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The package SIHR aims to perform statistical inference in high-dimensional generalized linear models
with continuous and binary outcomes. It provides tools for constructing confidence intervals and performing
hypothesis tests for low-dimensional objectives in both one-sample and two-sample regression settings.

1 Introduction

We consider the high-dimensional GLMs: for 1 ≤ i ≤ n,

E(yi | Xi·) = f(X⊺

i·β), with f(z) =

{
z for linear model;

exp (z)/ [1 + exp (z)] for logistic model;
(1)

where β ∈ Rp denotes the high-dimensional regression vector, yi ∈ R and Xi· ∈ Rp denote respectively the
outcome and the measured covariates of the i-th observation. Throughout the paper, define Σ = EXi·X

⊺

i·

and assume β to be a sparse vector with its sparsity level denoted as ∥β∥0. In addition to the one-sample
setting, we examine the statistical inference methods for the two-sample regression models. Particularly, we
generalize the regression model in (1) and consider:

E(y
(k)
i | X(k)

i· ) = f(X
(k)⊺
i· β(k)) with k = 1, 2 and 1 ≤ i ≤ nk, (2)

where f(·) is the pre-specified link function defined as (1), β(k) ∈ Rp denotes the high-dimensional regression

vector in k-th sample, y
(k)
i ∈ R and X

(k)
i· ∈ Rp denote respectively the outcome and the measured covariates

in the k-th sample.

1.1 Package Components

This package consists of five main functions LF, QF, CATE, InnProd, and Dist implementing the statistical
inferences for five different quantities, under the one-sample model (1) or two-sample model (2).

1. LF, abbreviated for linear functional, implements the inference approach for x⊺

newβ, with xnew ∈ Rp

denoting a loading vector. With xnew = ej as a special case, LF infers the regression coefficient βj .

2. QF, abbreviated for quadratic functional, makes inferences for β⊺Aβ. A is either a pre-specified sub-
matrix or the unknown covariance matrix Σ.

3. CATE, abbreviated for conditional average treatment effect, is to make inference for f(x⊺

newβ
(2)) −

f(x⊺

newβ
(1)). This difference measures the discrepancy between conditional means, closely related to

the conditional average treatment effect for the new observation with covariates xnew.

4. InnProd, abbreviated for inner products, implements the statistical inference for β(1)⊺Aβ(2). The inner
products measure the similarity between the high-dimensional vectors β(1) and β(2), which is useful in
capturing the genetic relatedness in the GWAS applications.

5. Dist, short-handed for distance, makes inferences for the weighted distances γ⊺Aγ with γ = β(2)−β(1).
The distance measure is useful in comparing different high-dimensional regression vectors.
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1.2 Outlines

In section 2.2, we propose a unified inference method for x⊺

newβ under linear and logistic outcome models.
We also discuss inferences for quadratic functionals β⊺

GAβG and β⊺

GΣG,GβG in section 2.3. In the case
of the two-sample high-dimensional regression model (2), we develop the inference method for conditional

treatment effect ∆(xnew) = f(x⊺

newβ
(2)) − f(x⊺

newβ
(1)) in section 2.4; we consider inference for β

(1)⊺
G Aβ

(2)
G

and β
(1)⊺
G ΣG,Gβ

(2)
G in section 2.5 and γ⊺

GAγG and γ⊺

GΣG,GγG with γ = β(2) − β(1) in section 2.6.

2 Methodologies

We briefly review the penalized maximum likelihood estimator of β in the high-dimensional GLM (1), defined
as:

β̂ = arg min
β∈Rp

ℓ(β) + λ0

p∑

j=2

∥X·j∥2√
n

|βj |, (3)

with X·j denoting the j-th column of X, the first column of X set as the constant 1, and

ℓ(β) =

{
1
n

∑
i=1 (yi −X⊺

i·β)
2

for linear model

− 1
n

∑n
i=1 yi log

[
f(X⊺

i·
β)

1−f(X⊺

i·
β)

]
− 1

n

∑n
i=1 log (1− f(X⊺

i·β)) for GLM with binary outcome.
. (4)

The tuning parameter λ0 ≍
√
log p/n is chosen by cross-validation. In the penalized regression (3), we do

not penalize the intercept coefficient β1. The penalized estimators have been shown to achieve the optimal
convergence rates and satisfy desirable variable selection properties [10, 1, 14, 12]. However, these estimators
are not ready for statistical inference due to the non-negligible estimation bias induced by the penalty term
[11, 8, 13].

