
Package ‘RCDT’
January 20, 2025

Type Package

Title Fast 2D Constrained Delaunay Triangulation

Version 1.3.0

Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Description Performs 2D Delaunay triangulation, constrained or
unconstrained, with the help of the C++ library 'CDT'. A function to
plot the triangulation is provided. The constrained Delaunay
triangulation has applications in geographic information systems.

License GPL-3

URL https://github.com/stla/RCDT

BugReports https://github.com/stla/RCDT/issues

Imports colorsGen, gplots, graphics, Polychrome, Rcpp (>= 1.0.8), rgl,
Rvcg

Suggests knitr, rmarkdown, testthat (>= 3.0.0), uniformly, viridisLite

LinkingTo BH, Rcpp, RcppArmadillo

SystemRequirements C++ 17

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Stéphane Laurent [aut, cre],
Artem Amirkhanov [cph] (CDT library)

Repository CRAN

Date/Publication 2023-10-31 13:20:02 UTC

1

https://github.com/stla/RCDT
https://github.com/stla/RCDT/issues

2 RCDT-package

Contents

RCDT-package . 2
delaunay . 3
delaunayArea . 6
plotDelaunay . 7

Index 11

RCDT-package Fast 2D Constrained Delaunay Triangulation

Description

Performs 2D Delaunay triangulation, constrained or unconstrained, with the help of the C++ library
’CDT’. A function to plot the triangulation is provided. The constrained Delaunay triangulation has
applications in geographic information systems.

Details

The DESCRIPTION file:

Type: Package
Package: RCDT
Title: Fast 2D Constrained Delaunay Triangulation
Version: 1.3.0
Authors@R: c(person("Stéphane", "Laurent", , "laurent_step@outlook.fr", role = c("aut", "cre")), person("Artem", "Amirkhanov", role = "cph", comment = "CDT library"))
Maintainer: Stéphane Laurent <laurent_step@outlook.fr>
Description: Performs 2D Delaunay triangulation, constrained or unconstrained, with the help of the C++ library ’CDT’. A function to plot the triangulation is provided. The constrained Delaunay triangulation has applications in geographic information systems.
License: GPL-3
URL: https://github.com/stla/RCDT
BugReports: https://github.com/stla/RCDT/issues
Imports: colorsGen, gplots, graphics, Polychrome, Rcpp (>= 1.0.8), rgl, Rvcg
Suggests: knitr, rmarkdown, testthat (>= 3.0.0), uniformly, viridisLite
LinkingTo: BH, Rcpp, RcppArmadillo
SystemRequirements: C++ 17
VignetteBuilder: knitr
Config/testthat/edition: 3
Encoding: UTF-8
RoxygenNote: 7.2.3
Author: Stéphane Laurent [aut, cre], Artem Amirkhanov [cph] (CDT library)
Archs: x64

Index of help topics:

delaunay 3

RCDT-package Fast 2D Constrained Delaunay Triangulation
delaunay 2D Delaunay triangulation
delaunayArea Area of Delaunay triangulation
plotDelaunay Plot 2D Delaunay triangulation

The delaunay function is the main function of this package. It can build a Delaunay triangulation of
a set of 2D points, constrained or unconstrained. The constraints are defined by the edges argument.

Author(s)

NA

Maintainer: Stéphane Laurent <laurent_step@outlook.fr>

delaunay 2D Delaunay triangulation

Description

Performs a (constrained) Delaunay triangulation of a set of 2d points.

Usage

delaunay(points, edges = NULL, elevation = FALSE)

Arguments

points a numeric matrix with two or three columns (three colums for an elevated De-
launay triangulation)

edges the edges for the constrained Delaunay triangulation, an integer matrix with two
columns; NULL for no constraint

elevation Boolean, whether to perform an elevated Delaunay triangulation (also known as
2.5D Delaunay triangulation)

Value

A list. There are three possibilities. #’

• If the dimension is 2 and edges=NULL, the returned value is a list with three fields: vertices,
mesh and edges. The vertices field contains the given vertices. The mesh field is an object
of class mesh3d, ready for plotting with the rgl package. The edges field provides the indices
of the vertices of the edges, given by the first two columns of a three-columns integer matrix.
The third column, named border, only contains some zeros and some ones; a border (exterior)
edge is labelled by a 1.

