Package 'RobinCar'

May 24, 2025

Type Package

Title Robust Inference for Covariate Adjustment in Randomized Clinical Trials

Version 1.0.0

Description

Performs robust estimation and inference when using covariate adjustment and/or covariateadaptive randomization in randomized clinical trials.

Ting Ye, Jun Shao, Yanyao Yi, Qinyuan Zhao (2023) <doi:10.1080/01621459.2022.2049278>. Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao (2023) <doi:10.1080/24754269.2023.2205802>. Ting Ye, Jun Shao, Yanyao Yi (2023) <doi:10.1093/biomet/asad045>.

Marlena Ban-

nick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye (2024) <doi:10.1093/biomet/asaf029>. Xiaoyu Qiu, Yuhan Qian, Jaehwan Yi, Jin-

qiu Wang, Yu Du, Yanyao Yi, Ting Ye (2025) <doi:10.48550/arXiv.2408.12541>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr, magrittr, tidyr, emulator, numDeriv, tidyverse, stats, rlang, survival, fastDummies, data.table, broom, SuperLearner, AIPW, MASS, Rdpack (>= 0.7)

Depends R (>= 2.10)

Suggests knitr, rmarkdown, ranger, forcats, matrixcalc, testthat (>= 3.0.0)

RdMacros Rdpack

Config/testthat/edition 3

NeedsCompilation no

Author Marlena Bannick [cre, aut] (ORCID:

<https://orcid.org/0000-0001-6279-5978>), Yuhan Qian [aut], Ting Ye [aut], Yanyao Yi [aut], Faith Bian [aut] Maintainer Marlena Bannick <mnorwood@uw.edu>

Repository CRAN

Date/Publication 2025-05-24 15:40:12 UTC

Contents

car_pb	2
car_ps	3
car_sr	4
data_gen	5
data_gen2	6
print.CalibrationResult	7
print.ContrastResult	7
print.GLMModelResult	8
print.LinModelResult	8
print.MHResult	9
print.TTEResult	9
robincar_calibrate	10
robincar_contrast	10
robincar_covhr	11
	12
robincar_glm	13
	15
robincar_logrank	16
	18
robincar_SL	19
robincar_SL_median	
robincar_tte	23
	25

Index

car_pb

Generate permuted block treatment assignments

Description

Generate permuted block treatment assignments

Usage

car_pb(z, trt_label, trt_alc, blocksize = 4L)

car_ps

Arguments

Z	The car_strata design matrix, as a data frame with factor variables
trt_label	Treatment label
trt_alc	Treatment allocation vector
blocksize	Permuted block blocksize

Value

A vector of treatment assignments with labels from the 'trt_label' argument, based on stratified permuted block randomization.

Examples

car_pb(z[, 2:5], c(0, 1, 2), trt_alc=c(1/4, 1/2, 1/4), blocksize=4L)

car_ps

Generate Pocock-Simon minimization treatment assignments

Description

Generate Pocock-Simon minimization treatment assignments

Usage

```
car_ps(z, treat, ratio, imb_measure, p_bc = 0.8)
```

z	The car_strata design matrix
treat	A vector of length k (the number of treatment arms), which labels the treatment arms being compared.
ratio	A vector of length k (the number of treatment arms), which indicates the allocation ratio, e.g., $c(1,1,1)$ for equal allocation with three treatment arms.
imb_measure	What measure of imbalance should be minimzed during randomization – either "Range" or "SD"
p_bc	The biased probability, i.e., the probability of assigning each patient to the arm that minimizes the imbalance. Default is 0.8

Value

res treatment assignment vector

A vector of treatment assignments with labels from the 'treat' argument, based on Pocock-Simon's minimization.

