall"),
  file_name = NULL,
  chr = NULL
)
```

Arguments

data_standardized

	An object of class 'qploidy_standardization' containing standardized data for ploidy analysis.
sample	A character string specifying the sample name to be analyzed.
ploidy	A numeric value indicating the expected ploidy of the sample. This parameter is required.
centromeres	A named vector with centromere positions (in base pairs) for each chromosome. The names must match the chromosome IDs in the dataset. This is used for chromosome-arm level resolution.
types_chromoso	
	A character vector defining the plot types for chromosome-level resolution. Op- tions include: - "het": Plots heterozygous locus counts "BAF": Plots B- allele frequency (BAF) "zscore": Plots z-scores "BAF_hist": Plots BAF histograms for each chromosome "ratio": Plots raw ratios for each chromo- some. Default is c("Ratio_hist", "BAF_hist", "zscore").
types_chromoso	me_arm
	A character vector defining the plot types for chromosome-arm level resolution. Options include: - "het": Plots heterozygous locus counts "BAF": Plots B- allele frequency (BAF) "zscore": Plots z-scores "BAF_hist": Plots BAF histograms for each chromosome arm "ratio": Plots raw ratios for each chro- mosome arm. Default is c("Ratio_hist", "BAF_hist", "zscore").
types_sample	A character vector defining the plot types for sample-level resolution. Options include: - "Ratio_hist_overall": Plots a histogram of raw ratios for the entire genome "BAF_hist_overall": Plots a BAF histogram for the entire genome. Default is c("Ratio_hist_overall", "BAF_hist_overall").
file_name	A character string defining the output file path and name prefix for the saved plots. The function appends resolution-specific suffixes to this prefix. If NULL, plots are not saved to files.
chr	A vector specifying the chromosomes to include in the analysis. If NULL, all chromosomes are included.

Details

The function generates three types of plots:

- **Chromosome-level resolution**: Plots raw ratio, BAF histograms, z-scores, heterozygous locus counts, and BAF for each chromosome. - **Chromosome-arm level resolution**: Similar to chromosome-level but splits data by chromosome arms using centromere positions. - **Samplelevel resolution**: Combines all markers in the sample to generate overall raw ratio and BAF histograms.

The plots are saved as PNG files with the following suffixes: - '_res:chromosome.png' - '_res:chromosome_arm.png' - '_res:sample.png'

If 'file_name' is NULL, the plots are not saved to files but are returned in the output list.

Value

A list containing the generated plots for each resolution: - 'chromosome': Plot for chromosomelevel resolution. - 'chromosome_arm': Plot for chromosome-arm level resolution (if centromeres are provided). - 'sample': Plot for sample-level resolution.

area_estimate_ploidy Estimate ploidy using area method

Description

This function estimates ploidy using the area method. It evaluates the number of copies by chromosome, sample, or chromosome arm. Note that this function does not have optimal performance, and visual inspection of the plots is required to confirm the estimated ploidy.

Usage

```
area_estimate_ploidy(
   qploidy_standardization = NULL,
   samples = "all",
   level = "chromosome",
   ploidies = NULL,
   area = 0.75,
   centromeres = NULL
)
```

Arguments

qploidy_standardization	
	Object of class qploidy_standardization.
samples	If "all", all samples contained in the qploidy_standardization object will be eval- uated. If a vector with sample names is provided, only those will be evaluated.
level	Character identifying the level of the analysis. Must be one of "chromosome", "sample", or "chromosome-arm". If 'chromosome-arm', the analysis will be performed by chromosome arm (only if 'centromeres' argument is defined).

4

ploidies	Vector of ploidy levels to test. This parameter must be defined.
area	Area around the expected peak to be considered. Default is 0.75.
centromeres	Vector with centromere genomic positions in bp. The vector should be named with the chromosome IDs. This information will only be used if 'chromosome-arm' level is defined.

Value

A list of class 'qploidy_area_ploidy_estimation' containing:

- ploidy: Estimated ploidy by area method.
- prop_inside_area: Proportion of dots inside selected area.
- diff_first_second: Difference between first and second place in area method.
- sd_inside_area: Standard deviation inside area.
- highest_correlation_modes: Highest correlation.
- modes_inside_area: Modes inside areas.
- tested: Tested ploidies.
- ploidy.sep: Separated ploidy results.
- chr: Unique chromosomes in the dataset.
- n. inbred: Number of highly inbred samples.

clean_summary Clean Axiom Summary File

Description

This function removes consecutive A allele probes from an Axiom summary file.

Usage

