Package 'S4DM'

January 20, 2025

Title Small Sample Size Species Distribution Modeling

Version 0.0.1

Description

Implements a set of distribution modeling methods that are suited to species with small sample sizes (e.g., poorly sampled species or rare species). While these methods can also be used on well-sampled taxa, they are united by the fact that they can be utilized with relatively few data points. More details on the currently implemented methodologies can be found in Drake and Richards (2018) <doi:10.1002/ecs2.2373>, Drake (2015) <doi:10.1098/rsif.2015.0086>, and 00202.1>.

Depends R (>= 3.5.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.2

Imports corpcor, densratio, flexclust, geometry, kernlab, maxnet, mvtnorm, np, pROC, robust, rvinecopulib, sf, terra, dplyr, Rdpack

Suggests geodata, BIEN, ggplot2, tidyterra, knitr, testthat, rmarkdown

RdMacros Rdpack

NeedsCompilation no

Author Brian S. Maitner [aut, cre] (<https://orcid.org/0000-0002-2118-9880>), Robert L. Richards [aut], Ben S. Carlson [aut], John M. Drake [aut], Cory Merow [aut]

Maintainer Brian S. Maitner <bmaitner@usf.edu>

Repository CRAN

Date/Publication 2025-01-10 21:00:02 UTC

Contents

ensemble_range_map	2
evaluate_range_map	4
fit_density_ratio	6
fit_plug_and_play	7
get_env_bg	
get_env_pres	
get_response_curves	12
make_range_map	13
project_density_ratio	15
project_plug_and_play	
sample_points	16
sdm_threshold	16
stratify_random	18
stratify_spatial	19
	21

Index

ensemble_range_map Generate ensemble predictions from S4DM range maps

Description

This function evaluates model quality and creates an ensemble of the model outputs. This function uses 5-fold, spatially stratified, cross-validation to evaluate distribution model quality.

Usage

```
ensemble_range_map(
    occurrences,
    env,
    method = NULL,
    presence_method = NULL,
    background_method = NULL,
    bootstrap = "none",
    bootstrap_reps = 100,
    quantile = 0.05,
    constraint_regions = NULL,
    background_buffer_width = NULL,
    ...
)
```

Arguments

occurrences	Presence coordinates in long,lat format.
env	Environmental SpatRaster(s)

method	Optional. If supplied, both presence and background density estimation will use this method.	
presence_method	d	
	Optional. Method for estimation of presence density.	
background_met	nod	
	Optional. Method for estimation of background density.	
bootstrap	Character. One of "none" (the default, no bootstrapping), "numbag" (presence function is bootstrapped), or "doublebag" (presence and background functions are bootstrapped).	
bootstrap_reps	Integer. Number of bootstrap replicates to use (default is 100)	
quantile	Quantile to use for thresholding. Default is 0.05 (5 pct training presence). Set to 0 for minimum training presence (MTP).	
constraint_regions		
	See get_env_bg documentation	
background_buffer_width		
	Numeric or NULL. Width (meters or map units) of buffer to use to select back- ground environment. If NULL, uses max dist between nearest occurrences.	
	Additional parameters passed to internal functions.	

Details

Current plug-and-play methods include: "gaussian", "kde", "vine", "rangebagging", "lobagoc", and "none". Current density ratio methods include: "ulsif", "rulsif".

Value

List object containing elements (1) spatRaster ensemble layer showing the proportion of maps that are included in the range across the ensemble, (2) spatRasters for individual models, and (3) model quality information.

Note

Either method or both presence_method and background_method must be supplied.

Examples

```
# load in sample data
```

```
library(S4DM)
library(terra)
```

```
# occurrence points
  data("sample_points")
  occurrences <- sample_points</pre>
```

environmental data

evaluate_range_map Evaluate S4DM range map quality

Description

This function uses 5-fold, spatially stratified, cross-validation to evaluate distribution model quality.

Usage

```
evaluate_range_map(
    occurrences,
    env,
    method = NULL,
    presence_method = NULL,
    background_method = NULL,
    bootstrap = "none",
    bootstrap_reps = 100,
    quantile = 0.05,
    constraint_regions = NULL,
    background_buffer_width = NULL,
    standardize_preds = TRUE,
    ...
```

)

Arguments

occurrences	Presence coordinates in long, lat format.	
env	Environmental SpatRaster(s)	
method	Optional. If supplied, both presence and background density estimation will use this method.	
presence_method		
	Optional. Method for estimation of presence density.	