Author(s)

Ting Ye Yanyao Yi

Examples

```
# Create car_strata variables
library(fastDummies)
library(dplyr)
x <- runif(100)
z <- cut(x, breaks=c(0, 0.25, 0.5, 0.75, 1.0))
z <- dummy_cols(z)
A <- car_ps(
    z=z[, 2:5],
    treat=c(0, 1, 2),
    ratio=c(1, 1, 1),
    imb_measure="Range"
)
```

car_sr

Generate simple randomization treatment assignments

Description

Generate simple randomization treatment assignments

Usage

car_sr(n, p_trt)

Arguments

n	Number of observations
p_trt	Proportion allotted to treatment

Value

A vector of treatment assignments as 0's and 1's based on simple randomization.

Examples

car_sr(10, p_trt=0.4)

data_gen

Description

Data generation function from JRSS-B paper

Usage

```
data_gen(
    n,
    theta,
    randomization,
    p_trt,
    case = c("case1", "case2", "case3", "case4", "case5")
)
```

Arguments

n	total number of subjects to be generated
theta	true treatment effect
randomization	randomization method in c("SR","CABC","permuted_block","minimization","urn")
p_trt	proportion of treatment arm
case	simulation case in the paper

Value

A data frame with the following columns:

t	event time	
delta	event indicator	
I1	assignment to treatment group 1	
IØ	assignment to treatment group 0	
<pre>model_z1, model_z2</pre>		
	covariates	
car_strata1,		
	strata variables	

data_gen2

Description

Data generation function from covariate adjusted log-rank paper

Usage

```
data_gen2(
    n,
    theta,
    randomization,
    p_trt,
    case = c("case1", "case2", "case3", "case4"),
    blocksize = 4
)
```

Arguments

n	total number of subjects to be generated
theta	true treatment effect
randomization	randomization method in c("SR", "CABC", "permuted_block", "minimization", "urn")
p_trt	proportion of treatment arm
case	simulation case in the paper
blocksize	block size for permuted block design

Value

A data frame with the following columns:

t	event time
delta	event indicator
I1	assignment to treatment group 1
10	assignment to treatment group 0
model_w3	covariates
car_strata1,	
	strata variables

print.CalibrationResult

Print calibration result

Description

Print calibration result

Usage

S3 method for class 'CalibrationResult'
print(x, ...)

Arguments

х	A GLMModel result. If you'd like to calibrate a linear adjustment, use 'robin-
	car_glm' instead of 'robincar_linear'.
	Additional arguments

Value

Prints the treatment mean estimates (and variances) based on a calibration on top of a GLM working model, along with the settings used. See RobinCar::robincar_calibrate().

print.ContrastResult Print contrast result

Description

Print contrast result

Usage

```
## S3 method for class 'ContrastResult'
print(x, ...)
```

Arguments

х	A ContrastResult object
	Additional arguments

Value

Prints estimates (and variances) of treatment contrasts based on a linear or GLM working model, along with the settings used. See RobinCar::robincar_contrast()

print.GLMModelResult Print glm model result

Description

Print glm model result

Usage

S3 method for class 'GLMModelResult'
print(x, ...)

Arguments

Х	A GLMModelResult object
	Additional arguments

Value

Prints the treatment mean estimates (and variances) based on a GLM working model, along with the settings used. See RobinCar::robincar_glm().

print.LinModelResult Print linear model result

Description

Print linear model result

Usage

S3 method for class 'LinModelResult'
print(x, ...)

Arguments

Х	A LinModelResult object
	Additional arguments

Value

Prints the treatment mean estimates (and variances) based on a linear working model, along with the settings used. See RobinCar::robincar_linear().

print.MHResult Print MH result

Description

Print MH result

Usage

S3 method for class 'MHResult'
print(x, ...)

Arguments

х	A ContrastResult object
	Additional arguments

Value

Prints estimates (and variances) of treatment contrasts based on MH risk difference or ATE

print.TTEResult Print TTE result

Description

Print TTE result

Usage

S3 method for class 'TTEResult'
print(x, ...)

