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aggregate_xts Aggregate values in xts objects
Description

Inputs an xts time series and outputs an xts time series whose values have been aggregated over a
moving window of a user-specified length.

Usage
aggregate_xts(
X,
agg_period = 1,
agg_scale = c("days”, "mins"”, "hours”, "weeks"”, "months", "years"),
agg_fun = "sum",
timescale = c("days”, "mins"”, "hours", "weeks”, "months", "years"),
na_thres = 10
)
Arguments
X Xts object to be aggregated.
agg_period length of the aggregation period.
agg_scale timescale of agg_period; one of 'mins’', "hours', 'days', 'weeks"', 'months’,
'years'.
agg_fun string specifying the function used to aggregate the data over the aggregation
period, default is 'sum'.
timescale timescale of the data; one of 'mins', "hours', 'days', 'weeks', 'months"',
'years'.
na_thres threshold for the percentage of NA values allowed in the aggregation period;
default is 10%.
Details

This has been adapted from code available at https://github.com/WillemMaetens/standaRdized.

Given a vector x1, x2, . . ., the function aggregate_xts calculates aggregated values 1, Zo,... as

Ty = f(xt;xtfla ce 7xt7k+1)7


https://github.com/WillemMaetens/standaRdized
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for each time pointt = k, k41, ..., where k (agg_period) is the number of time units (agg_scale)
over which to aggregate the time series (x), and f (agg_fun) is the function used to perform the
aggregation. The first kK — 1 values of the aggregated time series are returned as NA.

By default, agg_fun = "sum”, meaning the aggregation results in accumulations over the aggrega-

tion period:
K
Ty = g Tt—k+1-
k=1

Alternative functions can also be used. For example, specifying agg_fun = "mean” returns the mean
over the aggregation period,
1 X
Ty = K ;; Lt—k+1,

while agg_fun = "max” returns the maximum over the aggregation period,
Ty = max({Ts, To—1,. ., Te_py1})

agg_period is a single numeric value specifying over how many time units the data x is to be
aggregated. By default, agg_period is assumed to correspond to a number of days, but this can
also be specified manually using the argument agg_scale. timescale is the timescale of the input
data x. By default, this is also assumed to be "days".

Since the time series x aggregates data over the aggregation period, problems may arise when x
contains missing values. For example, if interest is on daily accumulations, but 50% of the values
in the aggregation period are missing, the accumulation over this aggregation period will not be
accurate. This can be controlled using the argument na_thres. na_thres specifies the percentage
of NA values in the aggregation period before a NA value is returned. i.e. the proportion of values
that are allowed to be missing. The default is na_thres = 10.

Value

An xts time series with aggregated values.

Author(s)

Sam Allen, Noelia Otero

Examples

data(data_supply, package = "SEI")

# consider hourly German energy production data in 2019
supply_de <- subset(data_supply, country == "Germany”, select = c("date"”, "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)

# daily accumulations
supply_de_daily <- aggregate_xts(supply_de, timescale = "hours")

# weekly means
supply_de_weekly <- aggregate_xts(supply_de, agg_scale = "weeks",
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agg_fun = "mean”, timescale = "hours")

plot(supply_de, main = "Hourly energy production”)
plot(supply_de_daily, main = "Daily accumulated energy production”)
plot(supply_de_weekly, main = "Weekly averaged energy production”)

data_supply Time series of wind and solar energy production

Description

This dataset contains hourly time series of wind and solar energy production in 27 European coun-
tries in 2019.

Usage

data("data_supply”)

Format
An object of type data.frame containing 3 variables:
date A POSIXct series of times at which energy production is available.

country The country to which the energy production measurement corresponds.

PWS The hourly wind and solar energy production for the corresponding time and country.

Details

The dataframe data_supply contains 236520 (24 x 365 x 27) rows, containing the wind and solar
energy production for each hour in 2019 for each of the 27 countries.

This corresponds to a subset of the data used in Bloomfield and Brayshaw (2021), which can be ac-
cessed at https://researchdata.reading.ac.uk/321/. Users are referred to this paper for further details.

References

Bloomfield, Hannah and Brayshaw, David (2021): ERAS derived time series of European aggre-
gated surface weather variables, wind power, and solar power capacity factors: hourly data from
1950-2020. doi:10.17864/1947.000321

Examples

data("data_supply")


https://doi.org/10.17864/1947.000321
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data_wind_de Time series of average wind speed in Germany

Description

This dataset contains a daily time series of average wind speeds across Germany between 1979 and
2019.

Usage

data("data_wind_de")

Format

An object of type data. frame containing 2 variables:

date A POSIXct series of times at which average wind speeds are available.

wsmean The average wind speed in Germany for the corresponding time.

Details

The dataframe data_wind_de contains 14975 (365 x 41 + 10) rows, containing the daily average
wind speed in Germany for 41 years between 1979 and 2019. Ten leap years occur within this
period.

This corresponds to a subset of the data that is publicly available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanaly

eraS-pressure-levels?tab=overview. Users are referred to the reference below for further details.

References

Hersbach, H et al. (2023): ERAS hourly data on single levels from 1940 to present. Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) doi:10.24381/cds.adbb2d47 Accessed
01-09-2022.