2.1 Linear functional for linear model

To illustrate the idea of constructing the inference method, we start with the linear functional for the linear
model, which will be extended to a unified version in the section 2.2. For the linear model in (1), we define
ϵi = yi − X⊺

i·β and rewrite the model as yi = X⊺

i·β + ϵi for 1 ≤ i ≤ n. Given the vector xnew ∈ Rp, we
construct the point estimator and the CI for x⊺

newβ.

A natural idea for the point estimator is to use the plug-in estimator x⊺

newβ̂ with the penalized estimator

β̂ defined in (3). However, the bias x⊺

new(β̂ − β) is not negligible. The work Cai et al. [3] proposed the
bias-corrected estimator as,

x̂⊺

newβ = x⊺

newβ̂ + û⊺
1

n

n∑

i=1

Xi·

(
yi −X⊺

i·β̂
)
, (5)

where the second term on the right hand side in (5) is the estimate of negative bias −x⊺

new(β̂ − β), and the
projection direction û is defined as

û = arg min
u∈Rp

u⊺Σ̂u subject to: ∥Σ̂u− xnew∥∞ ≤ ∥xnew∥2λ (6)
∣∣∣x⊺

newΣ̂u− ∥xnew∥22
∣∣∣ ≤ ∥xnew∥22λ, (7)

where Σ̂ = 1
n

∑n
i=1 Xi·X

⊺

i· and λ ≍
√
log p/n. The bias-corrected estimator x̂⊺

newβ satisfies the following
error decomposition,

x̂⊺

newβ − x⊺

newβ = û⊺
1

n

n∑

i=1

X⊺

i·ϵi

︸ ︷︷ ︸
asymp. normal

+
(
Σ̂û− xnew

)⊺

(β − β̂).
︸ ︷︷ ︸

remaining bias

The first constraint in (6) controls the remaining bias term in the above equation while the second constraint

in (7) is crucial to ensuring the asymptotic normality of x̂⊺

newβ − x⊺

newβ for any vector xnew such that the
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variance of the “asymp. normal” term always dominates the “remaining bias” term. Based on the asymptotic
normality, we construct the CI for x⊺

newβ as

CI =
(
x̂⊺

newβ − zα/2

√
V̂, x̂⊺

newβ + zα/2

√
V̂
)

with V̂ =
σ̂2

n
û⊺Σ̂û,

where σ̂2 = 1
n

∑n
i=1(yi−X⊺

i·β̂)
2 and zα/2 denotes the upper α/2 quantile for the standard normal distribution.

2.2 Linear functional for GLM

In this subsection, we generalize the inference method specifically for the linear model in Section 2.1 to GLM
in (1). Given the initial estimator β̂, the key step is to estimate the bias x⊺

new(β̂ − β). We can propose a
unified version of the bias-corrected estimator for x⊺

newβ as

x̂⊺

newβ = x⊺

newβ̂ + û⊺
1

n

n∑

i=1

ω(X⊺

i·β̂)
(
yi − f(X⊺

i·β̂)
)
Xi·, (8)

with the second term on the right hand side of (8) being the estimate of −x⊺

new(β̂ − β). In consideration of
different link functions f(·) in (1), we shall specify in the following how to construct the projection direction
û and the weight function ω : R 7→ R in (8). In Table 1, we consider different GLM models and present

Model Outcome Type f(z) f ′(z) ω(z) Weighting
linear Continuous z 1 1

logistic Binary ez

1+ez
ez

(1+ez)2
(1+ez)2

ez Linearization

logistic alter Binary ez

1+ez
ez

(1+ez)2 1 Link-specific

Table 1: Definitions of the functions ω and f for different GLMs.

the corresponding functions f(·) and ω(·), together with the derivative f ′(·). Note that there are two ways
of specifying the weights w(z) for logistic regression. The linearization weighting is proposed in Guo et al.
[7] specifically for logistic regression; while Cai et al. [4] constructed the link-specific weighting method for
general link function f(·). The projection direction û ∈ Rp in (8) is constructed as follows:

û = arg min
u∈Rp

u⊺

[
1

n

n∑

i=1

ω(X⊺

i·β̂)f
′(X⊺

i·β̂)Xi·X
⊺

i·

]
u subject to:

∥∥∥∥∥
1

n

n∑

i=1

ω(X⊺

i·β̂)f
′(X⊺

i·β̂)Xi·X
⊺

i·u− xnew

∥∥∥∥∥
∞

≤ ∥xnew∥2λ
∣∣∣∣∣x

⊺

new

1

n

n∑

i=1

ω(X⊺

i·β̂)f
′(X⊺

i·β̂)Xi·X
⊺

i·u− ∥xnew∥22

∣∣∣∣∣ ≤ ∥xnew∥22λ.

