Package 'SBICgraph'

January 20, 2025

Title Structural Bayesian Information Criterion for Graphical Models

Version 1.0.0

Description This is the implementation of the novel structural Bayesian information crite-

rion by Zhou, 2020 (under review).

In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework.

Additionally, we also provide the implementation of a two-

step algorithm to generate the candidate model pool.

License GPL-3

Encoding UTF-8

LazyData true

Imports glmnet, MASS, network

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Quang Nguyen [cre, aut] (<https://orcid.org/0000-0002-2072-3279>),

Jie Zhou [aut], Anne Hoen [aut], Jiang Gui [aut]

Maintainer Quang Nguyen <Quang.P.Nguyen.GR@dartmouth.edu>

Repository CRAN

Date/Publication 2021-03-02 19:10:09 UTC

Contents

addition		•						•	•	•	•		•		•	 		•	•	•		•			•		2
comparis	on	•						•	•	•	•		•		•	 		•	•	•		•			•		2
deletion		•						•	•	•	•		•		•	 		•	•	•		•			•		3
mle		•						•	•	•	•		•		•	 		•	•	•		•			•		4
modelset			•							•			•		•	 									•	•	5

comparison

Index																							9
	sggm simulate																						
	sbic																						6

```
addition
```

Enrichment step for constructing the model pool

Description

This is the esnrichment step in the two-step algorithm to construct the model pool (internal use only)

Usage

addition(data, lambda, P)

Arguments

data	An n by p matrix of observations
lambda	Vector of tuning parameter
Р	Prior adjacency matrix

Value

A list of model objects

Author(s)

Jie Zhou

comparison

Comparing the real and estimated adjacency matrix

Description

Comparing the two adjacency matrices for false discovery rate and positive selection rate. Used for model validation

Usage

comparison(real, estimate)

deletion

Arguments

real	The real matrix p by p adjacency matrix likely from simulated data
estimate	The estimated matrix p by p adjacency matrix likely estimated using the SBIC procedure

Value

A list of the following evaluation metrics

PSR	Positive Selection Rate
FDR	False Discovery rate

Author(s)

Jie Zhou

do 1	eti	on
uer	etr	511

Pruning step for constructing the model pool

Description

This is the pruning step in the two-step algorithm to construct the model pool (internal use only)

Usage

deletion(data, lambda, P)

Arguments

data	An n by p matrix of observations
lambda	Vector of tuning parameter
Р	Prior adjacency matrix

Value

A list of model objects

Author(s)

Jie Zhou

mle

Description

This function find the maximum likelihood estimate of the precision matrix with given adjacency matrix for multivariate normal distribution.

Usage

mle(data, priori)

Arguments

data	An n by p dataframe representing the observations
priori	A p by p matrix representing the given adjacency matrix

Details

The methods are based on the relationship between precision matrix of the multivariate normal distribution and regression coefficients.

Value

Returns a p by p matrix estimate of the precision matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100,p=200, m1=100, m2=30)
data=d$data
priori=d$realnetwork
precision=mle(data=data,priori=priori)
```

modelset

Description

For a given prior graph, the two-step algorithm, including edge enrichment and pruning, is used to construct the model pool

Usage

modelset(data, lambda, P)

Arguments

data	A n by p data frame of observations
lambda	Tuning parameter vector
Р	Prior adjacency matrix

Value

A list including all the candidate models in the model pool. Each model is represented by a p by p adjacency matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100, p=100, m1 = 100, m2 = 30)
data=d$data
P=d$priornetwork
lambda=exp(seq(-5,5,length=100))
candidates=modelset(data=data,lambda=lambda, P=P)
```

sbic

Description

This function estimates the novel structural Bayesian information criterion given the data and a given graph structure

Usage

sbic(data, theta, prob, P)

Arguments

data	A n by p dataframe representing observations
theta	The p by p matrix representing the given graph structure
prob	The expected error rate
Р	The prior adjacency matrix

Value

The value of sbic with given temperature parameter and prior adjacency matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100, p=100, m1 = 100, m2 = 30)
data=d$data
P=d$priornetwork
theta=d$realnetwork
prob=0.15
index=sbic(data=data, theta=theta, prob=prob, P=P)
```

sggm

Description

Select the model based on the SBIC criterion and the two-step algorithm

Usage

sggm(data, lambda, M, prob)

Arguments

data	An n by p dataframe representing the observations
lambda	A vector of tuning parameters used to build the model pool
М	The prior adjacency matrix
prob	The mean error rate

Value

A list of objects containing:

networkhat	The final selected adjacency matrix
candidates	The model pool

Author(s)

Jie Zhou

```
set.seed(1)
m1 = 100
m2 = 30
p = 100
n = 100
d=simulate(n=n,p=p, m1 = m1, m2 = m2) # simulate fake data
lambda=exp(seq(-5,5,length=100)) # tuning parameter
data=d$data # data from the simulation
M=d$priornetwork # prior network from simulation
# calculating the error rate
r1=m2/m1
r2=m2/(p*(p-1)/2-m1)
r=(r1+r2)/2
# apply sggm
result=sggm(data=data, lambda=lambda, M=M, prob=r)
# compare the final network and the true network
result$networkhat
```

simulate

d\$realnetwork

simulate

Randomly generate a adjacency matrix based on which to simulate data

Description

According to a given edge density, first generate the adjacency matrix P of a graph. Based on P, the simulated multivariate normal data is generated with mean zero and a specified given precision matrix

Usage

simulate(n, p, m1, m2)

Arguments

n	Sample size
р	The number of vertices in graph or the number of variables
m1	The number of edges in the true graph
m2	The number of elements in adjacency matrix that stay in different states, i.e., 0 or 1, in true and prior graphs

Value

A list including the simulated data, real adjacency matrix and a prior adjacency matrix

data	simulated data
realnetwork	real adjacency matrix
priornetowrk	prior adjacency matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100,p=200, m1=100, m2=30)
d$data
d$realnetwork
d$priornetwork
```

Index

addition, 2 comparison, 2 deletion, 3 mle, 4 modelset, 5 sbic, 6 sggm, 7 simulate, 8