```
clean_summary(summary_df)
```

Arguments

summary_df A data frame containing A and B probe intensities.

Value

A list with cleaned A and B probes.

Examples

NULL

find_header_line Find the Header Line in a File

Description

This function scans a file to locate the first line containing a specific keyword, such as 'probeset_id'. It is useful for identifying the starting point of data in files with headers or metadata.

Usage

```
find_header_line(summary_file, word = "probeset_id", max_lines = 6000)
```

Arguments

summary_file	The path to the file to be scanned.
word	The keyword to search for in the first column. Default is "probeset_id".
max_lines	The maximum number of lines to scan. Default is 6000.

Value

The line number where the keyword is found.

get_aneuploids indexes for aneuploids

Description

indexes for aneuploids

Usage

```
get_aneuploids(ploidy_df)
```

Arguments

ploidy_df ploidy table (chromosome in columns and individuals in rows)

Value

A logical vector where each element corresponds to an individual in the input ploidy table. The value is 'TRUE' if the individual is identified as potentially aneuploid, and 'FALSE' otherwise.

get_baf

Description

This function calculates the B-allele frequency (BAF) from normalized theta values, using cluster centers that represent genotype classes. BAF is computed by linearly interpolating the theta values between adjacent genotype cluster centroids.

Usage

get_baf(theta_subject, centers_theta, ploidy)

Arguments

theta_subject	A numeric vector of theta values to be standardized. These typically represent
	allelic ratios or normalized intensity values for a set of samples.
centers_theta	A numeric vector of length 'ploidy + 1', representing the estimated cluster cen-
	ters (centroids) for each genotype class. These values should be sorted in in-
	creasing order from homozygous reference to homozygous alternative.
ploidy	An integer indicating the ploidy level of the organism (e.g., '2' for diploid).

Details

The approach is based on the methodology described by Wang et al. (2007), and is commonly used in SNP genotyping to infer allele-specific signal intensities.

Value

A numeric vector of BAF values ranging from 0 to 1

Note

The 'centers_theta' vector must contain exactly 'ploidy + 1' values, and must be sorted in ascending order. If 'theta_subject' values fall outside the range, BAFs are capped at 0 or 1 accordingly.

References

Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F. A., Hakonarson, H., & Bucan, M. (2007). PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. *Genome Research*, *17*(11), 1665–1674. doi:10.1101/gr.6861907

Examples

theta <- c(0.1, 0.35, 0.6, 0.95)
centers <- c(0.1, 0.5, 0.9)
get_baf(theta, centers, ploidy = 2)</pre>

get_baf_par

Description

To create baf in parallel

Usage

get_baf_par(par_all_item, ploidy = 2)

Arguments

par_all_item	list containing R and theta matrices, and clusters models
ploidy	integer defining ploidy

Value

A list of numeric vectors, where each vector contains the BAF values for a corresponding row in the input 'par_all_item' matrices. Each BAF vector has values ranging from 0 to 1, representing the standardized allelic ratios for the respective samples or markers.

get_centers

Estimate Cluster Centers for Genotype Dosage Classes

Description

This function estimates the cluster centers for each genotype dosage class based on the 'theta' values (e.g., allelic ratios or normalized signal intensities). It supports imputing missing clusters and optionally removing outliers.

Usage

```
get_centers(
  ratio_geno,
  ploidy,
  n.clusters.thr = NULL,
  type = c("intensities", "counts"),
  rm_outlier = TRUE,
  cluster_median = TRUE
)
```

Arguments

ratio_geno	A data.frame containing the following columns: - 'MarkerName': Identifier for each marker 'SampleName': Identifier for each sample 'theta': Numeric variable representing allelic ratio or signal intensity 'geno': Integer dosage (e.g., 0, 1, 2 for diploids).
ploidy	Integer specifying the organism ploidy (e.g., 2 for diploid).
n.clusters.thr	Integer specifying the minimum number of genotype clusters required for a marker to be retained. If fewer clusters are found, missing ones can be imputed depending on the 'type'. Defaults to 'ploidy + 1' if 'NULL'.
type	Character string indicating the data source type: - "intensities": For array- based allele intensities "counts": For sequencing read counts. Default is "intensities".
rm_outlier	Logical; if 'TRUE', outlier samples within genotype clusters will be identified and removed prior to center calculation (default: 'TRUE').
cluster_median	Logical; if 'TRUE', cluster centers are calculated using the median of 'theta' values. If 'FALSE', the mean is used (default: 'TRUE').

Value

A named list with the following elements: - 'rm': Integer flag: '0' (retained), '1' (no clusters found), or '2' (too few clusters). - 'centers_theta': A numeric vector of cluster center positions on the theta scale. - 'MarkerName': Marker identifier. - 'n.clusters': Number of clusters (including imputed ones if applicable).

get_R_theta

Get R and Theta Values from Summary File

Description

This function calculates R and theta values from a cleaned summary file. It optionally performs standard normalization by plate and markers.

Usage