4 delaunay

• If the dimension is 2 and edges is not NULL, the returned value is a list with four fields:
vertices, mesh, edges, and constraints. The vertices field contains the vertices of
the triangulation. They coincide with the given vertices if the constraint edges do not in-
tersect; otherwise there are the intersections in addition to the given vertices. The mesh and
edges fields are similar to the previous case, the unconstrained Delaunay triangulation. The
constraints field is an integer matrix with two columns, it represents the constraint edges.
They are not the same as the ones provided by the user if these ones intersect. If they do not
intersect, then in general these are the same, but not always, in some rare corner cases.

• If elevation=TRUE, the returned value is a list with five fields: vertices, mesh, edges,
volume, and surface. The vertices field contains the given vertices. The mesh field is an
object of class mesh3d, ready for plotting with the rgl package. The edges field is similar to
the previous cases. The volume field provides a number, the sum of the volumes under the
Delaunay triangles, that is to say the total volume under the triangulated surface. Finally, the
surface field provides the sum of the areas of all triangles, thereby approximating the area of
the triangulated surface.

Note

The triangulation can depend on the order of the points; this is shown in the examples.

Examples

library(RCDT)
random points in a square
set.seed(314)
library(uniformly)
square <- rbind(

c(-1, 1), c(1, 1), c(1, -1), c(-1, -1)
)
pts_in_square <- runif_in_cube(10L, d = 2L)
pts <- rbind(square, pts_in_square)
del <- delaunay(pts)
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

del, type = "n", xlab = NA, ylab = NA, asp = 1,
fillcolor = "random", luminosity = "light", lty_edges = "dashed"

)
par(opar)

the order of the points matters
the Delaunay triangulation is not unique in general;
it can depend on the order of the points
points <- cbind(

c(1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 3, 4),
c(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 3, 4, 4)

)
del <- delaunay(points)
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

del, type = "p", pch = 19, xlab = NA, ylab = NA, axes = FALSE,
asp = 1, lwd_edges = 2, lwd_borders = 3

delaunay 5

)
par(opar)
now we randomize the order of the points
set.seed(666L)
points2 <- points[sample.int(nrow(points)),]
del2 <- delaunay(points2)
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

del2, type = "p", pch = 19, xlab = NA, ylab = NA, axes = FALSE,
asp = 1, lwd_edges = 2, lwd_borders = 3

)
par(opar)

a constrained Delaunay triangulation: outer and inner dodecagons
points
nsides <- 12L
angles <- seq(0, 2*pi, length.out = nsides+1L)[-1L]
points <- cbind(cos(angles), sin(angles))
points <- rbind(points, points/1.5)
constraint edges
indices <- 1L:nsides
edges_outer <- cbind(

indices, c(indices[-1L], indices[1L])
)
edges_inner <- edges_outer + nsides
edges <- rbind(edges_outer, edges_inner)
constrained Delaunay triangulation
del <- delaunay(points, edges)
plot
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

del, type = "n", fillcolor = "yellow", lwd_borders = 2, asp = 1,
axes = FALSE, xlab = NA, ylab = NA

)
par(opar)

another constrained Delaunay triangulation: a face
V <- read.table(

system.file("extdata", "face_vertices.txt", package = "RCDT")
)
E <- read.table(

system.file("extdata", "face_edges.txt", package = "RCDT")
)
del <- delaunay(

points = as.matrix(V)[, c(2L, 3L)], edges = as.matrix(E)[, c(2L, 3L)]
)
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

del, type="n", col_edges = NULL, fillcolor = "salmon",
col_borders = "black", col_constraints = "purple",
lwd_borders = 3, lwd_constraints = 3,
asp = 1, axes = FALSE, xlab = NA, ylab = NA

)

6 delaunayArea

par(opar)

delaunayArea Area of Delaunay triangulation

Description

Computes the area of a region subject to Delaunay triangulation.