(9)

It has been established that x̂⊺

newβ in (8) is asymptotically unbiased and normal for the linear model [3], the

logistic model [6, 4], and the probit model [4]. The variance of x̂⊺

newβ can be estimated by V̂, defined as

V̂ = û⊺

[
1

n2

n∑

i=1

(
ω(X⊺

i·β̂)
)2

σ̂2
iXi·X

⊺

i·

]
û with : (10)

σ̂2
i =





1
n

∑n
j=1

(
yj −X⊺

j·β̂
)2

, for linear model

f(X⊺

i·β̂)(1− f(X⊺

i·β̂)), for GLM with binary outcome.

. (11)

Based on the asymptotic normality, the CI for x⊺

newβ is:

CI =
(
x̂⊺

newβ − zα/2

√
V̂, x̂⊺

newβ + zα/2

√
V̂
)
.
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Subsequently, for the binary outcome case, we estimate the case probability P(yi = 1 | Xi· = xnew) by

f(x̂⊺

newβ) and construct the CI for f(x⊺

newβ) as:

CI =
(
f
(
x̂⊺

newβ − zα/2

√
V̂
)
, f

(
x̂⊺

newβ + zα/2

√
V̂
))

.

2.3 Quadratic functional for GLM

We now move our focus to inference for the quadratic functional QA = β⊺

GAβG, where G ⊂ {1, ..., p} and
A ∈ R|G|×|G| denotes a pre-specified matrix of interest. Without loss of generality, we set G = {1, 2, · · · , |G|}.
In the following, we propose a unified version of the point estimator and CI under the GLM (1). With the

initial estimator β̂ defined in (3), the plug-in estimator β̂⊺

GAβ̂G suffers from the following error,

β̂⊺

GAβ̂G − β⊺

GAβG = 2β̂⊺

GA(β̂G − βG)− (β̂G − βG)
⊺A(β̂G − βG).

The last term in the above decomposition (β̂G − βG)
⊺A(β̂G − βG) is the higher-order approximation error

under regular conditions; thus the bias mainly comes from the term 2β̂⊺

GA(β̂G−βG), which can be expressed

as 2x⊺

new(β̂ − β) with xnew = (β̂⊺

GA, 0)⊺. Hence the term can be estimated directly by applying the linear
functional approach in section 2.2. Utilizing this idea, Guo et al. [7, 5] proposed the following estimator of
QA,

Q̂A = β̂⊺

GAβ̂G + 2 û⊺

A

[
1

n

n∑

i=1

ω(X⊺

i·β̂)
(
yi − f(X⊺

i·β̂)
)
Xi·

]
,

with the second term being the estimate of −2β̂⊺

GA(β̂G − βG), where ûA is the projection direction defined

in (9) with xnew = (β̂⊺

GA, 0⊺)⊺. Since QA is non-negative if A is positive semi-definite, we truncate Q̂A at 0

and define Q̂A = max
(
Q̂A, 0

)
. We further estimate the variance of the Q̂A by

V̂A(τ) = 4û⊺

[
1

n2

n∑

i=1

ω2(X⊺

i·β̂)σ̂
2
iXi·X

⊺

i·

]
û+

τ

n
, (12)

where the term τ/n with τ > 0 (default value τ = 1) is introduced as an upper bound for the term

(β̂G − βG)
⊺A(β̂G − βG), and σ̂2

i is defined in (11). Then given a fixed value of τ , we construct the CI as

CI(τ) =

(
max

(
Q̂A − zα/2

√
V̂A(τ), 0

)
, Q̂A + zα/2

√
V̂A(τ)

)
.