4

background_method			
	Optional. Method for estimation of background density.		
bootstrap	Character. One of "none" (the default, no bootstrapping), "numbag" (presence function is bootstrapped), or "doublebag" (presence and background functions are bootstrapped).		
bootstrap_reps	Integer. Number of bootstrap replicates to use (default is 100)		
quantile	Quantile to use for thresholding. Default is 0.05 (5 pct training presence). Set to 0 for minimum training presence (MTP).		
constraint_regions			
	See get_env_bg documentation		
background_buffer_width			
	Numeric or NULL. Width (meters or map units) of buffer to use to select back- ground environment. If NULL, uses max dist between nearest occurrences.		
standardize_preds			
	Logical. Should environmental layers be scaled? Default is TRUE.		
	Additional parameters passed to internal functions.		

Details

Current plug-and-play methods include: "gaussian", "kde", "vine", "rangebagging", "lobagoc", and "none". Current density ratio methods include: "ulsif", "rulsif".

Value

A list containing 1) a data.frame containing cross-validated model performance statistics (fold_results), and 2) a data.frame containing model performance statistics evaluated on the full dataset (overall_results).

Note

Either method or both presence_method and background_method must be supplied.

Examples

{

```
# load in sample data
```

```
library(S4DM)
library(terra)
```

```
# occurrence points
  data("sample_points")
  occurrences <- sample_points</pre>
```

```
# environmental data
env <- rast(system.file('ex/sample_env.tif', package="S4DM"))</pre>
```

```
# rescale the environmental data
```

}

fit_density_ratio Fit density-ratio distribution models in a plug-and-play framework.

Description

This function fits density-ratio species distribution models for the specified density-ratio method (Drake and Richards 2018).

Usage

```
fit_density_ratio(presence = NULL, background = NULL, method = NULL, ...)
```

Arguments

presence	dataframe of covariates at presence points
background	Dataframe of covariates at background points
method	Character. See "notes" for options.
	Additional parameters passed to internal functions.

Details

Current methods include: "ulsif", "rulsif", "maxnet"

Value

List of class "dr_model" containing model objects and metadata needed for projecting the fitted models.

fit_plug_and_play

References

Drake JM, Richards RL (2018). "Estimating environmental suitability." *Ecosphere*, **9**(9), e02373. https://onlinelibrary.wiley.com/doi/10.1002/ecs2.2373.

Examples

```
# load in sample data
library(S4DM)
library(terra)
 # occurrence points
   data("sample_points")
   occurrences <- sample_points</pre>
# environmental data
   env <- rast(system.file('ex/sample_env.tif', package="S4DM"))</pre>
# rescale the environmental data
   env <- scale(env)</pre>
 # Get presence environmental data
 pres_env <- get_env_pres(coords = occurrences,</pre>
                            env = env)
# Get background environmental data
bg_env <- get_env_bg(coords = occurrences,</pre>
                       env = env, width = 100000)
# Note that the functions to get the environmental data return lists,
# and only the "env" element of these is used in the fit function
rulsif_fit <- fit_density_ratio(presence = pres_env$env,</pre>
                                background = bg_env$env,
                                method = "rulsif")
```

fit_plug_and_play	Fit presence-background	distribution	models	in	a plug-and-play
	framework.				

Description

This function fits presence-background species distribution models for the specified plug-and-play methods (Drake and Richards 2018; Drake 2015).

Usage

```
fit_plug_and_play(
    presence = NULL,
    background = NULL,
    method = NULL,
    presence_method = NULL,
    background_method = NULL,
    bootstrap = "none",
    bootstrap_reps = 100,
    ...
)
```

Arguments

presence	dataframe of covariates at presence points	
background	Optional. Dataframe of covariates at background points	
method	Optional. If supplied, both presence and background density estimation will use this method.	
presence_method	ł	
	Optional. Method for estimation of presence density.	
background_method		
	Optional. Method for estimation of background density.	
bootstrap	Character. One of "none" (the default, no bootstrapping), "numbag" (presence function is bootstrapped), or "doublebag" (presence and background functions are bootstrapped).	
<pre>bootstrap_reps</pre>	Integer. Number of bootstrap replicates to use (default is 100)	
	Additional parameters passed to internal functions.	