Arguments

х	A TTEResult object
	Additional arguments

Value

Prints results of time-to-event covariate adjusted analyses including covariate-adjusted (stratified) logrank, robust Cox score, and covariate-adjusted hazard ratio. Prints summary statistics about number of observations and events, possibly by strata, and the test statistics and/or estimates, and p-values. See RobinCar::robincar_tte() and RobinCar::robincar_covhr().

robincar_calibrate Perform linear or joint calibration

Description

Uses linear or joint calibration to "calibrate" the estimates from a linear or GLM-type adjustment. Linear calibration fits a linear model with treatment (and treatment-by-covariate interactions) and with the predicted $\hat{\mu}(X_i) = (\hat{\mu}_1(X_i), \dots, \hat{\mu}_K(X_i))$ as constructed covariates where K is the number of treatment groups; joint calibration also includes Z_i the strata variables as covariates.

Usage

```
robincar_calibrate(result, joint = FALSE, add_x = NULL)
```

Arguments

result	A GLMModelResult
joint	If true, then performs joint calibration with the $\hat{\mu}(X_i)$ and strata Z_i to achieve universality and efficiency gain rather than just linear calibration that uses $\hat{\mu}(X_i)$.
add_x	Additional x to use in the calibration. Must have been in the original dataset that robincar_glm was called on.

Value

A result object that has the same structure as RobinCar::robincar_glm(), with the argument 'result' included as "original" in the list.

robincar_contrast Estimate a treatment contrast

Description

Estimate a treatment contrast using the result of RobinCar::robincar_linear(), RobinCar::robincar_glm(), or RobinCar::robincar_SL() using the delta method.

Usage

robincar_contrast(result, contrast_h, contrast_dh = NULL)

result	A LinModelResult or GLMModelResult
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast

robincar_covhr

Value

A contrast object which has the following attributes:

result	A dplyr::tibble() with the label of the treatment contrast (e.g., 1 vs. 0), the estimate of the treatment contrast, estimated SE, and p-value based on a z-test with estimate and SE.
varcov	The variance-covariance matrix for the treatment contrast estimates.
settings	List of model settings used for the contrast.

robincar_covhr

Covariate-adjusted estimators for time to event data

Description

Estimate a covariate-adjusted hazard ratio ('adj_method="CL"'), or a covariate-adjusted stratified hazard ratio ('adj_method="CSL"').

Usage

```
robincar_covhr(
    df,
    treat_col,
    response_col,
    event_col,
    car_strata_cols = NULL,
    covariate_cols = NULL,
    p_trt = 0.5,
    ref_arm = NULL,
    car_scheme = "simple",
    adj_method = "CL",
    interval = c(-10, 10)
)
```

df	A data.frame with the required columns	
treat_col	Name of column in df with treatment variable	
response_col	Name of the column in df with response variable	
event_col	Name of column in df with event indicator (0/FALSE=no event, 1/TRUE=event)	
car_strata_cols		
	Names of columns in df with car_strata variables	
covariate_cols	Names of columns in df with covariate variables	
p_trt	Treatment allocation ratio for the reference arm.	

ref_arm	Reference arm of the treatment group, defaults to NULL, which results in using the first element of 'unique(data[, treat_col])'.
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".
adj_method	Adjustment method (one of "CL", "CSL")
interval	Interval for uniroot function

Value

An object with attribute named "result", which lists:

theta_L	estimate of the hazard ratio
se_theta_L	SE estimate of the hazard ratio
theta_CL	estimate of the covariate-adjusted hazard ratio
se_theta_CL	SE estimate of the covariate-adjusted hazard ratio

Other attributes are the settings used, data attributes, and the original data frame supplied by the user.

robincar_coxscore Robust cox score adjustment

Description

Robust cox score adjustment

Usage

```
robincar_coxscore(...)
```

Arguments

. . .

Arguments to robincar_tte, other than 'adj_method'

Value

A result object with the following attributes:

result	A list: "statistic" is the robust Cox score test statistic which can be used to obtain p-values; "U" and "se" are the numerator and denominator of the test statistic, respectively.
settings	The covariate adjustment settings used.
original_df	The dataset supplied by the user.

robincar_glm

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a generalized linear working model.