Usage

delaunayArea(del)

Arguments

del an output of delaunay executed with elevation=FALSE

Value

A number, the area of the region triangulated by the Delaunay triangulation.

Examples

library(RCDT)
random points in a square
set.seed(666L)
library(uniformly)
square <- rbind(

c(-1, 1), c(1, 1), c(1, -1), c(-1, -1)
)
pts <- rbind(square, runif_in_cube(8L, d = 2L))
del <- delaunay(pts)
delaunayArea(del)

a constrained Delaunay triangulation: outer and inner squares
innerSquare <- rbind(# the hole

c(-1, 1), c(1, 1), c(1, -1), c(-1, -1)
) # area: 4
outerSquare <- 2*innerSquare # area: 16
points <- rbind(innerSquare, outerSquare)
edges_inner <- rbind(c(1L, 2L), c(2L, 3L), c(3L, 4L), c(4L, 1L))
edges_outer <- edges_inner + 4L
edges <- rbind(edges_inner, edges_outer)
del <- delaunay(points, edges = edges)
delaunayArea(del) # 16-4

plotDelaunay 7

plotDelaunay Plot 2D Delaunay triangulation

Description

Plot a constrained or unconstrained 2D Delaunay triangulation.

Usage

plotDelaunay(
del,
col_edges = "black",
col_borders = "red",
col_constraints = "green",
fillcolor = "random",
distinctArgs = list(seedcolors = c("#ff0000", "#00ff00", "#0000ff")),
randomArgs = list(hue = "random", luminosity = "dark"),
lty_edges = par("lty"),
lwd_edges = par("lwd"),
lty_borders = par("lty"),
lwd_borders = par("lwd"),
lty_constraints = par("lty"),
lwd_constraints = par("lwd"),
...

)

Arguments

del an output of delaunay without constraints (edges=NULL) or with constraints
col_edges the color of the edges of the triangles which are not border edges nor constraint

edges; NULL for no color
col_borders the color of the border edges; note that the border edges can contain the con-

straint edges for a constrained Delaunay triangulation; NULL for no color
col_constraints

for a constrained Delaunay triangulation, the color of the constraint edges which
are not border edges; NULL for no color

fillcolor controls the filling colors of the triangles, either NULL for no color, a single color,
"random" to get multiple colors with randomColor, "distinct" get multiple
colors with createPalette, or a vector of colors, one color for each triangle; in
this case the the colors will be assigned in the order they are provided but after
the triangles have been circularly ordered (see the last example)

distinctArgs if fillcolor = "distinct", a list of arguments passed to createPalette

randomArgs if fillcolor = "random", a list of arguments passed to randomColor

lty_edges, lwd_edges
graphical parameters for the edges which are not border edges nor constraint
edges

8 plotDelaunay

lty_borders, lwd_borders
graphical parameters for the border edges

lty_constraints, lwd_constraints
in the case of a constrained Delaunay triangulation, graphical parameters for the
constraint edges which are not border edges

... arguments passed to plot for the vertices, such as type="n", asp=1, axes=FALSE,
etc

Value

No value, just renders a 2D plot.

See Also

The mesh field in the output of delaunay for an interactive plot. Other examples of plotDelaunay
are given in the examples of delaunay.