```
get_R_theta(cleaned_summary, atan = FALSE)
```

Arguments

cleaned_summary

A summary object from the clean_summary function.

atan Logical. If TRUE, calculates theta using atan2.

Value

A list containing the following elements: - ' R_all' : A data frame where each row corresponds to a marker, and columns represent total signal intensity (R) values for each sample. - 'theta_all': A data frame where each row corresponds to a marker, and columns represent allelic ratio (theta) values for each sample. - Both data frames include a 'MarkerName' column as the first column, which contains marker identifiers.

get_zscore

Calculate Z-Scores for Allele Intensities or Counts

Description

This function computes per-marker Z-scores based on the total signal intensity (R), which typically represents the sum of reference (X) and alternative (Y) allele signals. The Z-score measures how much each sample deviates from the mean intensity of that marker.

Usage

get_zscore(data = NULL, geno.pos = NULL)

Arguments

data	A data.frame containing signal intensity and ratio values with the following columns:
	MarkerName Marker identifiers.
	SampleName Sample identifiers.
	X Reference allele intensity or count.
	Y Alternative allele intensity or count.
	R Total signal or depth (i.e., $X + Y$).
	ratio Allelic ratio, typically Y / (X + Y).
geno.pos	A data frame with marker genomic positions, containing the following columns:
	MarkerName Marker identifiers.
	Chromosome Chromosome identifier where the marker is located.
	Position Genomic position (base-pair coordinate) of the marker.

Details

The function also merges positional metadata from the 'geno.pos' input, adding chromosome and physical position for each marker.

Value

A data.frame containing the following columns:

MarkerName Marker ID.

Chr Chromosome corresponding to the marker.

Position Genomic position (bp).

SampleName Sample ID.

z Z-score computed per marker across all samples.

Markers with missing chromosome or position information are excluded from the final output.

Examples

```
data <- data.frame(
    MarkerName = rep("m1", 5),
    SampleName = paste0("S", 1:5),
    X = c(100, 110, 90, 95, 85),
    Y = c(200, 190, 210, 205, 215),
    R = c(300, 300, 300, 300, 300),
    ratio = c(0.67, 0.63, 0.70, 0.68, 0.72)
)
geno.pos <- data.frame(MarkerName = "m1", Chromosome = "1", Position = 123456)
get_zscore(data, geno.pos)</pre>
```

merge_arms_format	Merges chromosome-arm level analysis results into chromosome level
	format

Description

Merges chromosome-arm level analysis results into chromosome level format

Usage

```
merge_arms_format(x, filter_diff = NULL)
```

Arguments

х	object of class qploidy_area_ploidy_estimation
filter_diff	filter by difference on area proportion between first and second place

Value

An updated object of class 'qploidy_area_ploidy_estimation' with the following modifications:

- 'ploidy': A matrix where chromosome-arm level results are merged into chromosome-level format. If 'filter_diff' is provided, ploidy values with differences below the threshold are set to 'NA'. The structure of the returned object remains consistent with the input, but with updated ploidy information.

Description

This function returns the most frequent (modal) value in a vector. If there are multiple values with the same highest frequency, it returns the first one encountered.

Usage

mode(x)

Arguments

Х

A vector of numeric, character, or factor values.

Value

A single value representing the mode of the input vector.

pascalTriangle Pascal Triangle for Expected Peaks Calculation

Description

This function generates the Pascal triangle for a given ploidy value. The Pascal triangle is used to define the expected peaks for each ploidy level, which can be useful in various genetic analyses.

Usage

```
pascalTriangle(h)
```

Arguments

h An integer representing the ploidy value.

Value

A list where each element corresponds to a row of the Pascal triangle, up to the specified ploidy value.

plot_baf

Description

This function generates a BAF (B-allele frequency) plot for visualizing genomic data. It allows customization of dot size, expected and estimated peaks, centromere positions, and area colors.

Usage