Usage

```
robincar_glm(
    df,
    treat_col,
    response_col,
    formula = NULL,
    car_strata_cols = NULL,
    car_scheme = "simple",
    g_family = stats::gaussian,
    g_accuracy = 7,
    contrast_h = NULL,
    contrast_dh = NULL,
    variance_type = 1
)
```

df	A data.frame with the required columns
treat_col	Name of column in df with treatment variable
response_col	Name of the column in df with response variable
formula	The formula to use for adjustment specified using as.formula(""). This over- rides car_strata_cols and covariate_cols.
car_strata_cols	5
	Names of columns in df with car_strata variables
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "sim- ple", "pocock-simon", "biased-coin", "permuted-block".
g_family	Family that would be supplied to glm(), e.g., binomial. If no link speci- fied, will use default link, like behavior in glm. If you wish to use a nega- tive binomial working model with an unknown dispersion parameter, then use 'g_family="nb"'.
g_accuracy	Level of accuracy to check prediction un-biasedness.
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical deriva- tive)
variance_type	The type of variance estimator to use, type 1, 2, or 3. All three are asymptotically equivalent. See details for more.

Details

The output is the AIPW estimator given by (for each treatment group *a*):

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\mu}_{a}(X_{i}) + \frac{1}{n_{a}}\sum_{i:A_{i}=a}\{Y_{i} - \hat{\mu}(X_{i})\}$$

where Y_i is the outcome, A_i is the treatment assignment, X_i are the covariates, $n_a = \sum_{i=1}^n A_i = a$, and $\hat{\mu}_a$ is the estimated conditional mean function based on the GLM working model. This working model has treatment *a*-specific coefficients if 'adj_method' is "heterogeneous". Otherwise, they are shared across the treatment arms. Alternatively, if 'formula' is used, the working model can be specified according to the user.

Importantly, the estimated variance accounts for misspecification of the working model, and for covariate-adaptive randomization. The variance estimator is given by

$$\hat{V} = \hat{V}_{SR} - \hat{V}_{SR}$$

where \hat{V}_{SR} is the contribution to the variance under simple randomization, and \hat{V}_{Ω} is a term that only appears when a covariate-adaptive randomization scheme is used. The \hat{V}_{Ω} is the second line of \hat{V} in (Bannick et al. 2025).

There are three different estimators available for \hat{V}_{SR} , which the user can choose with the argument variance_type. We describe these here.

The three variance types are given as follows:

• Type 1 (default):

diag
$$\left[\hat{\pi}_a^{-1}(\operatorname{Var}_a(Y_i) - 2\hat{Q}_{a,a} + \hat{\Sigma}_{a,a}), a = 1, \dots, K\right] + \hat{Q} + \hat{Q}^T - \hat{\Sigma}$$

• Type 2:

diag
$$\left[\hat{\pi}_{a}^{-1}(\operatorname{Var}_{a}(Y_{i}-\hat{\mu}_{a}(X_{i}))-2\hat{Q}_{a,a}+\hat{\Sigma}_{a,a}),a=1,\ldots,K\right]+\hat{Q}+\hat{Q}^{T}-\hat{\Sigma}$$

• Type 3:

diag
$$\left[\hat{\pi}_a^{-1} E_a([Y_i - \hat{\mu}_a(X_i)]^2), a = 1, \dots, K\right] + A$$

where $\hat{\pi}_a$ is the treatment proportion for group a, $\hat{Q}_{a,b} = \text{Cov}_a(Y_i, \hat{\mu}_b(X_i)), \hat{\Sigma}_{a,b} = \text{Cov}(\hat{\mu}_a(X_i), \hat{\mu}_b(X_i)),$ and the matrix \hat{A} has diagonal entries for (a, a) given by

$$2\operatorname{Cov}_a(Y_i - \hat{\mu}_a(X_i), \hat{\mu}_a(X_i)) + \operatorname{Var}_a(\hat{\mu}_a(X_i))$$

and off-diagonal entries for (a, b) given by

$$Cov_{a}(Y_{i}, \hat{\mu}_{b}(X_{i})) + Cov_{b}(Y_{i}, \hat{\mu}_{a}(X_{i})) - (1/2) \left[Cov_{a}(\hat{\mu}_{a}(X_{i}), \hat{\mu}_{b}(X_{i})) + Cov_{b}(\hat{\mu}_{a}(X_{i}), \hat{\mu}_{b}(X_{i}))\right]$$

We use E_a , Var_a , and Cov_a to refer to the empirical expectation, variance, and covariance among observations in group a only, and Cov is the covariance within the entire sample.