Details

Current methods include: "gaussian", "kde", "vine", "rangebagging", "lobagoc", and "none".

Value

List of class "pnp_model" containing model objects and metadata needed for projecting the fitted models.

Note

Either method or both presence_method and background_method must be supplied.

References

Drake JM (2015). "Range bagging: a new method for ecological niche modelling from presenceonly data." J. R. Soc. Interface, **12**(107). http://dx.doi.org/10.1098/rsif.2015.0086.

Drake JM, Richards RL (2018). "Estimating environmental suitability." *Ecosphere*, **9**(9), e02373. https://onlinelibrary.wiley.com/doi/10.1002/ecs2.2373.

8

get_env_bg

Examples

```
# load in sample data
library(S4DM)
library(terra)
# occurrence points
   data("sample_points")
   occurrences <- sample_points</pre>
# environmental data
   env <- rast(system.file('ex/sample_env.tif', package="S4DM"))</pre>
 # rescale the environmental data
   env <- scale(env)</pre>
# Get presence environmental data
 pres_env <- get_env_pres(coords = occurrences,</pre>
                            env = env)
# Get background environmental data
bg_env <- get_env_bg(coords = occurrences,</pre>
                       env = env, width = 100000)
# Note that the functions to get the environmental data return lists,
# and only the "env" element of these is used in the fit function
 kde_fit <- fit_plug_and_play (presence = pres_env$env,</pre>
                                 background = bg_env$env,
                                 method = "kde")
```

get_env_bg Extract background data for SDM fitting.

Description

This function extracts background data around known presence records.

Usage

get_env_bg(
 coords,

```
env,
method = "buffer",
width = NULL,
constraint_regions = NULL,
standardize = TRUE
)
```

Arguments

coords	Coordinates (long,lat) to extract values for		
env	Environmental SpatRaster(s) in any projection		
method	Methods for getting bg points. Current option is buffer		
width	Numeric or NULL. Width (meters or map units) of buffer. If NULL, uses max dist between nearest occurrences.		
constraint_regions			
	An optional spatial polygons* object that can be used to limit the selection of background points.		
standardize	Logical. If TRUE, the variables will be scaled and centered		

Value

A list containing 1) the background data (env), 2) the cell indices for which the background was taken (buffer_cells), 3) the environmental means (env_mean; NA if standardization not done), and 4) the environmental standard deviations (env_sds; NA if standardization not done).

Note

If supplying constraint_regions, any polygons in which the occurrences fall are considered fair game for background selection. This background selection is, however, still limited by the buffer as well.

Examples

```
{
# load in sample data
library(S4DM)
library(terra)
# occurrence points
data("sample_points")
occurrences <- sample_points
# environmental data
env <- rast(system.file('ex/sample_env.tif', package="S4DM"))
# rescale the environmental data
env <- scale(env)</pre>
```

10

get_env_pres

}

```
get_env_pres
```

Extract presence data for SDM fitting.

Description

This function extracts presence data at known presence records.

Usage

```
get_env_pres(coords, env, env_bg = NULL)
```

Arguments

coords	Coordinates (long,lat) to extract values for
env	Environmental SpatRaster(s) in any projection
env_bg	Background data produced by get_env_bg, used for re-scaling

Value

A list containing 1) the environmental data at the presence locations (env), and 2) an sf data.frame containing the occurrence records(occurrence_sf).

Examples

{

```
# load in sample data
```

library(S4DM)
library(terra)

```
# occurrence points
  data("sample_points")
  occurrences <- sample_points</pre>
```

```
# environmental data
env <- rast(system.file('ex/sample_env.tif', package="S4DM"))</pre>
```

```
# rescale the environmental data
```

env <- scale(env)</pre>

get_response_curves Generate Response Curves

Description

Given an environmental data set, fitted models, and a directory to output plots, this function generates response curves for each predictor in the model. The response curves depict the predicted change in probability of presence as a function of the environmental predictor while holding all other predictors constant at their mean values.