Examples

data("wind_de")


https://doi.org/10.24381/cds.adbb2d47

6 fit_dist

fit_dist Fit a distribution to data

Description

Function to fit a specified distribution to a vector of data. Returns the estimated distribution and
relevant goodness-of-fit statistics.

Usage
fit_dist(data, dist, method = "mle", preds = NULL, n_thres = 10, ...)
Arguments
data A numeric vector.
dist character string specifying the distribution to be fit to the data; one of 'empirical’,
'kde', 'norm', 'lInorm', 'logis', 'llogis’', 'exp', 'gamma’, and 'weibull’.
method A character string coding for the fitting method: "mle"” for ’'maximum likeli-
hood estimation’, "mme” for 'moment matching estimation’, "gme" for ’quan-
tile matching estimation’, "mge" for ’'maximum goodness-of-fit estimation” and
"mse” for ’'maximum spacing estimation’.
preds data frame of predictor variables on which the estimated distribution should de-
pend.
n_thres minimum number of data points required to estimate the distribution; default is
10.
additional arguments to be passed to fitdist or gamlss
Details

This has been adapted from code available at https://github.com/WillemMaetens/standaRdized.
data is a numeric vector of data from which the distribution is to be estimated.

dist is the specified distribution to be fit to data. This must be one of 'empirical’, 'kde',
'norm', 'lnorm’', 'logis', 'llogis"', 'exp’, 'gamma’, and 'weibull'. These correspond to the
following distributions: 'empirical' returns the empirical distribution function of data, 'kde'
applies (normal) kernel density estimation to data, while 'norm', '1Inorm', 'logis’', '1llogis’,
'exp', 'gamma’', and 'weibull' correspond to the normal, log-normal, logistic, log-logistic, expo-
nential, gamma, and Weibull distributions, respectively.

By default, dist = 'empirical’, in which case the distribution is estimated empirically from data.
This is only recommended if there are at least 100 values in data, and a warning message is returned
otherwise. Parametric distributions are more appropriate when there is relatively little data, or
good reason to expect that the data follows a particular distribution. Kernel density estimation
dist = 'kde' provides a flexible compromise between using empirical methods and parametric
distributions.

n_thres is the minimum number of observations required to fit the distribution. The default is
n_thres =10. If the number of values in data is smaller than na_thres, an error is returned.


https://github.com/WillemMaetens/standaRdized
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This guards against over-fitting, which can result in distributions that do not generalise well out-of-
sample.

method specifies the method used to estimate the distribution parameters. This argument is redun-
dantif dist = 'empirical’ ordist = 'kde'. Otherwise, fit_dist essentially provides a wrapper
for fitdist, and further details can be found in the corresponding documentation. Additional ar-
guments to fitdist can also be specified via . . .. Where relevant, the default is to estimate param-
eters using maximum likelihood estimation, method = "mle”, though several alternative methods
are also available; see fitdist. Parameter estimation is also possible using L-moment matching
(method = '1Imme "), for all distribution choices except the log-logistic distribution. In this case,
fit_dist is essentially a wrapper for the 1mom package.

The distribution can also be non-stationary, by depending on some predictor variables or covariates.
These predictors can be included via the argument preds, which should be a data frame with a
separate column for each predictor, and with a number of rows equal to the length of data. In
this case, a Generalized Additive Model for Location, Scale, and Shape (GAMLSS) is fit to data
using the predictors in preds. It is assumed that the mean of the distribution depends linearly on
all of the predictors. Variable arguments in ... can also be used to specify relationships between
the scale and shape parameters of the distribution and the predictors; see examples below. In this
case, fit_dist is essentially a wrapper for gamlss, and users are referred to the corresponding
documentation for further implementation details.

Value

A list containing the estimated distribution function (F_x), its parameters (params), and properties
of the fit such as the AIC and Kolmogorov-Smirnov goodness-of-fit statistic (fit). If the estimated
distribution function depends on covariates, then the gamlss model fit is returned as the parameters.

Author(s)

Sam Allen, Noelia Otero

References

Rigby, R. A., & Stasinopoulos, D. M. (2005): ‘Generalized additive models for location, scale and
shape’, Journal of the Royal Statistical Society Series C: Applied Statistics 54, 507-554. doi:10.1111/
j-14679876.2005.00510.x

Delignette-Muller, M. L., & Dutang, C. (2015): ‘“fitdistrplus: An R package for fitting distributions’,
Journal of Statistical Software 64, 1-34. doi:10.18637/jss.v064.104

Allen, S. & N. Otero (2023): ‘Standardised indices to monitor energy droughts’, Renewable Energy
217, 119206. doi:10.1016/j.renene.2023.119206

See Also

fitdist gamlss 1Imom

Examples

N <- 1000
shape <- 3
rate <- 2


https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.18637/jss.v064.i04
https://doi.org/10.1016/j.renene.2023.119206

x <- seq(@, 10, 0.01)
### gamma distribution

# maximum likelihood

data <- rgamma(N, shape, rate)

out <- fit_dist(data, dist = "gamma")

hist(data, breaks = 30, probability = TRUE)

lines(x, dgamma(x, out$params[1], out$params[2]), col = "blue”)