Examples

library(RCDT)
random points in a square
square <- rbind(

c(-1, 1), c(1, 1), c(1, -1), c(-1, -1)
)
library(uniformly)
set.seed(314)
pts_in_square <- runif_in_cube(10L, d = 2L)
pts <- rbind(square, pts_in_square)
d <- delaunay(pts)
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

d, type = "n", xlab = NA, ylab = NA, axes = FALSE, asp = 1,
fillcolor = "random", lwd_borders = 3

)
par(opar)

a constrained Delaunay triangulation: pentagram
vertices
R <- sqrt((5-sqrt(5))/10) # outer circumradius
r <- sqrt((25-11*sqrt(5))/10) # circumradius of the inner pentagon
k <- pi/180 # factor to convert degrees to radians
X <- R * vapply(0L:4L, function(i) cos(k * (90+72*i)), numeric(1L))
Y <- R * vapply(0L:4L, function(i) sin(k * (90+72*i)), numeric(1L))
x <- r * vapply(0L:4L, function(i) cos(k * (126+72*i)), numeric(1L))
y <- r * vapply(0L:4L, function(i) sin(k * (126+72*i)), numeric(1L))
vertices <- rbind(

c(X[1L], Y[1L]),
c(x[1L], y[1L]),
c(X[2L], Y[2L]),
c(x[2L], y[2L]),
c(X[3L], Y[3L]),
c(x[3L], y[3L]),

plotDelaunay 9

c(X[4L], Y[4L]),
c(x[4L], y[4L]),
c(X[5L], Y[5L]),
c(x[5L], y[5L])

)
constraint edge indices (= boundary)
edges <- cbind(1L:10L, c(2L:10L, 1L))
constrained Delaunay triangulation
del <- delaunay(vertices, edges)
plot
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

del, type = "n", asp = 1, fillcolor = "distinct", lwd_borders = 3,
xlab = NA, ylab = NA, axes = FALSE

)
par(opar)
interactive plot with 'rgl'
mesh <- del[["mesh"]]
library(rgl)
open3d(windowRect = c(100, 100, 612, 612))
shade3d(mesh, color = "red", specular = "orangered")
wire3d(mesh, color = "black", lwd = 3, specular = "black")
plot only the border edges - we could find them in `del[["edges"]]`

but we use the 'rgl' function `getBoundary3d` instead
open3d(windowRect = c(100, 100, 612, 612))
shade3d(mesh, color = "darkred", specular = "firebrick")
shade3d(getBoundary3d(mesh), lwd = 3)

an example where `fillcolor` is a vector of colors
n <- 50L # number of sides of the outer polygon
angles1 <- head(seq(0, 2*pi, length.out = n + 1L), -1L)
outer_points <- cbind(cos(angles1), sin(angles1))
m <- 5L # number of sides of the inner polygon
angles2 <- head(seq(0, 2*pi, length.out = m + 1L), -1L)
phi <- (1+sqrt(5))/2 # the ratio 2-phi will yield a perfect pentagram
inner_points <- (2-phi) * cbind(cos(angles2), sin(angles2))
points <- rbind(outer_points, inner_points)
constraint edges
indices <- 1L:n
edges_outer <- cbind(indices, c(indices[-1L], indices[1L]))
indices <- n + 1L:m
edges_inner <- cbind(indices, c(indices[-1L], indices[1L]))
edges <- rbind(edges_outer, edges_inner)
constrained Delaunay triangulation
del <- delaunay(points, edges)
there are 55 triangles:
del[["mesh"]]
we make a cyclic palette of colors:
colors <- viridisLite::turbo(28)
colors <- c(colors, rev(colors[-1L]))
plot
opar <- par(mar = c(0, 0, 0, 0))
plotDelaunay(

10 plotDelaunay

del, type = "n", asp = 1, lwd_borders = 3, col_borders = "black",
fillcolor = colors, col_edges = "black", lwd_edges = 1.5,
axes = FALSE, xlab = NA, ylab = NA

)
par(opar)

Index

∗ package
RCDT-package, 2

createPalette, 7

delaunay, 3, 6–8
delaunayArea, 6

mesh3d, 3, 4

plot, 8
plotDelaunay, 7

randomColor, 7
RCDT (RCDT-package), 2
RCDT-package, 2

11

	RCDT-package
	delaunay
	delaunayArea
	plotDelaunay
	Index