```
plot_baf(
  data_sample,
  area_single,
  ploidy,
  dot.size = 1,
  add_estimated_peaks = FALSE,
  add_expected_peaks = FALSE,
  centromeres = NULL,
  add_centromeres = FALSE,
  colors = FALSE,
  font_size = 12
)
```

Arguments

data_sample	A data.frame containing BAF and genomic position information. Must include columns 'Chr', 'Position', and 'sample'.
area_single	Numeric value defining the area around the expected peak to be considered.
ploidy	Integer or vector specifying the expected ploidy. If a vector, it must match the number of chromosomes in 'data_sample'.
dot.size	Numeric value for the size of the dots in the plot. Default is 1.
add_estimated_peaks	
	Logical. If TRUE, adds lines for estimated peaks. Default is FALSE.
add_expected_peaks	
	Logical. If TRUE, adds lines for expected peaks. Default is FALSE.
centromeres	Named vector defining centromere positions for each chromosome. Names must match chromosome IDs in 'data_sample'.
add_centromeres	
	Logical. If TRUE, adds vertical lines at centromere positions. Default is FALSE.
colors	Logical. If TRUE, adds area colors to the plot. Default is FALSE.
font_size	Numeric value for the font size of plot labels. Default is 12.

Value

A ggplot object representing the BAF plot.

plot_baf_hist

Description

This function generates a histogram of BAF (B-allele frequency) values. It supports options for adding estimated and expected peaks, area colors, and filtering homozygous calls.

Usage

```
plot_baf_hist(
    data_sample,
    area_single,
    ploidy,
    colors = FALSE,
    add_estimated_peaks = TRUE,
    add_expected_peaks = FALSE,
    BAF_hist_overall = FALSE,
    ratio = FALSE,
    rm_homozygous = FALSE,
    font_size = 12
)
```

Arguments

data_sample	A data.frame containing BAF and genomic position information. Must include columns 'Chr', 'Position', and 'sample'.	
area_single	Numeric value defining the area around the expected peak to be considered.	
ploidy	Integer or vector specifying the expected ploidy. If a vector, it must match the number of chromosomes in 'data_sample'.	
colors	Logical. If TRUE, adds area colors to the histogram. Default is FALSE.	
add_estimated_	peaks	
	Logical. If TRUE, adds lines for estimated peaks. Default is TRUE.	
add_expected_peaks		
	Logical. If TRUE, adds lines for expected peaks. Default is FALSE.	
BAF_hist_overall		
	Logical. If TRUE, plots the BAF histogram for the entire genome. Default is FALSE.	
ratio	Logical. If TRUE, plots the raw ratio instead of BAF. Default is FALSE.	
rm_homozygous	Logical. If TRUE, removes homozygous calls from the histogram. Default is FALSE.	
font_size	Numeric value for the font size of plot labels. Default is 12.	

Value

A ggplot object representing the BAF histogram.

plot_qploidy_standardization

Plot Method for Qploidy Standardization

Description

This function generates various plots for visualizing the results of Qploidy standardization. It supports multiple plot types, including BAF, z-score, and histograms.

Usage

```
plot_qploidy_standardization(
  х,
  sample = NULL,
  chr = NULL,
 type = c("all", "het", "BAF", "zscore", "BAF_hist", "ratio", "BAF_hist_overall",
    "Ratio_hist_overall"),
  area_single = 0.75,
  ploidy = 4,
  dot.size = 1,
  font_size = 12,
  add_estimated_peaks = FALSE,
  add_expected_peaks = FALSE,
  centromeres = NULL,
  add_centromeres = FALSE,
  colors = FALSE,
  window_size = 2e+06,
  het_interval = 0.1,
  rm_homozygous = FALSE,
  . . .
)
```

Arguments

х	An object of class 'qploidy_standardization'.
sample	Character string indicating the sample ID to plot.
chr	Character or numeric vector specifying the chromosomes to plot. Default is NULL (plots all chromosomes).
type	Character vector defining the plot types. Options include: - "all": Generates all available plot types "het": Plots heterozygous locus counts across genomic windows "BAF": Plots B-allele frequency (BAF) for each chromosome "zscore": Plots z-scores for each chromosome "BAF_hist": Plots BAF histograms for each chromosome "BAF_hist_overall": Plots a BAF histogram for the entire genome "Ratio_hist_overall": Plots a histogram of raw ratios for the entire genome "ratio": Plots raw ratios for each chromosome. Default is "all".

area_single	Numeric value defining the area around the expected peak to be considered. Default is 0.75.	
ploidy	Integer specifying the expected ploidy. Default is 4.	
dot.size	Numeric value for the size of the dots in the plots. Default is 1.	
font_size	Numeric value for the font size of plot labels. Default is 12.	
add_estimated_	peaks	
	Logical. If TRUE, adds lines for estimated peaks. Default is FALSE.	
add_expected_peaks		
	Logical. If TRUE, adds lines for expected peaks. Default is FALSE.	
centromeres	Named vector defining centromere positions for each chromosome. Names must match chromosome IDs in 'x'.	
add_centromeres	S	
	Logical. If TRUE, adds vertical lines at centromere positions. Default is FALSE.	
colors	Logical. If TRUE, adds area colors to the plots. Default is FALSE.	
window_size	Numeric value defining the genomic position window for heterozygous locus counts. Default is 2000000.	
het_interval	Numeric value defining the interval to consider as heterozygous. Default is 0.1.	
rm_homozygous	Logical. If TRUE, removes homozygous calls from BAF histogram plots. Default is FALSE.	
	Additional plot parameters.	

Details

The function supports the following plot types:

- **all**: Generates all available plot types. - **het**: Plots the proportion of heterozygous loci across genomic windows, useful for identifying regions with high or low heterozygosity. - **BAF**: Plots the B-allele frequency (BAF) for each chromosome, showing the distribution of allele frequencies. - **zscore**: Plots z-scores for each chromosome, which can help identify outliers or regions with unusual data distributions. - **BAF_hist**: Plots histograms of BAF values for each chromosome, providing a summary of allele frequency distributions. - **BAF_hist_overall**: Plots a single histogram of BAF values for the entire genome, summarizing allele frequency distributions genome-wide. - **Ratio_hist_overall**: Plots a histogram of raw ratios for the entire genome, useful for visualizing overall ratio distributions. - **ratio**: Plots raw ratios for each chromosome, showing the distribution of observed ratios.

Value

A ggarrange object containing the requested plots.

Description

print qploidy_area_ploidy_estimation object

Usage

S3 method for class 'qploidy_area_ploidy_estimation'
print(x, ...)

Arguments

х	qploidy_area_ploidy_estimation object
	print parameters

Value

No return value, called for side effects.

 $\verb"print.qploidy_standardization"$

Print method for object of class 'qploidy_standardization'

Description

Print method for object of class 'qploidy_standardization'

Usage