# method of moments
out <- fit_dist(data, dist = "gamma”, method = "mme")
hist(data, breaks = 30, probability = TRUE)

lines(x, dgamma(x, out$params[1], out$params[2]), col = "blue")
# method of l-moments

out <- fit_dist(data, dist = "gamma”, method = "lmme")
hist(data, breaks = 30, probability = TRUE)

lines(x, dgamma(x, out$params[1], out$params[2]), col = "blue")

## weibull distribution

# maximum likelihood

data <- rweibull(N, shape, 1/rate)

out <- fit_dist(data, dist = "weibull”)

hist(data, breaks = 30, probability = TRUE)

lines(x, dweibull(x, out$params[1], out$params[2]), col = "blue")

# method of l-moments

out <- fit_dist(data, dist = "weibull”, method = "1lmme")
hist(data, breaks = 30, probability = TRUE)

lines(x, dweibull(x, out$params[1], out$params[2]), col = "blue")

## exponential distribution

# method of moments

out <- fit_dist(data, dist = "exp"”, method = "mme")
hist(data, breaks = 30, probability = TRUE)
lines(x, dexp(x, out$params), col = "blue”)

## logistic distribution
x <- seq(-10, 20, 0.01)

# maximum likelihood

data <- rlogis(N, shape, rate)

out <- fit_dist(data, dist = "logis")

hist(data, breaks = 30, probability = TRUE)

lines(x, dlogis(x, out$params[1], out$params[2]), col = "blue")

fit_dist
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#i###H# non-stationary estimation using gamlss

## normal distribution

x <- seq(-10, 20, length.out = N)

data <- rnorm(N, x + shape, exp(x/10))
plot(data)

preds <- data.frame(t = x)

out_st <- fit_dist(data, dist = "norm")
out_nst <- fit_dist(data, dist = "norm”, preds = preds)
out_nst2 <- fit_dist(data, dist = "norm”, preds = preds, sigma.formula = ~ .)

# pit values without trend

pit_st <- out_st$F_x(data, out_st$params)

hist(pit_st, breaks = 30, probability = TRUE, main = "No trend")
abline(1, @, col = "red”, 1ty = "dotted")

# pit values with trend in mean

pit_nst <- out_nst$F_x(data, out_nst$params, preds)

hist(pit_nst, breaks = 30, probability = TRUE, main = "Trend in mean")
abline(1, @, col = "red”, 1ty = "dotted")

# pit values with trend in mean and sd

pit_nst2 <- out_nst2$F_x(data, out_nst2$params, preds)

hist(pit_nst2, breaks = 30, probability = TRUE, main = "Trend in mean and standard deviation”)
abline(1, @, col = "red”, 1ty = "dotted")

## log normal distribution

X <- seq(@.01, 10, length.out = N)

data <- rlnorm(N, (x + shape)/3, 1/rate)
plot(data)

preds <- data.frame(t = x)

out <- fit_dist(data, dist = "lnorm”, preds = preds)

pit <- out$F_x(data, out$params, preds)

hist(pit, breaks = 30, probability = TRUE, main = "PIT values for non-stationary fit")
abline(1, @, col = "red”, 1ty = "dotted")

get_drought Get drought characteristics

Description

Extract characteristics of droughts from a time series of values. Drought characteristics include the
occurrence, intensity, magnitude, and duration of the drought.
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Usage

get_drought(
X,
thresholds = c(1.28, 1.64, 1.96),
exceed = TRUE,
cluster = 0,

lag = NULL
)
Arguments
X vector or xts object from which droughts are defined.
thresholds numeric vector containing thresholds to use when defining droughts.
exceed logical; TRUE if a drought is defined when x is above the thresholds, FALSE
otherwise.
cluster integer specifying the number of time steps over which droughts should be clus-
tered.
lag numeric specifying the value at which the drought should end.
Details

A drought is assumed to be defined as an instance when the vector x exceeds (if exceed = TRUE) or
falls below (if exceed = FALSE) the specified thresholds in thresholds.

thresholds can be a single value, or a vector of values. In the latter case, each threshold is assumed
to be a different level or intensity of the drought. If exceed = TRUE then a higher threshold corre-
sponds to a higher intensity, and if exceed = FALSE then a lower threshold corresponds to a higher
intensity. For example, if thresholds =c(1, 1.5, 2), then a level 1 drought occurs whenever x
exceeds 1 but is lower than 1.5, a level 2 drought occurs whenever x exceeds 1.5 but is lower than
2, and a level 3 drought occurs whenever x exceeds 2.

By default, thresholds = c(1.28, 1.64, 1.96), which corresponds to the 90th, 95th, and 97.5th
percentiles of the standard normal distribution. These thresholds are often used alongside standard-
ised indices to define hydrometeorological droughts; see references.

cluster represents the number of time steps between different drought events that should be at-
tributed to the same drought. For example, suppose z; > t,z;11 < t, ;12 > t, where x; represents
the i-th value in x, and ¢ is the lowest threshold in thresholds. In this case, one drought event will
finish at time point ¢ and a new drought event will begin at time point 7 4+ 2; no drought will occur
at time point ¢ + 1 because the value z;; is below the threshold defining a drought. Since both x;
and x;4o are classed as drought events, it may be desirable to ignore the fluctuation, and assume
that the drought persists through ;4 ; despite its value. This can be achieved by setting cluster =
1. If there were two time points separating different drought events, these can be clustered together
by setting cluster = 2, and so on. The default is that no clustering should be implemented, i.e.
cluster = 0.