Usage

```
get_response_curves(
    env_bg,
    env_pres,
    pnp_model,
    n.int = 1000,
    envMeans = NULL,
    envSDs = NULL
)
```

Arguments

env_bg	Object returned by get_env_bg
env_pres	Object returned by get_env_pres
pnp_model	Object returned by fit_plug_and_play or fit_density_ratio
n.int	Number of points along which to calculate the response curve
envMeans	A vector of means for each environmental predictor in the dataset. (not used)
envSDs	A vector of standard deviations for each environmental predictor in the dataset.(not used)

Value

This function generates a set of marginal predictions for each environmental variable, holding other variables constant

Author(s)

Cory Merow, modified by Brian Maitner

make_range_map

Description

This function produces range maps using plug-and-play modeling with either presence-background or density-ratio approaches.

Usage

```
make_range_map(
    occurrences,
    env,
    method = NULL,
    presence_method = NULL,
    background_method = NULL,
    bootstrap = "none",
    bootstrap_reps = 100,
    quantile = 0.05,
    background_buffer_width = NULL,
    constraint_regions = NULL,
    verbose = FALSE,
    standardize_preds = TRUE,
    ...
)
```

Arguments

occurrences	Presence coordinates in long, lat format.		
env	Environmental rasters		
method	Optional. If supplied, both presence and background density estimation will use this method.		
presence_method	t de la constante de		
	Optional. Method for estimation of presence density.		
background_method			
	Optional. Method for estimation of background density.		
bootstrap	Character. One of "none" (the default, no bootstrapping), "numbag" (presence function is bootstrapped), or "doublebag" (presence and background functions are bootstrapped).		
bootstrap_reps	Integer. Number of bootstrap replicates to use (default is 100)		
quantile	Quantile to use for thresholding. Default is 0.05 (5 pct training presence). Set to 0 for minimum training presence (MTP), set to NULL to return continuous raster.		

background_buff	fer_width	
	The width (in m for unprojected rasters and map units for projected rasters) of	
	the buffer to use for background data. Defaults to NULL, which will take the	
	maximum distance between occurrence records.	
constraint_regi	ions	
	See get_env_bg documentation	
verbose	Logical. If TRUE, prints progress messages.	
standardize_preds		
	Logical. Should environmental layers be scaled? Default is TRUE.	
	Additional parameters passed to internal functions.	

Details

Current plug-and-play methods include: "gaussian", "kde", "vine", "rangebagging", "lobagoc", and "none". Current density ratio methods include: "ulsif", "rulsif", and "maxnet".

Value

A SpatRaster object containing a range map. Maps may be either binary or continuous, depending upon the quantile argument.

Note

Either method or both presence_method and background_method must be supplied.

Examples

```
{
# load in sample data
library(S4DM)
library(terra)
# occurrence points
   data("sample_points")
  occurrences <- sample_points</pre>
# environmental data
   env <- rast(system.file('ex/sample_env.tif', package="S4DM"))</pre>
# rescale the environmental data
   env <- scale(env)</pre>
   map <- make_range_map(occurrences = occurrences,</pre>
                          env = env,
                          method = "gaussian",
                          presence_method = NULL,
                          background_method = NULL,
                          bootstrap = "none",
```

```
bootstrap_reps = 100,
quantile = 0.05,
background_buffer_width = 100000)
plot(map)
}
```

project_density_ratio Projects fitted density-ratio distribution models onto new covariates.

Description

This function projects fitted density-ratio species distribution models onto new covariates.

Usage

```
project_density_ratio(dr_model, data)
```

Arguments

dr_model	A fitted density ratio model produced by fit_density_ratio
data	covariate data

Value

A vector of relative occurrence rates evaluated at the covariates supplied in the data object.

project_plug_and_play Projects fitted plug-and-play distribution models onto new covariates.

Description

This function projects fitted plug-and-play species distribution models onto new covariates.

Usage

```
project_plug_and_play(pnp_model, data)
```

Arguments

pnp_model	A fitted plug-and-play model produced by fit_plug_and_play
data	covariate data

Value

A vector of relative occurrence rates evaluated at the covariates supplied in the data object.

Note

The tsearchn function underlying rangebagging seems to fail sometimes with very uneven predictors. Rescaling helps.

sample_points Example S4DM occurrence data

Description

A sample dataset containing occurrence records.