```
## S3 method for class 'qploidy_standardization'
print(x, ...)
```

Arguments

х	object of class 'qploidy_standardization'
	print parameters

Value

printed information about Qploidy standardization process

qploidy_read_vcf

Description

This function converts a VCF file into a format compatible with Qploidy analysis. It extracts genotype and allele depth information and formats it into a data frame.

Usage

qploidy_read_vcf(vcf_file, geno = FALSE, geno.pos = FALSE)

Arguments

vcf_file	Path to the VCF file.
geno	Logical. If TRUE, the output columns will include MarkerName, SampleName, geno, and prob. If FALSE, the output will include MarkerName, SampleName, X, Y, R, and ratio.
geno.pos	Logical. If TRUE, the output will include MarkerName, Chromosome, and Position columns.

Value

A data frame containing the processed VCF data.

Description

This function processes an Axiom array summary file and converts it into a format compatible with Qploidy and fitpoly analysis.

Usage

```
read_axiom(summary_file, ind_names = NULL, atan = FALSE)
```

Arguments

<pre>summary_file</pre>	Path to the Axiom summary file.
ind_names	Optional. A file with two columns: Plate_name (sample IDs in the summary file) and Sample_Name (desired sample names).
atan	Logical. If TRUE, calculates theta using atan2.

Value

A data frame formatted for Qploidy analysis, containing the following columns: - 'MarkerName': Marker identifiers. - 'SampleName': Sample identifiers (if 'ind_names' is provided, these will be updated accordingly). - 'X': Reference allele intensity (calculated if applicable). - 'Y': Alternative allele intensity (calculated if applicable). - 'R': Total signal intensity (calculated if applicable). -'ratio': Allelic ratio (theta, calculated if applicable). - Additional columns may be included depending on the input data and processing steps.

read_illumina_array Read Illumina Array Files

Description

This function reads Illumina array files and processes them into a format suitable for Qploidy analysis. It adds a suffix to sample IDs if multiple files are provided.

Usage

read_illumina_array(...)

Arguments

. . .

One or more Illumina array filenames.

Value

A data frame containing the processed Illumina array data.

read_qploidy_standardization Read Qploidy Standardization File

Description

This function reads a file generated by the 'standardize' function and reconstructs a 'qploidy_standardization' object. The file contains metadata, filtering information, and the standardized dataset.

Usage

read_qploidy_standardization(qploidy_standardization_file)

Arguments