Alternatively, we may wish to assume that the drought persists until x falls below a value that is not
necessarily equal to the threshold defining a drought. For example, hydrometeorological droughts
based on standardised indices, such as the Standardised Precipitation Index (SPI), are often defined
to persist until the standardised index changes sign, i.e. falls below zero. This can be achieved by
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setting lag = @. More generally, lag can be any numerical value. If exceed = TRUE, a warning is
issued if lag is above the lowest threshold, and if exceed = FALSE, a warning is issued if lag is
below the highest threshold. If 1ag is NULL (the default), then no lagging is performed.

get_drought () currently does not use the time series information in the xts input, thereby assuming
that the time series is complete, without missing time periods. If x is a vector, rather than an xts
object, then this is also implicitly assumed.

The output is a dataframe containing the vector x, a logical vector specifying whether each value of
x corresponds to a drought event, and the magnitude of the drought, defined as the sum of the values
of x during the drought; see references. The magnitude of the drought is only shown on the last day
of the drought. This makes it easier to compute statistics about the drought magnitude, such as the
average drought magnitude. If thresholds is a vector, the intensity or level of the drought is also
returned.

Value

A data frame containing the original values x and the corresponding drought characteristics.

Author(s)

Sam Allen, Noelia Otero

References

McKee, T. B., Doesken, N. J., & Kleist, J. (1993): “The relationship of drought frequency and
duration to time scales’, In Proceedings of the S8th Conference on Applied Climatology 17, 179-183.

Vicente-Serrano, S. M., Begueria, S., & Lépez-Moreno, J. I. (2010): ‘A multiscalar drought index
sensitive to global warming: the standardized precipitation evapotranspiration index’, Journal of
Climate 23, 1696-1718. doi:10.1175/2009JCLI12909.1

Allen, S. & N. Otero (2023): ‘Standardised indices to monitor energy droughts’, Renewable Energy
217, 119206. doi:10.1016/j.renene.2023.119206

Examples

data(data_supply)

# consider daily German energy supply data in 2019

supply_de <- subset(data_supply, country == "Germany"”, select = c("date”, "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)

supply_de_std <- std_index(supply_de, rescale = "days"”, timescale = "hours")

# a drought may correspond to when energy supply is low

drought_df <- get_drought(supply_de_std, thresholds = c(-1.28, -1.64, -1.96), exceed = FALSE)
head(drought_df)

mean(drought_df$occ) # droughts occur on roughly 10% of time steps

# cluster droughts two time steps apart

drought_df <- get_drought(supply_de_std, thresholds = c(-1.28, -1.64, -1.96),
cluster = 2, exceed = FALSE)

mean(drought_df$occ) # droughts occur on roughly 11% of time steps


https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1016/j.renene.2023.119206
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# let droughts persist until the standardised index changes sign

drought_df <- get_drought(supply_de_std, thresholds = c(-1.28, -1.64, -1.96),
lag = 0, exceed = FALSE)

mean(drought_df$occ) # droughts occur on roughly 17% of time steps

get_pit Calculate probability integral transform values

Description

Function to estimate the cumulative distribution function (CDF) from a set of observations, and
return the corresponding probability integral transform (PIT) values.

Usage
get_pit(
x_ref,
x_new = x_ref,
dist = "empirical”,

preds_ref = NULL,
preds_new = preds_ref,
method = "mle”,
return_fit = FALSE,

lower = -Inf,
upper = Inf,
cens = "none”,
n_thres = 10,
)
Arguments
x_ref numeric vector from which to estimate the CDF.
X_new numeric vector from which to calculate the PIT values.
dist character string specifying the distribution to be fit to the data; one of 'empirical’,
'kde', 'norm', 'lnorm', 'logis', 'llogis’', 'exp', 'gamma', and 'weibull’.
preds_ref data frame of predictor variables on which the estimated distribution should de-
pend, corresponding to the reference observations x_ref.
preds_new data frame of predictor variables on which the estimated distribution should de-
pend, corresponding to the new observations x_new.
method A character string coding for the fitting method: "mle” for 'maximum likeli-

hood estimation’, "mme"” for ’'moment matching estimation’, "qme" for ’quan-
b n

tile matching estimation’, "mge" for ’'maximum goodness-of-fit estimation” and
"mse” for “'maximum spacing estimation’.
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return_fit logical specifying whether to return parameters and goodness-of-fit statistics for
the distribution fit.

lower, upper numeric values specifying the lower and upper bounds at which the values in
x_ref and x_new are censored.

cens method used to deal with censoring of the PIT values; either a string ('none"',
'normal’ or 'prob'), corresponding to common choices, or a custom numeric
value.

n_thres minimum number of data points required to estimate the distribution; default is
10.

additional arguments to be passed to fitdist or gamlss

Details

Continuous data

If X is a continuous random variable with cumulative distribution function (CDF) F', then the
probability integral transform (PIT) F'(X) is uniformly distributed between 0 and 1. Given a vector
z1,...,T, of realisations of X, get_pit produces an estimate F of the CDF F’, and returns a
vector of PIT values corresponding to another set of realisations z1, ..., 2y,

F(Zl), .. 7F(zn)

x_ref contains the values x1, ..., x, from which the CDF estimate F is obtained. x_new contains
the values z1, ..., z, from which the PIT values F'(z1),..., F(z,) are calculated. By default,
x_ref and x_new are the same, so that the PIT values are calculated in-sample.