Please see the Supplemental Material Sect. H of (Bannick et al. 2025) for a discussion of the merits of each type of variance estimator. Briefly, we recommend variance types 1 generally, and variance type 3 if it is anticipated that the distribution of X varies substantially over treatment groups.

robincar_linear

Value

If 'contrast_h' argument is used, outputs a 'main' and a 'contrast' object. The 'main' object has the following structure:

result	A dplyr::tibble() with the treatment label, treatment mean estimate using AIPW, estimated SE, and p-value based on a z-test with estimate and SE.
varcov	The variance-covariance matrix for the treatment mean estimates.
settings	List of model settings used in covariate adjustment.
original_df	The original dataset provided by the user.
mod	The fit from the glm() working model used for covariate adjustment.
mu_a	Predicted potential outcomes for each treatment category (columns) and individual (rows). These are the $\hat{\mu}_a$
g.estimate	The G-computation estimate based only on $\frac{1}{n}\sum_{i=1}^{n}\hat{\mu}_{a}(X_{i})$. This is equivalent to the AIPW estimate when a canonical link function is used.
data	Attributes about the dataset.

The 'contrast' object has a structure that is documented in RobinCar::robincar_contrast().

References

Bannick MS, Shao J, Liu J, Du Y, Yi Y, Ye T (2025). "A General Form of Covariate Adjustment in Clinical Trials under Covariate-Adaptive Randomization." *Biometrika*, asaf029. ISSN 1464-3510, doi:10.1093/biomet/asaf029.

robincar_linear Covariate adjustment using linear working model

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a linear working model for continuous outcomes.

Usage

```
robincar_linear(
    df,
    treat_col,
    response_col,
    car_strata_cols = NULL,
    covariate_cols = NULL,
    car_scheme = "simple",
    adj_method = "ANOVA",
    contrast_h = NULL,
    contrast_dh = NULL
)
```

Arguments

df	A data.frame with the required columns
treat_col	Name of column in df with treatment variable
response_col	Name of the column in df with response variable
car_strata_cols	5
	Names of columns in df with car_strata variables
covariate_cols	Names of columns in df with covariate variables. **If you want to include the strata variables as covariates also, add them here.**
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".
adj_method	Name of linear adjustment method to use. One of: "ANOVA", "ANCOVA", "ANHECOVA".
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical deriva- tive)

Details

* Adjustment method "ANOVA" fits a linear model with formula 'Y ~ A' where 'A' is the treatment group indicator and 'Y' is the response. * "ANCOVA" fits a linear model with 'Y ~ A + X' where 'X' are the variables specified in the 'covariate_cols' argument. * "ANHECOVA" fits a linear model with 'Y ~ A*X', the main effects and treatment-by-covariate interactions.

Value

See value of RobinCar::robincar_glm(), this function is a wrapper using a linear link function.

robincar_logrank Robust (potentially stratified) logrank adjustment

Description

Perform a robust covariate-adjusted logrank test ("CL") that can be stratified ("CSL") if desired.

Usage

```
robincar_logrank(adj_method, ...)
```

Arguments

adj_method	Adjustment method, one of "CL", "CSL"
	Additional arguments to 'robincar_tte'

16

robincar_logrank

Details

Note: Since RobinCar version 0.4.0, the variance of the test statistic has changed to better accommodate tied event times.