```
qploidy_standardization_file
```

A string specifying the path to the file generated by the 'standardize' function. The file should be in CSV format and include metadata, filters, and data sections.

Details

The function uses the 'vroom' package to efficiently read the file in chunks. The first row contains metadata ('info'), the second row contains filtering information ('filters'), and the remaining rows contain the standardized dataset ('data').

Value

An object of class 'qploidy_standardization', which is a list containing: - 'info': A named vector of standardization parameters. - 'filters': A named vector summarizing the number of markers removed at each filtering step. - 'data': A data frame containing the standardized dataset with BAF, Z-scores, and genotype information.

rm_outlier	Identify and Remove Outliers Based on Bonferroni-Holm Adjusted P-
	values

Description

This function detects and removes outlier observations from a vector of 'theta' values using externally studentized residuals and the Bonferroni-Holm adjustment for multiple testing. It is typically used during genotype cluster center estimation to clean noisy values.

Usage

rm_outlier(data, alpha = 0.05)

Arguments

data	A data frame containing a 'theta' column. This is usually a subset of the full
	dataset, representing samples within a single genotype class.
alpha	Significance level for identifying outliers (default is '0.05'). Observations with adjusted p-values below this threshold will be removed.

Details

The method fits a constant model ('theta \sim 1') and computes standardized residuals. Observations with significant deviation are flagged using the Bonferroni-Holm procedure and removed if their adjusted p-value is below the defined 'alpha' threshold.

This function was originally developed by **Kaio Olympio** and incorporated into the Qploidy workflow.

Value

A data.frame containing only the non-outlier observations from the input. If fewer than two non-NA 'theta' values are present or if all values are identical, the input is returned unmodified.

Author(s)

Kaio Olympio

simulate_axiom_summary

Simulate an Axiom array summary file

Description

This function generates a simulated Axiom array summary file with probe IDs ending in '-A' or '-B' and sample intensities. The intensities are simulated based on the genotype of the sample: homozygous for A, homozygous for B, or heterozygous.

Usage

```
simulate_axiom_summary(file_path, n_probes = 100, n_samples = 10, seed)
```

Arguments

file_path	The path where the simulated summary file will be saved.
n_probes	Number of probes to simulate. Default is 100.
n_samples	Number of samples to simulate. Default is 10.
seed	The seed for random number generation to ensure reproducibility.

Value

None. The function writes the simulated summary content to the specified file.

simulate_illumina_file

Simulate an Illumina File

Description

This function generates a simulated Illumina file with SNP data for a specified number of SNPs and samples. The file includes a header section and a data section with fields such as SNP Name, Sample ID, GC Score, Theta, X, Y, X Raw, Y Raw, and Log R Ratio.

Usage

```
simulate_illumina_file(
   filepath,
   num_snps = 10,
   num_samples = 1,
   sample_id_prefix = "SAMP",
   mk_id = "MK-",
   seed = 123
)
```

Arguments

filepath	The path where the simulated Illumina file will be saved. Default is "simulated_summary.txt".
num_snps	The number of SNPs to simulate. Default is 10.
num_samples	The number of samples to simulate. Default is 1.
sample_id_prefix	
	The prefix for sample IDs. Default is "SAMP".
mk_id	The prefix for marker IDs. Default is "MK-".
seed	The seed for random number generation to ensure reproducibility. Default is 123.

Details

The simulated data includes random values for GC Score, Theta, X, Y, X Raw, Y Raw, and Log R Ratio. The header section provides metadata about the file, including the number of SNPs and samples.

Value

None. The function writes the simulated Illumina file to the specified path.

Description

Generates synthetic genotyping and signal intensity data for a given ploidy level. Returns a structured list containing input data suitable for standardization analysis.

22

simulate_vcf

Usage

```
simulate_standardization_input(
  n_markers = 10,
  n_samples = 5,
  ploidy = 2,
  seed = 2025
)
```

Arguments

n_markers	Integer. Number of markers to simulate (default: 10).
n_samples	Integer. Number of individuals/samples to simulate (default: 5).
ploidy	Integer. Ploidy level of the organism (e.g., 2 for diploid, 4 for tetraploid).
seed	Integer. Random seed for reproducibility (default: 2025).

Value

A named list with:

sample_data Allelic signal intensities (X, Y, R, ratio).

geno_data Genotype dosage and probability data.

geno_pos Genomic coordinates for each marker.

standardization_input Merged input data with theta and genotype.

simulate_vcf

Simulate a VCF file with GT, DP, and AD format fields for 2 chromosomes

Description

Simulate a VCF file with GT, DP, and AD format fields for 2 chromosomes

Usage

```
simulate_vcf(
  file_path,
  seed,
  n_tetraploid = 35,
  n_diploid = 5,
  n_triploid = 10,
  n_markers = 100
)
```

Arguments

file_path	The path where the simulated VCF file will be saved.
seed	The seed for random number generation to ensure reproducibility.
n_tetraploid	Number of tetraploid samples. Default is 35.
n_diploid	Number of diploid samples. Default is 5.
n_triploid	Number of triploid samples. Default is 10.
n_markers	Number of markers to simulate. Default is 100.

Value

None. The function writes the simulated VCF content to the specified file.

lardize	

Standardize Allelic Ratio Data and Compute BAF and Z-Scores

Description

This function performs signal standardization of genotype data by aligning 'theta' values (allelic ratios or normalized intensities) to expected genotype clusters. It outputs standardized BAF (B-allele frequency) and Z-scores per sample and marker.

Usage