To estimate the distribution, get_pit calls fit_dist. The arguments dist, method and n_thres
are documented in detail in the corresponding help page.

To check that the chosen distribution adequately fits the data, the argument return_fit = TRUE can
be used to return the estimated parameters of the distribution, as well as properties of the fit such as
the AIC and a p-value for the Kolmogorov-Smirnov goodness-of-fit test.

Non-stationary distributions

The estimated distribution can also be non-stationary, by depending on some predictor variables or
covariates. These predictors can be included via the arguments preds_ref and preds_new, which
should be data frames with a separate column for each predictor, and with numbers of rows equal
to the lengths of x_ref and x_new, respectively. In this case, a Generalized Additive Model for
Location, Scale, and Shape (GAMLSS) is fit to x_ref using the predictors in preds_ref. The
PIT values corresponding to x_new are then calculated by applying the estimated distribution with
predictors preds_new. If a non-stationary distribution is to be estimated, both preds_ref and
preds_new must be provided. By default, preds_new is assumed to be the same as preds_ref, to
align with x_new being the same as x_ref.

Censored data

If the random variable X is not continuous, the PIT will not be uniformly distributed. A relevant
case is when X is censored. For example, precipitation is censored below at zero. This results in
several PIT values being equal to F'(0). The lower and upper arguments to get_pit allow the user
to specify the lower and upper bounds at which the data is censored; the default is lower = -Inf
and upper = Inf, i.e. there is no censoring.
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If the PIT values are used to construct standardised indices, this censoring can lead to unintuitive
index values. To deal with censored data, it has been proposed to map the PIT values of the censored
values to a different constant c; see references. For example, for precipitation, the PIT values would
become

F(X) if X >0,
c if X=0.

The constant ¢ can be chosen so that the PIT values satisfy some desired property. For exam-
ple, if F/(X) is uniformly distributed between 0 and 1, then it has mean equal to 1/2. Hence, ¢
could be chosen such that the mean of the PIT values of the censored distribution are equal to 1/2.
Alternatively, if F'(X) is uniformly distributed between 0 and 1, then the transformed PIT value
&~ Y(F(X)) (where ®~! is the quantile function of the standard normal distribution) follows a
standard normal distribution, and therefore has mean equal to 0. The constant ¢ could therefore be
chosen such that the mean of the transformed PIT values of the censored distribution are equal to 0.

The argument cens in get_pit can be used to treat censored data. cens can be one of four options:
a single numeric value containing the value ¢ at which to assign the PIT values of the censored
realisations; the string 'none' if no censoring is to be performed; the string 'prob' if c is to be
chosen automatically so that the mean of the PIT values is equal to 1/2; or the string 'normal’ if ¢
is to be chosen automatically so that the mean of the transformed PIT values is equal to 0. If the data
is censored both above and below, then cens must be a numeric vector of length two, specifying the
values to assign the realisations that are censored both below and above.

When the data is censored, dist corresponds to the distribution used to estimate the uncensored
realisations, e.g. positive precipitations. The probability of being at the boundary points is estimated
using the relative frequency of censored observations in x_ref.

Value

A vector of PIT values if return_fit = FALSE, or, if return_fit = TRUE, a list containing the
estimated distribution function (F_x), its parameters (params), and properties of the fit such as the
AIC and Kolmogorov-Smirnov goodness-of-fit statistic (fit). If the estimated distribution function
depends on covariates, then the gamlss model fit is returned as the parameters.

Author(s)

Sam Allen, Noelia Otero

References

Rigby, R. A., & Stasinopoulos, D. M. (2005): ‘Generalized additive models for location, scale and
shape’, Journal of the Royal Statistical Society Series C: Applied Statistics 54, 507-554. doi:10.1111/
j.14679876.2005.00510.x

Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015): ‘Can-
didate distributions for climatological drought indices (SPI and SPEI)’, International Journal of
Climatology 35, 4027-4040. doi:10.1002/joc.4267

Allen, S. & N. Otero (2023): ‘Calculating standardised indices using SEI’, EarthArXiv pre-print.
doi:10.31223/X5GM4G
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See Also

fit_dist

Examples

N <- 1000
shape <- 3
rate <- 2

x_ref <- rgamma(N, shape, rate)
x_new <- rgamma(N, shape, rate)

# empirical distribution
pit <- get_pit(x_ref, x_new)
hist(pit)

# gamma distribution
pit <- get_pit(x_ref, x_new, dist = "gamma", return_fit = TRUE)
hist(pit$pit)

hist(x_ref, breaks = 30, probability = TRUE)
lines(seq(@, 10, 0.01), dgamma(seq(@, 10, 0.01), pit$params[1], pit$params[2]), col = "blue”)

# weibull distribution
pit <- get_pit(x_ref, x_new, dist = "weibull”, return_fit = TRUE)
hist(pit$pit)

hist(x_ref, breaks = 30, probability = TRUE)
lines(seq(@, 10, 0.01), dweibull(seq(@, 10, 0.01), pit$params[1], pit$params[2]), col = "blue")

