Package 'RcausalEGM'

January 20, 2025

Type Package

Title A General Causal Inference Framework by Encoding Generative Modeling

Version 0.3.3

Date 2023-03-22

Maintainer Qiao Liu <liuqiao@stanford.edu>

Description CausalEGM is a general causal inference framework for estimating causal effects by encoding generative modeling, which can be applied in both discrete and continuous treatment settings. A description of the methods is given in Liu (2022) arXiv:2212.05925>.

License MIT + file LICENSE

Encoding UTF-8

Imports reticulate

URL https://github.com/SUwonglab/CausalEGM

BugReports https://github.com/SUwonglab/CausalEGM/issues

Repository CRAN

Depends R(>= 3.6.0)

RoxygenNote 7.2.3

Suggests rmarkdown, knitr, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Qiao Liu [aut, cre], Wing Wong [aut], Balasubramanian Narasimhan [ctb]

Date/Publication 2023-03-28 12:00:11 UTC

Contents

causalegm					•			 												2
get_est						•		 											•	4
install_causalegm			•	•	•	•	•	 				•							•	5

causalegm

Index

causalegm

Main function for estimating causal effect in either binary or continuous treatment settings.

Description

This function takes observation data (x,y,v) as input, and estimate the ATE/ITE/ADRF.

Usage

```
causalegm(
 х,
 у,
  ν,
 z_dims = c(3, 3, 6, 6),
 output_dir = ".",
 dataset = "myData",
 lr = 2e - 04,
 bs = 32,
  alpha = 1,
 beta = 1,
 gamma = 10,
 g_d_freq = 5,
 g_{units} = c(64, 64, 64, 64, 64),
 e_units = c(64, 64, 64, 64, 64),
  f_units = c(64, 32, 8),
 h_units = c(64, 32, 8),
 dv_units = c(64, 32, 8),
  dz_units = c(64, 32, 8),
  save_model = FALSE,
  save_res = FALSE,
 binary_treatment = TRUE,
 use_z_rec = TRUE,
 use_v_gan = TRUE,
  random_seed = 123,
 n_iter = 30000,
 normalize = FALSE,
 x_min = NULL,
  x_max = NULL
```

)

Arguments

х	is the treatment variable, one-dimensional array with size n.
У	is the potential outcome, one-dimensional array with size n.

6

causalegm

v	is the covariates, two-dimensional array with size n by p.
z_dims	is the latent dimensions for z_0, z_1, z_2, z_3 respectively. Total dimension should
	be much smaller than the dimension of covariates v . Default: $c(3,3,6,6)$
output_dir	is the folder to save the results including model hyperparameters and the esti- mated causal effect. Default is ".".
dataset	is the name for the input data. Default: "myData".
lr	is the learning rate. Default: 0.0002.
bs	is the batch size. Default: 32.
alpha	is the coefficient for the reconstruction loss. Default: 1.
beta	is the coefficient for the MSE loss of x and y . Default: 1.
gamma	is the coefficient for the gradient penalty loss. Default: 10.
g_d_freq	is the iteration frequency between training generator and discriminator in the Roundtrip framework. Default: 5.
g_units	is the list of hidden nodes in the generator/decoder network. Default: c(64,64,64,64,64).
e_units	is the list of hidden nodes in the encoder network. Default: c(64,64,64,64,64).
f_units	is the list of hidden nodes in the f network for predicting y . Default: $c(64,32,8)$.
h_units	is the list of hidden nodes in the h network for predicting x . Default: $c(64,32,8)$.
dv_units	is the list of hidden nodes in the discriminator for distribution match v . Default: $c(64,32,8)$.
dz_units	is the list of hidden nodes in the discriminator for distribution match z . Default: $c(64,32,8)$.
save_model	whether to save the trained model. Default: FALSE.
save_res	whether to save the results during training. Default: FALSE.
binary_treatme	
	whether the treatment is binary or continuous. Default: TRUE.
use_z_rec	whether to use the reconstruction loss for z . Default: TRUE.
use_v_gan	whether to use the GAN training for v. Default: TRUE.
random_seed	is the random seed to fix randomness. Default: 123.
n_iter	is the training iterations. Default: 30000.
normalize	whether apply normalization to covariates. Default: FALSE.
x_min	ADRF start value. Default: NULL
x_max	ADRF end value. Default: NULL

Value

causalegm returns an object of class "causalegm".

An object of class "causalegm" is a list containing the following:

causal_pre	the predicted causal effects, which are individual causal effects (ITEs) in binary treatment settings and dose-response values in continous treatment settings.
getCATE	the method for getting the conditional average treatment effect (CATE). It takes covariates v as input.
predict	the method for outcome function. It takes treatment x and covariates v as inputs.

References

Qiao Liu, Zhongren Chen, Wing Hung Wong. CausalEGM: a general causal inference framework by encoding generative modeling. *arXiv preprint arXiv:2212.05925, 2022*.

Examples

```
#Generate a simple simulation data.
n <- 1000
p <- 10
v <- matrix(rnorm(n * p), n, p)
x <- rbinom(n, 1, 0.4 + 0.2 * (v[, 1] > 0))
y <- pmax(v[, 1], 0) * x + v[, 2] + pmin(v[, 3], 0) + rnorm(n)
model <- causalegm(x=x, y=y, v=v, n_iter=3000)
paste("The average treatment effect (ATE):", round(model$ATE, 2))
```

get_est

Make predictions with causalEGM model.

Description

When x is NULL, the conditional average treatment effect (CATE), namely tau(v), is estimated using a trained causalEGM model. When x is provided, estimating the potential outcome y given treatment x and covariates v using a trained causalEGM model.

Usage

get_est(object, v, x = NULL)

Arguments

object	An object of class "causalegm".
v	is the covariates, two-dimensional array with size n by p.
x	is the optional treatment variable, one-dimensional array with size n. Defaults to NULL.

Value

Vector of predictions.

install_causalegm

Examples

```
#Generate a simple simulation data.
n <- 1000
p <- 10
v <- matrix(rnorm(n * p), n, p)
x <- rbinom(n, 1, 0.4 + 0.2 * (v[, 1] > 0))
y <- pmax(v[, 1], 0) * x + v[, 2] + pmin(v[, 3], 0) + rnorm(n)
model <- causalegm(x=x, y=y, v=v, n_iter=3000)
n_test <- 100
v_test <- matrix(rnorm(n_test * p), n_test, p)
x_test <- rbinom(n_test, 1, 0.4 + 0.2 * (v_test[, 1] > 0))
pred_cate <- get_est(model, v = v_test) # CATE estimate
pred_y <- get_est(model, v = v_test, x = x_test) # y given treatment x plus covariates v</pre>
```

install_causalegm Install the python CausalEGM package

Description

Install the python CausalEGM package

Usage

```
install_causalegm(method = "auto", pip = TRUE)
```

Arguments

method	default "auto"
pip	boolean flag, default TRUE

Value

No return value

Index

causalegm, 2 class, *3*

get_est, 4

install_causalegm, 5