```
standardize(
 data = NULL,
 genos = NULL,
 geno.pos = NULL,
  threshold.missing.geno = 0.9,
  threshold.geno.prob = 0.8,
  ploidy.standardization = NULL,
  threshold.n.clusters = NULL,
  n.cores = 1,
 out_filename = NULL,
  type = "intensities",
 multidog_obj = NULL,
 parallel.type = "PSOCK",
 verbose = TRUE,
  rm_outlier = TRUE,
  cluster_median = TRUE
)
```

standardize

Arguments

data	A 'data.frame' containing the full dataset with the following columns:
	MarkerName Marker identifiers.
	SampleName Sample identifiers.
	X Reference allele intensity or count.
	Y Alternative allele intensity or count.
	R Total signal intensity or read depth $(X + Y)$.
	ratio Allelic ratio, typically $Y / (X + Y)$.
genos	A 'data.frame' containing genotype dosage information for the reference panel. This should include samples of known ploidy and ideally euploid individuals. Required columns:
	MarkerName Marker identifiers.
	SampleName Sample identifiers.
	geno Estimated dosage (0, 1, 2,).
	prob Genotype call probability (used for filtering low-confidence genotypes).
geno.pos	A 'data.frame' with marker position metadata. Required columns:
	MarkerName Marker identifiers.
	Chromosome Chromosome names.
	Position Base-pair positions on the genome.
threshold.missi	
	Numeric (0–1). Maximum fraction of missing genotype data allowed per marker. Markers with a higher fraction will be removed.
threshold.geno.	
	Numeric (0–1). Minimum genotype call probability threshold. Genotypes with lower probability will be treated as missing.
ploidy.standard	lization
	Integer. The ploidy level of the reference panel used for standardization.
threshold.n.clu	
	Integer. Minimum number of expected dosage clusters per marker. For diploid data, this is typically 3 (corresponding to genotypes 0, 1, and 2).
n.cores	Integer. Number of cores to use in parallel computations (e.g., for cluster center estimation and BAF generation).
out_filename	Optional. Path to save the final standardized dataset to disk as a CSV file (suitable for Qploidy).
type	Character. Type of data used for clustering:
	"intensities" For array-based allele intensity data.
	"counts" For sequencing data.
	"updog" Automatically set when 'multidog_obj' is provided.
multidog_obj	Optional. An object of class 'multidog' from the 'updog' package, containing model fits and estimated biases. If provided, this will override the 'type' parameter and use 'updog''s expected cluster positions.

parallel.type	Character. Parallel backend to use ("FORK" or "PSOCK"). "FORK" is faster but only works on Unix-like systems.
verbose	Logical. If 'TRUE', prints progress and filtering information to the console.
rm_outlier	Logical. If 'TRUE', uses Bonferroni-Holm corrected residuals to remove outliers before estimating cluster centers.
cluster_median	Logical. If 'TRUE', uses the median of theta values to estimate cluster centers. If 'FALSE', uses the mean.

Details

Reference genotypes are used to estimate cluster centers either from dosage data (e.g., via 'fitpoly' or 'updog') or using an 'updog' 'multidog' object directly. This function supports both array-based (intensity) and sequencing-based (count) data.

It applies marker and genotype-level quality filters, uses parallel computing to estimate BAF, and generates a final annotated output suitable for CNV or dosage variation analyses.

Value

An object of class "qploidy_standardization" (list) with the following components:

info Named vector of standardization parameters.

filters Named vector summarizing how many markers were removed at each filtering step.

data A data.frame containing merged BAF, Z-score, and genotype information by marker and sample.

summary_to_fitpoly Convert Summary Data to FitPoly-Compatible Format

Description

This function processes R (total signal intensity) and theta (allelic ratio) values to generate a data frame compatible with the FitPoly tool. It calculates X and Y values (reference and alternative allele intensities, respectively) and combines them with R and theta into a long-format data frame.

Usage