 $\hat{\sigma}_{CL}^2$ and $\hat{\sigma}_{CSL}^2$ for the covariate-adjusted stratified log-rank test are given by Ye, Shao, and Yi (2024) after equation (8) on page 700, with $\hat{\sigma}_{SL}^2$ replaced by the following estimator, which is the standard denominator of the logrank test:

$$\frac{1}{n} \sum_{j} \sum_{i} v_j(t_i)$$
$$v_j(t_i) = \frac{Y_{0,j}(t)Y_{1,j}(t)d_j(t)\left[Y_j(t) - d_j(t)\right]}{Y_j(t)^2\left[Y_j(t) - 1\right]}$$

where t_i are strata-specific unique failure times, $d_j(t)$ is the number of events at time t in strata j, $Y_j(t)$ is the number at risk within strata j at time t, and $Y_{a,j}(t)$ is the number at risk within strata j and treatment a at time t.

Please see Ye, Shao, and Yi (2024)'s "Covariate-adjusted log-rank test: guaranteed efficiency gain and universal applicability" in *Biometrika* for more details about $\hat{\sigma}_{CSL}^2$.

Value

A result object with the following attributes:

result	A list: "statistic" is the adjusted logrank test statistic which can be used to obtain p-values; "U" and "se" are the numerator and denominator of the test statistic, respectively.
settings	The covariate adjustment settings used.
original_df	The dataset supplied by the user.

Examples

```
library(magrittr)
library(dplyr)
library(forcats)
set.seed(0)
n=100
data.simu0=data_gen(n=n,
                     theta=0,
                    randomization="permuted_block",
                    p_trt=0.5,
                   case="case2") %>% mutate(strata1=sample(letters[1:3],n,replace=TRUE),
                                             strata2=sample(LETTERS[4:5],n,replace=TRUE))
out <- robincar_logrank(df=data.simu0,</pre>
                         treat_col="I1",
                         p_trt=0.5,
                         ref_arm=0,
                         response_col="t",
                         event_col="delta",
```

```
covariate_cols=c("model_z1", "model_z2"),
                        car_scheme="simple",
                        adj_method=c("CL"))
set.seed(0)
n=100
data.simu0=data_gen(n=n,
                    theta=0,
                    randomization="permuted_block",
                    p_trt=0.5,
                    case="case1")
data.simu <- data.simu0 %>%
  tidyr::pivot_longer(cols=starts_with("car_strata"),
                      names_prefix="car_strata",
                      names_to="strt") %>%
  filter(value==1) %>% select(-value) %>%
  mutate(strt=forcats::as_factor(strt)) %>%
  select(t,strt) %>%
  left_join(data.simu0, .)
out1 <- robincar_logrank(df=data.simu,</pre>
                          treat_col="I1",
                          p_trt=0.5,
                          ref_arm=0,
                          response_col="t",
                          event_col="delta",
                          car_strata_cols="strt",
                          covariate_cols=NULL,
                          car_scheme=c("permuted-block"),
                          adj_method=c("CSL")
)
```

robincar_mh

Estimate Mantel-Haenszel Risk Difference

Description

This function estimates Mantel-Haenszel risk difference and average treatment effect.

Usage

```
robincar_mh(
   df,
   treat_col,
   response_col,
   strata_cols,
   estimand = "ATE",
   ci_type = "mGR"
)
```

robincar_SL

Arguments

df	A data.frame with the required columns
treat_col	Name of column in df with treatment variable. Must be binary
response_col	Name of the column in df with response variable
strata_cols	Names of columns in df with strata variables
estimand	A character string specifying the estimand. One of "MH" or "ATE" (default). See Details
ci_type	A character string specifying the type of confidence interval. One of "GR", "mGR" (default), "Sato"

Details

The estimand of interest can be either Mantel-Haenszel risk difference or Average Treatment Effect (ATE). The latter is the default option of 'estimand'. When 'estimand="ATE"', 'ci_type' is limited to the modified Greenland variance estimator (mGR). Otherwise, Greenland's variance estimator (GR) and Sato's variance estimator are optional.

Examples

robincar_SL

BETA: Covariate adjustment using working models from the super learner libraries through the AIPW package with cross-fitting.

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a generalized linear working model.