Now we turn to the estimation of QΣ = β⊺

GΣG,GβG where the matrix ΣG,G is unknown and estimated

by Σ̂G,G = 1
n

∑n
i=1 XiGX

⊺

iG. Decompose the error of the plug-in estimator β̂⊺

GΣ̂G,Gβ̂:

β̂⊺

GΣ̂G,Gβ̂ − βGΣG,GβG = 2 β̂⊺

GΣ̂G,G(β̂G − βG) + β⊺

G(Σ̂G,G − ΣG,G)βG − (β̂G − βG)
⊺Σ̂G,G(β̂G − βG).

The first term β̂⊺

GΣ̂G,G(β̂G − βG) is estimated by applying linear functional approach in Section 2.2 with

xnew = (β̂⊺

GΣ̂G,G, 0)⊺; the second term β⊺

G(Σ̂G,G − ΣG,G)βG can be controlled asymptotically by central

limit theorem; and the last term (β̂G − βG)
⊺Σ̂G,G(β̂G − βG) is negligible due to high-order bias. Guo et al.

[7] proposed the following estimator of QΣ

Q̂Σ = β̂⊺

GΣ̂G,Gβ̂G + 2 û⊺

Σ

[
1

n

n∑

i=1

ω(X⊺

i·β̂)
(
yi − f(X⊺

i·β̂)
)
Xi·

]
,

where ûΣ is the projection direction constructed in (9) with xnew = (β̂⊺

GΣ̂G,G, 0)⊺. We introduce the

estimator Q̂Σ = max(Q̂Σ, 0) and estimate its variance as

V̂Σ(τ) = 4û⊺

[
1

n2

n∑

i=1

ω2(X⊺

i·β̂)σ̂
2
iXi·X

⊺

i·

]
û+

1

n2

n∑

i=1

(
β̂⊺

GXi,GX
⊺

i,Gβ̂G − β̂⊺

GΣ̂G,Gβ̂G

)2

+
τ

n
, (13)
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where τ > 0, the term τ/n is introduced as an upper bound for the term (β̂G − βG)
⊺Σ̂G,G(β̂G − βG), and σ̂2

i

is defined in (11). Then, thanks to the asymptotic normality, for a fixed value of τ , we can construct the CI
as

CI(τ) =

(
max

(
Q̂Σ − zα/2

√
V̂Σ(τ), 0

)
, Q̂Σ + zα/2

√
V̂Σ(τ)

)
.

2.4 Conditional average treatment effects

The inference methods proposed for one sample can be generalized to make inferences for conditional average
treatment effects, which can be expressed as the difference between two linear functionals. Let Ai ∈ {1, 2}
denote the treatment assignment for i-th observation. Consider the two-sample GLMs as

E(yi|Xi·, Ai = 1) = f(X⊺

i·β
(1)) and E(yi|Xi·, Ai = 2) = f(X⊺

i·β
(2)),

where f is the link function listed in table 1. Then, for a future individual Xi· = xnew, we define ∆(xnew) =
E(yi|Xi·, Ai = 2)− E(yi|Xi·, Ai = 1), that measures the difference of the conditional mean of assignment of
treatment for the individual with covariates xnew.

Following (8), we construct the bias-corrected point estimators of ̂x⊺

newβ(1) and ̂x⊺

newβ(2), together with

their corresponding variance V̂(1) and V̂(2) as (10). The paper Cai et al. [3] proposed to estimate ∆(xnew)

by ∆̂(xnew) as:

∆̂(xnew) = f( ̂x⊺

newβ(2))− f( ̂x⊺

newβ(1)).

Its variance can be estimated with delta method by:

V̂∆ =
(
f ′( ̂x⊺

newβ(1))
)2

V̂(1) +
(
f ′( ̂x⊺

newβ(2))
)2

V̂(2).

Then we construct the CI as CI =

(
∆̂(xnew)− zα/2

√
V̂∆, ∆̂(xnew) + zα/2

√
V̂∆

)
.

2.5 Inner product of regression vectors

The paper Guo et al. [5], Ma et al. [9] have carefully investigated the CI construction for β
(1)⊺
G Aβ

(2)
G , provided

with a pre-specified submatrix A ∈ R|G|×|G| and the set of indices G ∈ {1, ..., p}. Let β̂(1) and β̂(2) respectively

be the initial estimators for their corresponding sample in (2), the plug-in but biased estimator is β̂
(1)⊺
G Aβ̂

(2)
G .