# exponential distribution
pit <- get_pit(x_ref, x_new, dist = "exp"”, return_fit = TRUE)
hist(pit$pit)

hist(x_ref, breaks = 30, probability = TRUE)
lines(seq(@, 10, 0.01), dexp(seq(@, 10, 0.01), pit$params[1]), col = "blue")

# gamma distribution with censoring

x_ref <- c(x_ref, numeric(N))

pit <- get_pit(x_ref, dist = "gamma”, lower = @, cens = "prob")
hist(pit)

mean(pit) # = 1/2

mean(gnorm(pit)) # != 0

pit <- get_pit(x_ref, dist = "gamma", lower = @, cens = "normal")
hist(gnorm(pit))

mean(pit) # != 1/2

mean(gnorm(pit)) # = 0@
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## normal distribution with trend in mean
x <- seq(-10, 20, length.out = N)

x_ref <= rnorm(N, x + shape, 2)
plot(x_ref)

preds <- data.frame(t = x)

pit <- get_pit(x_ref, preds_ref = preds, dist = "norm")
hist(pit)

## normal distribution with trend in mean and standard deviation
x_ref <= rnorm(N, x + shape, exp(x/10))

plot(x_ref)

preds <- data.frame(t = x)

pit <- get_pit(x_ref, preds_ref = preds, dist = "norm”, sigma.formula = ~ .)
hist(pit)
# sigma.formula is an optional argument in the gamlss::gamlss function

plot_sei Plot standardised indices

Description

Plot a time series or histogram of standardised indices.

Usage
plot_sei(
X ’
type = c("ts”, "hist”, "bar"),
title = NULL,
lab = "Std. Index",
xlims = NULL,
ylims = NULL,
n_bins = 30
)
Arguments
X vector or xts object containing the indices to be plotted.
type type of plot (either time series "ts", histogram "hist", or barplot "bar").
title optional title of the plot.
lab axis label.
x1lims, ylims lower and upper limits of the axes.

n_bins the number of bins to show in the histogram.
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Details

The plot_sei() function can be used to plot either a time series (if type = "ts") or a histogram
(if type = "hist"” or type = "bar") of the values in x.

A time series can only be displayed if x is an xts time series.

The argument lab is a string containing the label of the x-axis if type = "hist" or type = "bar”
and the y-axis if type = "ts".

The options type = "hist"” and type = "bar” both display histograms of the data x. With type =
"hist”, plot_sei() is essentially a wrapper of geom_histogram(), while type = "bar" is a wrap-
per of geom_bar (). The latter can provide more flexibility when plotting bounded data, whereas
the former is easier to use when superimposing densities on top.

Value

A ggplot object displaying the standardised index values.

Author(s)

Sam Allen, Noelia Otero

Examples

data(data_supply)

# consider hourly German energy supply data in 2019

supply_de <- subset(data_supply, country == "Germany"”, select = c("date"”, "PWS"))
supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)

supply_de_std <- std_index(supply_de, timescale = "hours")

plot_sei(supply_de, title = "German renewable energy production in 2019")
plot_sei(supply_de_std, title = "German SREPI in 2019")

plot_sei(supply_de, type = "hist”, title = "German renewable energy production in 2019")
plot_sei(supply_de_std, type = "hist”, title = "German SREPI in 2019")

# type = "hist” and type = "bar both output a histogram of the index values

# type = "hist” can be useful to superimpose densities on top of the histogram
z <- seq(-3.5, 3.5, length.out = length(supply_de_std))
plot_sei(supply_de_std, type = "hist”, title = "German SREPI in 2019") +
ggplot2::geom_line(ggplot2::aes(x = z, y = dnorm(z)), col = "blue")

# type = "bar” can be useful when the index values are bounded

supply_de_std <- std_index(supply_de, timescale = "hours"”, index_type = "probl11")
plot_sei(supply_de_std, type = "hist”, xlims = c(-1, 1), title = 'type = "hist"')
plot_sei(supply_de_std, type = "bar"”, xlims = c(-1, 1), title = 'type = "bar"')
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std_index Calculate standardised indices

Description

Inputs a time series of a chosen variable (e.g. precipitation, energy demand, residual load etc.) and
returns a time series of standardised indices. Indices can be calculated on any timescale.

Usage
std_index(
X_new,
x_ref = x_new,
dist = "empirical”,

preds_new = NULL,
preds_ref = preds_new,

method = "mle”,
return_fit = FALSE,
index_type = "normal”,

gr_new = NULL,

gr_ref = gr_new,
timescale = NULL,
moving_window = NULL,
window_scale = NULL,
agg_period = NULL,
agg_scale = NULL,

agg_fun = "sum",
rescale = NULL,
rescale_fun = "sum”,
ignore_na = FALSE,
n_thres = 10,
na_thres = 10,

lower = -Inf,

upper = Inf,

cens = index_type,

)
Arguments

X_new vector or time series to be converted to standardised indices.

x_ref vector or time series containing reference data to use when calculating the stan-
dardised indices.

dist character string specifying the distribution to be fit to the data; one of 'empirical’,
'kde', 'norm', '1Inorm', 'logis', 'llogis’', 'exp', 'gamma', and 'weibull’.

preds_new data frame of predictor variables on which the estimated distribution should de-

pend, corresponding to the new observations x_new.
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data frame of predictor variables on which the estimated distribution should de-
pend, corresponding to the reference observations x_ref.