Usage

```
robincar_SL(
   df,
   treat_col,
   response_col,
   car_strata_cols = NULL,
   covariate_cols = NULL,
```

```
car_scheme = "simple",
covariate_to_include_strata = NULL,
SL_libraries = c(),
SL_learners = c(),
k_split = 2,
g_accuracy = 7,
contrast_h = NULL,
contrast_dh = NULL,
variance_type = 1
```

```
)
```

Arguments

df	A data.frame with the required columns
treat_col	Name of column in df with treatment variable
response_col	Name of the column in df with response variable
car_strata_cols	6
	Names of columns in df with car_strata variables
covariate_cols	Names of columns in df with covariate variables
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "sim- ple", "pocock-simon", "biased-coin", "permuted-block".
covariate_to_ir	nclude_strata
	Whether to include car_strata variables in covariate adjustment. Defaults to F for ANOVA and ANCOVA; defaults to T for ANHECOVA. User may override by passing in this argument.
SL_libraries	Vector of super-learner libraries to use for the covariate adjustment (see Super-Learner::listWrappers)
SL_learners	Optional list of super-learner "learners" to use for the covariate adjustment (see SuperLearner::create.Learner())
k_split	Number of splits to use in cross-fitting
g_accuracy	Level of accuracy to check prediction un-biasedness (in digits).
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical deriva- tive)
variance_type	The type of variance estimator to use, type 1, 2, or 3. All three are asymptotically equivalent. See details of RobinCar::robincar_glm for more.

Details

WARNING: This function is still under development and has not been extensively tested. This function currently only works for two treatment groups. Before using this function, you must load the SuperLearner library with 'library(SuperLearner)', otherwise the function call will fail.

20

Value

See value of RobinCar::robincar_glm, but the working model for $\hat{\mu}(X_i)$ is based on the AIPW::AIPW package that uses specified SuperLearner libraries and cross-fitting. Also, 'mod' attribute is an object of class AIPW::AIPW.

Examples

```
library(SuperLearner)
library(ranger)
n <- 1000
set.seed(10)
DATA2 <- data.frame(A=rbinom(n, size=1, prob=0.5),</pre>
                     y=rbinom(n, size=1, prob=0.2),
                     x1=rnorm(n),
                     x2=rnorm(n),
                     x3=as.factor(rbinom(n, size=1, prob=0.5)),
                     z1=rbinom(n, size=1, prob=0.5),
                     z2=rbinom(n, size=1, prob=0.5))
DATA2[, "y"] <- NA
As <- DATA2$A == 1
DATA2[DATA2$A == 1, "y"] <- rbinom(</pre>
  sum(As),
  size=1,
  prob=exp(DATA2[As,]$x1)/(1+exp(DATA2[As,]$x1)))
DATA2[DATA2$A == 0, "y"] <- rbinom(</pre>
  n-sum(As),
  size=1,
  prob=exp(1 +
    5*DATA2[!As,]$x1 + DATA2[!As,]$x2)/
    (1+exp(1 + 5*DATA2[!As,]$x1 + DATA2[!As,]$x2)))
DATA2$A <- as.factor(DATA2$A)</pre>
sl.mod <- robincar_SL(</pre>
  df=DATA2,
  response_col="y",
  treat_col="A",
  car_strata_cols=c("z1"),
  covariate_cols=c("x1"),
  SL_libraries=c("SL.ranger"),
  car_scheme="permuted-block",
  covariate_to_include_strata=TRUE
)
```

sl.mod\$result

robincar_SL_median BETA: Covariate adjustment using working models from the super learner libraries through the AIPW package with cross-fitting, with median adjustment.

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a generalized linear working model. Perform median adjustment to limit randomness induced from cross-fitting.