```
summary_to_fitpoly(R_all, theta_all)
```

Arguments

R_all	A data frame containing total signal intensity (R) values. The first column
	should be 'MarkerName', and subsequent columns should represent samples.
theta_all	A data frame containing allelic ratio (theta) values. The first column should be 'MarkerName', and subsequent columns should represent samples.

updog_centers

Details

The function calculates X and Y values as follows: - 'X = R * (1 - theta)' - 'Y = R * theta' The resulting data frame is in a long format, where each row corresponds to a specific marker-sample combination.

Value

A data frame in long format with the following columns: - 'MarkerName': Marker identifiers. - 'SampleName': Sample identifiers. - 'X': Reference allele intensity. - 'Y': Alternative allele intensity. - 'R': Total signal intensity. - 'ratio': Allelic ratio (theta).

updog_centers

Estimate Centers for Standardization Using Updog Bias

Description

This function calculates the centers for standardization based on the estimated bias from the 'updog' package. It identifies genotype dosage clusters and determines whether markers should be retained or removed based on the number of clusters.

Usage

```
updog_centers(multidog_obj, threshold.n.clusters = 2, rm.mks)
```

Arguments

multidog_obj	An object of class 'multidog' (from the 'updog' package), containing informa- tion about SNPs, ploidy, sequencing error rates, and bias.
threshold.n.clusters	
	An integer specifying the minimum number of dosage clusters (heterozygous classes) required for a marker to be retained for standardization. Default is '2'.
rm.mks	A logical vector indicating which markers should be removed. The names of the vector correspond to the marker names.

Details

The function uses the 'xi_fun' to calculate the cluster centers for each marker based on the ploidy, sequencing error rate, and bias. Markers with fewer clusters than the specified threshold are flagged for removal.

Value

A named list where each element corresponds to a marker and contains: - 'rm': An integer flag indicating whether the marker is retained ('0') or removed ('1'). - 'centers_theta': A numeric vector of cluster centers (sorted in descending order). - 'MarkerName': The name of the marker. - 'n.clusters': The number of clusters identified for the marker.

vcf_sanity_check

Description

This function performs a series of checks on a VCF file to ensure its validity and integrity. It verifies the presence of required headers, columns, and data fields, and checks for common issues such as missing or malformed data.

Usage

```
vcf_sanity_check(
  vcf_path,
  n_data_lines = 100,
  max_markers = 10000,
  verbose = FALSE
)
```

Arguments

vcf_path	A character string specifying the path to the VCF file. The file can be plain text or gzipped.
n_data_lines	An integer specifying the number of data lines to sample for detailed checks. Default is 100.
max_markers	An integer specifying the maximum number of markers allowed in the VCF file. Default is 10,000.
verbose	A logical value indicating whether to print detailed messages during the checks. Default is FALSE.

Details

The function performs the following checks: - **VCF_header**: Verifies the presence of the '##fileformat' header. - **VCF_columns**: Ensures required columns ('#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO') are present. - **max_markers**: Checks if the total number of markers exceeds the specified limit. - **GT**: Verifies the presence of the 'GT' (genotype) field in the FORMAT column. - **allele_counts**: Checks for allele-level count fields (e.g., 'AD', 'RA', 'AO', 'RO'). - **samples**: Ensures sample/genotype columns are present. - **chrom_info** and **pos_info**: Verifies the presence of 'CHROM' and 'POS' columns. -**ref_alt**: Ensures 'REF' and 'ALT' fields contain valid nucleotide codes. - **multiallelics**: Identifies multiallelic sites (ALT field with commas). - **phased_GT**: Checks for phased genotypes (presence of 'I' in the 'GT' field). - **duplicated_samples**: Checks for duplicated sample IDs. - **duplicated_markers**: Checks for duplicated marker IDs.

Value

A list containing: - 'checks': A named vector indicating the results of each check (TRUE or FALSE). - 'messages': A data frame containing messages for each check, indicating success or failure. - 'duplicates': A list containing any duplicated sample or marker IDs found in the VCF file. - 'ploidy_max': The maximum ploidy detected from the genotype field, if applicable.

Index

all_resolutions_plots, 2 area_estimate_ploidy, 4 clean_summary, 5 find_header_line, 6 get_aneuploids, 6 get_baf, 7 get_baf_par, 8get_centers, 8 get_R_theta, 9 get_zscore, 10 merge_arms_format, 11 mode, 12pascalTriangle, 12 plot_baf, 13 plot_baf_hist, 14 plot_qploidy_standardization, 15 print.qploidy_area_ploidy_estimation, 17 print.qploidy_standardization, 17 qploidy_read_vcf, 18 read_axiom, 18 read_illumina_array, 19 ${\tt read_qploidy_standardization, 19}$ rm_outlier, 20 simulate_axiom_summary, 21 simulate_illumina_file, 21 simulate_standardization_input, 22 simulate_vcf, 23 standardize, 24 summary_to_fitpoly, 26 updog_centers, 27

vcf_sanity_check, 28