
Introduction to Usage of SIHR

Zhenyu (Zach) Wang

April 11, 2024

This vignette presents the usage of SIHR package for statistical inference in high-dimensional generalized
linear models with continuous and binary outcomes. The package provides tools for constructing confidence
intervals and performing hypothesis tests for low-dimensional objectives in both one-sample and two-sample
regression settings. If you use the package SIHR package in your analysis and publications, please cite:

Rakshit, P., Wang, Z., Cai, T. T., & Guo, Z. (2021). SIHR: Statistical Inference in High-Dimensional
Linear and Logistic Regression Models. arXiv preprint arXiv:2109.03365.

Note that SIHR package includes several debiasing methodologies, published in different papers. Please
make sure to cite papers associated with the methodologies you used. Citations for those can be found in
Table 1.

Installations: The latest version of the package can be installed from CRAN repository mirror:

1 # Install

2 install.pacakges("SIHR")

3 # Load

4 library(SIHR)

Or users can install it through GitHub:

1 # Install

2 devtools :: install_github("zywang0701/SIHR")

In the website https://github.com/zywang0701/SIHR, we provide other vignettes, regarding more details
about the debiasing methodologies.

Contents

1 Overview of SIHR 2

2 One-Sample Regime 3
2.1 LF . 3

2.1.1 Arguments . 3
2.1.2 Code . 4

2.2 QF . 5
2.2.1 Arguments . 6
2.2.2 Code . 6

3 Two-Samples Regime 7
3.1 CATE . 7

3.1.1 Arguments . 7
3.1.2 Code . 7

3.2 InnProd . 8
3.2.1 Code . 8

3.3 Dist . 8
3.3.1 Code . 9

1

https://github.com/zywang0701/SIHR

1 Overview of SIHR

Package Features: Figure 1 provides a quick overview of SIHR package’s features. The following sections
will provide more details, as well as sample code on how to perform tasks. The SIHR package consists of
five main functions LF(), QF(), CATE(), InnProd(), and Dist() implementing the statistical inferences for
five different quantities correspondingly, under the one-sample model or two-sample model regime. And we
provide two methods ci() and summary() to report the inference results after running the main functions.

Figure 1: Overview of Package Features

Model Setup We consider the high-dimensional GLMs: for 1 ≤ i ≤ n,

E(yi | Xi·) = f(X⊺

i·β), with f(z) =

{
z for linear model;

exp (z)/ [1 + exp (z)] for logistic model;
(1)

where β ∈ Rp denotes the high-dimensional regression vector, yi ∈ R and Xi· ∈ Rp denote respectively the
outcome and the measured covariates of the i-th observation. Throughout the paper, define Σ = EXi·X

⊺

i·

and assume β to be a sparse vector with its sparsity level denoted as ∥β∥0. In addition to the one-sample
setting, we examine the statistical inference methods for the two-sample regression models. Particularly, we
generalize the regression model in (1) and consider:

E(y
(k)
i | X(k)

i·) = f(X
(k)⊺
i· β(k)) with k = 1, 2 and 1 ≤ i ≤ nk, (2)

where f(·) is the pre-specified link function defined as (1), β(k) ∈ Rp denotes the high-dimensional regression

vector in k-th sample, y
(k)
i ∈ R and X

(k)
i· ∈ Rp denote respectively the outcome and the measured covariates

in the k-th sample.

Description of Main Functions The SIHR package implements a number of published debiasing method-
ologies. Table 1 gives a short description of each one of the methodologies.

Outline of Remaining Content: In the following sections, we will discuss the implemented methodolo-
gies in one-sample and two-sample regimes separately. We will also showcase the code to conduct statistic
inference on simulated data.

2

Regime Key Description

One-Sample
LF

Abbreviated for linear functional, it implements the inference approach for
x⊺

newβ proposed in Cai et al. [1, 3], with xnew ∈ R
p denoting a loading vector.

With xnew = ej as a special case, LF() infers the regression coefficient βj

[9, 7, 10, e.g.]. When xnew denotes a future observation’s covariates, LF()

makes inferences for the conditional mean of the outcome for the individual.
Reference: Cai et al. [1], Cai et al. [3]

QF

Abbreviated for quadratic functional, it makes inferences for β⊺

GAβG, following
the proposal in Guo et al. [4, 5], Cai and Guo [2]. A ∈ R

|G|×|G| is either a
pre-specified submatrix or the unknown ΣG,G and G ∈ {1, ..., p} denotes the
index set of interest; β⊺

GAβG can be viewed as a total measure of all effects of
variables in the group G.
Reference: Guo et al. [4], Guo et al. [5], Cai and Guo [2]

Two-Samples
CATE

Abbreviated for conditional average treatment effect, it makes inference for
f(x⊺

newβ
(2))− f(x⊺

newβ
(1)), see [1] for detailed discussion. This difference mea-

sures the discrepancy between conditional means, closely related to the condi-
tional average treatment effect for the new observation with covariates xnew.
Reference: Cai et al. [1]