Usage

sample_points

Format

A data.frame with 65 observations of 2 variables:

Longitude Longitude, in decimal degrees

Latitude Latitude, in decimal degrees ...

Source

https://biendata.org

sdm_threshold Thresholds a continuous relative occurrence rate raster to create a binary raster.

Description

This function thresholds a continuous relative occurrence rate raster to produce a binary presence/absence raster.

Usage

```
sdm_threshold(
    prediction_raster,
    occurrence_sf,
    quantile = 0.05,
    return_binary = TRUE
)
```

sdm_threshold

Arguments

prediction_rast	ter
	Raster containing continuous predictions of relative occurrence rate to be thresholded.
occurrence_sf	An sf object containing presence locations. Should be in the projection of the prediction raster
quantile	Numeric between 0 and 1. Quantile to use for thresholding (defaults to 0.05). Set to 0 for minimum training presence.
return_binary	LOGICAL. Should the raster returned be binary (presence/absence)? If FALSE, predicted presences will retain their 'suitability'' scores.

Value

A SpatRaster object containing a range map. Maps may be either binary or continuous, depending upon the return_binary argument.

Author(s)

Cecina Babich Morrow (modified by Brian Maitner)

Examples

{

```
# load in sample data
```

library(S4DM)
library(terra)

```
# occurrence points
  data("sample_points")
  occurrences <- sample_points</pre>
```

```
# environmental data
env <- rast(system.file('ex/sample_env.tif', package="S4DM"))</pre>
```

rescale the environmental data

```
env <- scale(env)</pre>
```

```
method = "gaussian")
pnp_continuous <- project_plug_and_play(pnp_model = pnp_model,</pre>
                                           data = bg_data$env)
#Make an empty raster to populate
out_raster <- env[[1]]</pre>
values(out_raster) <- NA</pre>
# use the bg_data for indexing
out_raster[bg_data$bg_cells] <- pnp_continuous</pre>
plot(out_raster)
#convert to a binary raster
out_raster_binary <-</pre>
   sdm_threshold(prediction_raster = out_raster,
               occurrence_sf = pres_data$occurrence_sf,
                quantile = 0.05,
               return_binary = TRUE)
plot(out_raster_binary)
}
```

stratify_random Split data for k-fold spatially stratified cross validation

Description

Splitting tool for cross-validation

Usage

```
stratify_random(occurrence_sf, nfolds = NULL)
```

Arguments

occurrence_sf	a sf object containing occurrence records
nfolds	number of desired output folds.

Details

See Examples.

Value

Returns a sf dataframe containing fold designation for each point.

```
stratify_spatial
```

Author(s)

Cory Merow cory.merow@gmail.com

Examples

stratify_spatial Split data for k-fold spatially stratified cross validation

Description

Splitting tool for cross-validation

Usage

```
stratify_spatial(occurrence_sf, nfolds = NULL, nsubclusters = NULL)
```

Arguments

occurrence_sf	a sf object containing occurrence points
nfolds	number of desired output folds. Default value of NULL makes a reasonable guess based on sample size.
nsubclusters	intermediate number of clusters randomly split into nfolds. Default value of NULL makes a reasonable guess based on sample size. If you specify this manually, it should be an integer multiple of nfolds.

Details

See Examples.

Value

Returns a SpatialPoints dataframe with the data.frame containing fold designation for each point.

Author(s)

Cory Merow cory.merow@gmail.com

Examples

{
load in sample data

library(S4DM)
library(terra)
library(sf)

```
# occurrence points
  data("sample_points")
  occurrences <- sample_points</pre>
```

occurrences <- st_as_sf(x = occurrences, coords = c(1,2))</pre>

```
manual <- stratify_spatial(occurrence_sf = occurrences,nfolds = 5,nsubclusters = 5)
default <- stratify_spatial(occurrence_sf = occurrences)</pre>
```

}

Index

* datasets sample_points, 16 ensemble_range_map, 2 evaluate_range_map, 4 fit_density_ratio, 6 fit_plug_and_play, 7 get_env_bg, 9 get_env_pres, 11 get_response_curves, 12 make_range_map, 13 project_density_ratio, 15

project_plug_and_play, 15

sample_points, 16
sdm_threshold, 16
stratify_random, 18
stratify_spatial, 19