Its bias can be decomposed as:

β̂
(1)⊺
G Aβ̂

(2)
G − β

(1)⊺
G Aβ

(2)
G = β̂

(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
+ β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)

−
(
β̂
(1)
G − β

(1)
G

)⊺

A
(
β̂
(2)
G − β

(2)
G

)
.

The key step is to estimate the error components β̂
(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
and β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)
. Then the

following procedures can be interpreted as applying Linear Functional twice on two independent samples.

To be specific, we propose the following bias-corrected estimator for β
(1)⊺
G Aβ

(2)
G

̂
β
(1)⊺
G Aβ

(2)
G = β̂

(1)⊺
G Aβ̂

(2)
G +û⊺

1

1

n1

n1∑

i=1

ω(X
(1)⊺
i· β̂(1))

(
y
(1)
i − f(X

(1)⊺
i· β̂(1))

)
X

(1)
i·

+ û⊺

2

1

n2

n2∑

i=1

ω(X
(2)⊺
i· β̂(2))

(
y
(2)
i − f(X

(2)⊺
i· β̂(2))

)
X

(2)
i· ,

(14)

with the second term and the third term in right-hand-side of (14) estimating −β̂
(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
and

−β̂
(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)
respectively, where û1 is the projection direction defined in (9) with xnew = (β̂

(2)⊺
G A, 0)⊺
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and û2 is the projection direction defined in (9) with xnew = (β̂
(1)⊺
G A, 0)⊺. The corresponding variance of

̂
β
(1)⊺
G Aβ

(2)
G , when A is a known positive definite matrix, is estimated as

V̂A(τ) = V̂(1) + V̂(2) +
τ

min(n1, n2)
,

where V̂ (k) is computed as (10) for the k−th regression model (k = 1, 2) in (2) and τ > 0, the term

τ/min(n1, n2) is introduced as an upper bound for the term (β̂
(1)
G − β

(1)
G )⊺A(β̂

(2)
G − β

(2)
G ).

When A is not specified, we treat A = ΣG,G, which is unknown. As a natural generalization, the quantity

β
(1)⊺
G ΣG,Gβ

(2)
G is well defined if the two regression models in (2) share the design covariance matrix Σ =

EX
(1)
i· X

(1)⊺
i· = EX

(2)
i· X

(2)⊺
i· . We follow the above procedures replacing A by Σ̂G,G = 1

n1+n2

∑n1+n2

i=1 Xi,GX
⊺

i,G

where X is the row-combined matrix of X(1) and X(2). The variance of
̂

β
(1)⊺
G ΣG,Gβ

(2)
G is now estimated as

V̂Σ(τ) = V̂(1) + V̂(2) +
1

(n1 + n2)2

n1+n2∑

i=1

(
β̂
(1)⊺
G Xi,GX

⊺

i,Gβ̂
(2)
G − β̂

(1)⊺
G Σ̂G,Gβ̂

(2)
G

)2

+
τ

min(n1, n2)
.

Depending on whether the submatrix A is specified or not, the CI is

CI(τ) =





(
̂

β
(1)⊺
G Aβ

(2)
G − zα/2V̂A(τ),

̂
β
(1)⊺
G Aβ

(2)
G + zα/2V̂A(τ)

)
if A is specified

(
̂

β
(1)⊺
G ΣG,Gβ

(2)
G − zα/2V̂Σ(τ),

̂
β
(1)⊺
G ΣG,Gβ

(2)
G + zα/2V̂Σ(τ)

)
otherwise.

2.6 Distance of regression vectors

We denote γ = β(2) − β(1) and its initial estimator γ̂ = β̂(2) − β̂(1). The quantity of interest is the distance
between two regression vectors γ⊺

GAγG, given a pre-specified submatrix A ∈ R|G|×|G| and the set of indices
G ∈ {1, ..., p}. The bias of the plug-in estimator γ̂⊺

GAγ̂G is:

γ̂⊺

GAγ̂G − γ⊺

GAγG = 2 γ̂⊺

GA
(
β̂
(2)
G − β

(2)
G

)
− 2 γ̂⊺

GA
(
β̂
(1)
G − β

(1)
G

)
− (γ̂G − γG)

⊺
A (γ̂G − γG) .