A character string coding for the fitting method: "mle” for 'maximum likeli-
hood estimation’, "mme"” for 'moment matching estimation’, "gme" for ’quan-
tile matching estimation’, "mge"” for 'maximum goodness-of-fit estimation” and
"mse” for ’'maximum spacing estimation’.

logical specifying whether to return parameters and goodness-of-fit statistics for
the distribution fit.

the type of standardised index: "normal” (default), "prob@1”, or "prob11" (see
details).

vector of factors for which separate distributions should be applied to x_new.
vector of factors for which separate distributions should be fit to x_ref.

timescale of the data; one of 'mins', '"hours', 'days', 'weeks', "'months’',
'years'.

length of moving window on which to calculate the indices.
timescale of moving_window; default is the timescale of the data.
length of the aggregation period.

timescale of agg_period; one of 'mins’', "hours', 'days', 'weeks"', 'months’,
'years'.

string specifying the function used to aggregate the data over the aggregation
period, default is 'sum'.

the timescale that the time series should be rescaled to; one of "days"”, "weeks",

non

"months”, "quarters”, and "years".
string specifying the function used to rescale the data; default is "sum”.
logical specifying whether to ignore NAs when rescaling the time series.

minimum number of data points required to estimate the distribution; default is
10.

threshold for the percentage of NA values allowed in the aggregation period;
default is 10%.

numeric values specifying the lower and upper bounds at which the values in
x_ref and x_new are censored.

method used to deal with censoring of the PIT values; either a string ('none"',
'normal’ or 'prob'), corresponding to common choices, or a custom numeric
value.

additional arguments to be passed to fitdist or gamlss

Standardised indices

Standardised indices are calculated by estimating the cumulative distribution function (CDF) of
the variable of interest, and using this to transform the measurements to a standardised scale.
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std_index is a wrapper for get_pit and fit_dist that additionally allows for aggregation, rescal-
ing, and grouping of the time series. Further details can be found in the help pages of get_pit and
fit_dist.

std_index estimates the CDF using a time series of reference data x_ref, and applies the resulting
transformation to the time series x_new. The result is a time series of standardised x_new values.
These standardised indices quantify how extreme the x_new values are in reference to x_ref. x_new
and x_ref should therefore contain values of the same variable. If x_ref is not specified, then it is
set equal to x_new, so that the standardised indices are calculated in-sample.

The function returns a vector or time series (depending on the format of x_new) containing the
standardised indices corresponding to x_new. Three different types of indices are available, which
are explained in detail in the vignette. The index type can be chosen using index_type, which must
be one of "normal” (default), "prob@1”, and "prob11".

Time series manipulations

x_new and x_ref can either be provided as vectors or xts time series. In the latter case, the time
series can be aggregated across timescales or rescaled. This is useful, for example, if x_new contains
hourly data, but interest is on daily accumulations or averages of the hourly data.

The argument rescale converts the data to a different timescale. The original timescale of the
data can be manually specified using the argument timescale. timescale is required if the time
series is to be aggregated or rescaled. Otherwise, std_index will try to automatically determine
the timescale of the data. Manually specifying the timescale of the data is generally more robust.
The rescaling is performed using the function rescale_fun. By default, rescale_fun = "sum”, so
that values are added across the timescale of interest. This can be changed to any user-specified
function.

The argument agg_period aggregates the data across the timescale of interest. The aggregation
is performed using aggregate_xts. This differs from rescale in that the resolution of the data
remains the same. agg_period is a number specifying how long the data should be aggregated
across. By default, it is assumed that agg_period is on the same timescale as x_new and x_ref.
For example, if the data is hourly and agg_period = 24, then this assumes the data is to be aggre-
gated over the past 24 hours. The scale of the aggregation period can also be specified manually
using agg_scale. For example, specifying agg_period = 1 and agg_scale = "days” would also
aggregate the data over the past day. agg_fun specifies how the data is to be aggregated, the default
is agg_fun = "sum".

Distribution estimation

dist is the distribution used to estimate the CDF from x_ref. Currently, functionality is available
to fit one of the following distributions to the data: Normal ("norm”), Log-normal ("1norm"), Lo-
gistic ("logis"), Log-logistic ("1logis"), Exponential ("exp"), Gamma ("gamma”), and Weibull
("weibull™). Alternatively, the CDF can be estimated empirically (dist = "empirical”) based on
the values in x_ref, or using kernel density estimation (dist = "kde").

If dist is a parametric family of distributions, then parameters of the distribution are estimated from
x_ref. method specifies how the parameters are estimated; see fit_dist for details. The resulting
parameters and corresponding goodness-of-fit statistics can be returned by specifying return_fit
= TRUE.

By default, the distribution is estimated over all values in x_ref. Alternatively, if x_new is an xts
object, parameters can be estimated sequentially using a moving window of values. moving_window
determines the length of the moving window. This is a single value, assumed to be on the same
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timescale as x_new. The timsscale of the moving window can also be specified manually using
n n n n n n

window_scale. window_scale must also be one of "days”, "weeks"”, "months”, "quarters”, and
"years".

The estimated distribution can also be non-stationary, by depending on some predictors or covari-
ates. These predictors can be stored in data frames and input to std_index via the arguments
preds_new and preds_ref; see fit_dist for details. Predictors cannot be used if the data is to be
rescaled, since this would also require rescaling the predictors; in this case, an error is returned.