Usage

```
robincar_SL_median(
 n_times,
  seed,
 df,
  treat_col,
  response_col,
  car_strata_cols = NULL,
  covariate_cols = NULL,
  car_scheme = "simple",
  covariate_to_include_strata = NULL,
  SL_libraries = c(),
  SL_learners = c(),
 k_split = 2,
 g_{accuracy} = 7,
 contrast_h = NULL,
  contrast_dh = NULL
)
```

n_times	Number of times to run the robincar_SL function
seed	Seed to set before running the set of functions
df	A data.frame with the required columns
treat_col	Name of column in df with treatment variable
response_col	Name of the column in df with response variable
car_strata_col	S
	Names of columns in df with car_strata variables
covariate_cols	Names of columns in df with covariate variables
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".
covariate_to_include_strata	
	Whether to include car_strata variables in covariate adjustment. Defaults to F for ANOVA and ANCOVA; defaults to T for ANHECOVA. User may override by passing in this argument.
SL_libraries	Vector of super-learner libraries to use for the covariate adjustment (see Super-Learner::listWrappers)
SL_learners	Optional list of super-learner "learners" to use for the covariate adjustment (see SuperLearner::create.Learner())

k_split	Number of splits to use in cross-fitting
g_accuracy	Level of accuracy to check prediction un-biasedness (in digits).
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical deriva- tive)

Details

WARNING: This function is still under development and has not been extensively tested. This function currently only works for two treatment groups. Before using this function, you must load the SuperLearner library with 'library(SuperLearner)', otherwise the function call will fail.

Value

See value of RobinCar::robincar_SL. Attributes 'mods' and 'mu_as' are lists of 'mod' and 'mu_a' attributes, respectively, for each replicate of 'robincar_SL' used in the median.

robincar_tte

Covariate adjustment for time to event data

Description

Perform a covariate-adjusted logrank test ('adj_method="CL"'), covariate-adjusted stratified logrank test ('adj_method="CSL"'), or a covariate-adjusted robust Cox score test ('adj_method="coxscore"').

Usage

```
robincar_tte(
  df,
  treat_col,
  response_col,
  event_col,
  adj_method,
  car_strata_cols = NULL,
  covariate_cols = NULL,
  p_{trt} = 0.5,
  ref_arm = NULL,
  sparse_remove = TRUE,
  car_scheme = "simple"
```

)

df	A data.frame with the required columns
treat_col	Name of column in df with treatment variable
response_col	Name of the column in df with response variable

event_col	Name of column in df with event indicator (0/FALSE=no event, 1/TRUE=event)	
adj_method	Adjustment method (one of "CL", "CSL", or "coxscore")	
car_strata_cols		
	Names of columns in df with car_strata variables	
covariate_cols	Names of columns in df with covariate variables	
p_trt	Treatment allocation ratio for the reference arm.	
ref_arm	Reference arm of the treatment group, defaults to NULL, which results in using the first element of 'unique(data[, treat_col])'.	
sparse_remove	Remove sparse car_strata from calculation	
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".	

Details

'robincar_coxscore' and 'robincar_logrank' are wrapper functions around 'robincar_tte'.

Value

For adjustment method "CL" or "CSL", see value of RobinCar::robincar_logrank(); for adjustment method "coxscore" see value of RobinCar::robincar_coxscore().

Index

AIPW::AIPW, 21 car_pb, 2 car_ps, 3 car_sr,4 data_gen, 5 data_gen2, 6 dplyr::tibble(), 11, 15 glm(), 15 print.CalibrationResult,7 print.ContrastResult,7 print.GLMModelResult, 8 print.LinModelResult, 8 print.MHResult,9 print.TTEResult, 9 RobinCar::robincar_calibrate(),7 RobinCar::robincar_contrast(), 7, 15 RobinCar::robincar_covhr(),9 RobinCar::robincar_coxscore(), 24 RobinCar::robincar_glm, 20, 21 RobinCar::robincar_glm(), 8, 10, 16 RobinCar::robincar_linear(), 8, 10 RobinCar::robincar_logrank(), 24 RobinCar::robincar_SL, 23 RobinCar::robincar_SL(), 10 RobinCar::robincar_tte(),9 robincar_calibrate, 10 robincar_contrast, 10 robincar_covhr, 11 robincar_coxscore, 12 robincar_glm, 13 robincar_linear, 15 robincar_logrank, 16 robincar_mh, 18 robincar_SL, 19 robincar_SL_median, 21 robincar_tte, 23

SuperLearner, 20
SuperLearner::create.Learner()), 20, 22
SuperLearner::listWrappers, 20, 22