The key step is to estimate the error components γ̂⊺

GA
(
β̂
(1)
G − β

(1)
G

)
and γ̂⊺

GA
(
β̂
(2)
G − β

(2)
G

)
in the above

decomposition. We apply linear functional techniques twice here, and propose the bias-corrected estimator:

γ̂⊺

GAγG = γ̂⊺

GAγ̂G − 2 û⊺

1

1

n1

n1∑

i=1

ω(X
(1)⊺
i· β̂(1))

(
y
(1)
i − f(X

(1)⊺
i· β̂(1))

)
X

(1)
i·

+ 2 û⊺

2

1

n2

n2∑

i=1

ω(X
(2)⊺
i· β̂(2))

(
y
(2)
i − f(X

(2)⊺
i· β̂(2))

)
X

(2)
i· .

(15)

Then by non-negative distance, we define γ̂⊺

GAγG = max
{
γ̂⊺

GAγG, 0
}
. The second term on right-hand-side

of (15) is to estimate −2x⊺

new(β̂
(1)
G − β

(1)
G ) with xnew = (γ̂⊺

GA,0)
⊺
; and the third term on right-hand-side

of (15) is to estimate −2x⊺

new(β̂
(2)
G − β

(2)
G ) with xnew = (γ̂⊺

GA,0)
⊺
as well. The corresponding asymptotic

variance for the bias-corrected estimator is

V̂A(τ) = 4 V̂(1) + 4 V̂(2) +
τ

min(n1, n2)
,

where V̂(k) is computed as (10) for the k-th regression model (k = 1, 2) and τ > 0, the term τ/min(n1, n2) is
introduced as an upper bound for the term (γ̂G−γG)

⊺A(γ̂G−γG). With asymptotic normality, we construct
the CI

CI(τ) =

(
max

(
γ̂⊺

GAγG − zα/2

√
V̂A(τ), 0

)
, γ̂⊺

GAγG + zα/2

√
V̂A(τ)

)
.
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When the submatrix A is not specified, we treat A = ΣG,G, which is unknown. The point estimator
̂γ⊤

GΣG,GγG can be computed similarly as outlined in (15). In this case, the submatrix A is substituted

with Σ̂G,G and the resulting value is truncated at 0, where Σ̂G,G = 1
n1+n2

∑n1+n2

i=1 Xi,GX
⊺

i,G with X as the

row-combined matrix of X(1) and X(2). Its corresponding asymptotic variance is

V̂Σ = 4 V̂(1) + 4 V̂(2) +
1

(n1 + n2)2

n1+n2∑

i=1

(
γ̂⊺

GXi,GX
⊺

i,Gγ̂G − γ̂⊺

GΣ̂G,Gγ̂G

)2

+
τ

min(n1, n2)
.

Next we present its CI

CI(τ) =

(
max

(
γ̂⊺

GΣγG − zα/2

√
V̂Σ(τ), 0

)
, γ̂⊺

GΣγG + zα/2

√
V̂Σ(τ)

)
.

3 Others

3.1 Construction of Projection Direction

The construction of projection directions are key to the bias correction step, see (8). In the following, we
introduce the equivalent dual problem of constructing the projection direction. The constrained optimizer

û ∈ Rp can be computed in the form of û = − 1
2

[
v̂−1 +

x∗

∥x∗∥2

v̂1

]
, where, v̂ ∈ Rp+1 is defined as

v̂ = argmin
v∈Rp+1

{
1

4n
v
⊺
H

⊺X⊺Diag(w)Diag(f ′)XHv + x⊺

newHv + λn ∥xnew∥2 · ∥v∥1
}
, (16)

with H =
[

xnew

∥xnew∥
2

, Ip×p

]
∈ Rp×(p+1), w =

(
ω(X⊺

1 β̂), ..., ω(X
⊺

n β̂)
)⊺

and f
′ =

(
f ′(X⊺

1 β̂), ..., f
′(X⊺

n β̂)
)⊺

. We

refer to Proposition 2 in Cai et al. [2] for the detailed derivation of the dual problem (16). In this dual

problem, when Σ̂ is singular and the tuning parameter λn > 0 gets sufficiently close to 0, the dual problem
cannot be solved as the minimum value converges to negative infinity. Hence we choose the smallest λn > 0
such that the dual problem has a finite minimum value. Such selection of the tuning parameter dated at
least back to Javanmard and Montanari [8].
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