Grouping

By default, one distribution is fit to all values in x_ref. Separate distributions can be fit to different
subsets of the data by specifying gr_ref and gr_new. These should be factor vectors, where each
factor corresponds to a different grouping or subset of the data. No factor should appear in gr_new
that does not appear in gr_ref, since there would be no data from which to estimate the distribution
for this group. An error is returned in this case. Since the distribution of the values in x_ref could
change for different groupings, the argument dist can be a vector of strings of the same length as
the number of factor levels in gr_new. In this case, the first element of dist should correspond to
the first element of levels(gr_new) and so on. If dist is a single string, then the same distribution
is used for each grouping.

Value

Time series of standardised indices. If return_fit = TRUE, then a list is returned that contains the
time series of standardised indices, as well as information about the fit of the distribution to the data.
If gr_new is specified, then std_index returns a list of time series of standardised indices, with an
element corresponding to each factor in gr_new.

Author(s)

Sam Allen, Noelia Otero

References
McKee, T. B., Doesken, N. J., & Kleist, J. (1993): ‘The relationship of drought frequency and
duration to time scales’, In Proceedings of the 8th Conference on Applied Climatology 17, 179-183.

Vicente-Serrano, S. M., Begueria, S., & Lépez-Moreno, J. I. (2010): ‘A multiscalar drought index
sensitive to global warming: the standardized precipitation evapotranspiration index’, Journal of
Climate 23, 1696-1718. doi:10.1175/2009JCLI12909.1

Allen, S. & N. Otero (2023): ‘Standardised indices to monitor energy droughts’, Renewable Energy
217, 119206. doi:10.1016/j.renene.2023.119206

See Also

xts aggregate_xts get_pit fit_dist

Examples

data(data_supply)
# consider hourly German energy supply data in 2019
supply_de <- subset(data_supply, country == "Germany"”, select = c("date”, "PWS"))
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supply_de <- xts::xts(supply_de$PWS, order.by = supply_de$date)
#options(xts_check_TZ = FALSE)

# convert to hourly standardised indices

supply_de_std <- std_index(supply_de, timescale = "hours")
hist(supply_de, main = "Raw values")

hist(supply_de_std, main = "Standardised values")

# convert to daily or weekly standardised indices
supply_de_std <- std_index(supply_de, timescale = "hours”, rescale = "days")

# convert to weekly standardised indices calculated on each day
supply_de_std <- std_index(supply_de, timescale = "hours”, rescale = "days",
agg_period = 1, agg_scale = "weeks")

# calculate standardised indices corresponding to December, based on the previous year

dec <- zoo::index(supply_de) > "2019-12-01 UTC"

supply_de_std_dec <- std_index(x_new = supply_de[dec], x_ref = supply_de[!dec],
timescale = "hours")

# calculate standardised indices using a 100 day moving window
supply_de_std_dec <- std_index(supply_de[dec], supply_de, timescale = "hours”,

rescale = "days"”, moving_window = 100)

# suppose we are interested in the daily maximum rather than the daily total

supply_de_std <- std_index(supply_de, timescale = "hours"”, rescale = "days",
rescale_fun = "max")

supply_de_std <- std_index(supply_de, timescale = "hours”, rescale = "days",
rescale_fun = "mean”) # or average

# the default uses the empirical distribution, but this requires more data than
# parametric distributions, meaning it is not ideal when data is short, e.g. in weekly case
supply_de_std <- std_index(supply_de, timescale = "hours”, rescale = "weeks") # warning
# instead, we can use a parametric distribution, e.g. a gamma distribution
supply_de_std <- std_index(supply_de, timescale = "hours"”, rescale = "weeks"”, dist = "gamma")
# we can check the fit by checking whether the indices resemble a standard normal distribution
hist(supply_de)
hist(supply_de_std)
# we can also look at the properties of the fit
supply_de_std <- std_index(supply_de, timescale = "hours”, rescale = "weeks",

dist = "gamma"”, return_fit = TRUE)

# we could also use kernel density estimation, which is a flexible compromise between the two
supply_de_std <- std_index(supply_de, timescale = "hours”, rescale = "weeks"”, dist = "kde")

# calculate separate indices for each quarter of 2019

season <- ceiling(lubridate: :month(zoo::index(supply_de)) / 3)

season <- factor(c("Q1"”, "Q2", "Q3", "Q4")[season])

supply_de_std <- std_index(supply_de, timescale = "hours"”, rescale = "days",
gr_new = season, dist = "kde"”, return_fit = TRUE)
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# non-stationary distribution estimation using gamlss

N <- 1000

x <- seq(-10, 20, length.out = N)

data <- rnorm(N, x, exp(x/10)) # non-stationary mean and standard deviation
plot.ts(data)

preds <- data.frame(t = x)

# standardised indices without trend

si_st <- std_index(data, dist = "norm")

plot_sei(si_st)

# standardised indices with trend in mean

si_nst <- std_index(data, dist = "norm"”, preds_new = preds)

plot_sei(si_nst)

# standardised indices with trend in mean and sd

si_nst2 <- std_index(data, dist = "norm”, preds_new = preds, sigma.formula = ~ .)
plot_sei(si_nst2)
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