InnProd

Abbreviated for inner products, it implements the statistical inference for
β
(1)⊺
G Aβ

(2)
G with A ∈ R

|G|×|G|, which was proposed in [4, 8]. The inner prod-
ucts measure the similarity between the high-dimensional vectors β(1) and β(2),
which is useful in capturing the genetic relatedness in the GWAS applications
[4, 8].
Reference: Guo et al. [4], Ma et al. [8]

Dist

Short-handed for distance, it makes inferences for the weighted distances
γ
⊺

GAγG with γ = β(2) − β(1). The distance measure is useful in comparing
different high-dimensional regression vectors and constructing a generalizable
model in the multisource learning problem, see Guo et al. [6].

Table 1: Description of the main functions and implemented methodologies.

2 One-Sample Regime

2.1 LF

The function LF(), shorthanded for Linear Functional, performs inference for x⊺

newβ under the high-dimensional
model (1). A typical LF() code snippet looks like:

LF(X, y, loading.mat, model=c("linear","logistic","logistic alter"),

intercept=TRUE, intercept.loading=FALSE, beta.init=NULL, lambda=NULL, mu=NULL,

prob.filter=0.05, rescale=1.1, alpha=0.05, verbose=FALSE)

2.1.1 Arguments

Here we pick some arguments to explain.

• loading.mat is the matrix of loading vectors where each column corresponds to a new future obser-
vation xnew. It is designed to allow for multiple xnew simultaneously as input, thereby saving the
computational time and labour of running the algorithm multiple times, once for each xnew.

• model specifies which high-dimensional regression model is to be fit, the choices being c("linear",

"logistic","logistic alt"). In particular, this argument specifies the link function and the corre-
sponding weight function to be used. For the details, please check another Vignette. to include

• intercept is a logical argument which specifies whether intercept should be fitted while computing

the initial estimator β̂.

3

• intercept.loading is also logical, specifying whether the intercept term should be included or not
for defining the objective x⊺

newβ.

• beta.init allows the user to supply the initial estimator β̂ of the regression vector. If beta.init is
left as NULL, the initial estimator β̂ is computed using cv.glmnet.

• lambda denotes the scaled tuning parameter λ0/
√
n used for computing the initial estimator β̂ in (??)

which can either be pre-specified or can be set to NULL whence LF uses cv.glmnet to compute it.

• mu is the parameter related for computing projection direction, to include

• prob.filter is specific to logistic model. We need to exclude those observations whose estimated
probabilities P(yi | Xi) are very close to 0 or 1. Those samples for which the estimated probability lies
outside [prob.filter, 1− prob.filter] before proceeding with the algorithm.

• rescale is the factor to enlarge the standard error to account for the finite sample bias.

• alpha denotes the level of significance α in hypothesis testing.

2.1.2 Code

Example 1 (LF for linear regression) For n = 100, p = 120, the covariates Xi ∼ N(0p, Ip). The out-
come is generated as yi = a0 + X⊺

i·β + ϵi with ϵi ∼ N(0, 1), see the code for the specification of a0 and β.

Objective: Given two further observations x
(1)
new, x

(2)
new, we’re going to make inference for x

(1)⊺
newβ = 1.5 and

x
(2)⊺
newβ = −1.25 simultaneously.

1 # Generate Data

2 set.seed (0)

3 n = 100; p = 120

4 mu = rep(0,p); Cov = diag(p)

5 a0 = 0; beta = rep(0,p); beta[c(1,2)] = c(0.5, 1)

6 X = MASS:: mvrnorm(n, mu , Cov)

7 y = a0 + X %*% beta + rnorm(n)

8

9 # Loadings

10 loading1 = c(1, 1, rep(0, p-2))

11 loading2 = c(-0.5, -1, rep(0, p-2))

12 loading.mat = cbind(loading1 , loading2)

13

14 # Run LF

15 Est = LF(X, y, loading.mat , model=’linear ’)

Having fitted the model, we have two following methods ci() and summary().

1 ci(Est)

2 #> loading lower upper

3 # >1 1 1.167873 1.8753934

4 # >2 2 -1.544138 -0.7995375

In the above result, we can find the 95% CI for x
(1)⊺
newβ and x

(2)⊺
newβ. Both true values x

(1)⊺
newβ = 1.5 and

x
(2)⊺
newβ = −1.25 lie in the corresponding CIs.

1 summary(Est)

2 #>Call:

3 #>Inference for Linear Functional

4 #>

5 #>Estimators:

6 #> loading est.plugin est.debias Std. Error z value Pr(>|z|)

7 #> 1 1.268 1.522 0.1805 8.430 0.000e+00 ***

8 #> 2 -1.033 -1.172 0.1900 -6.169 6.868e-10 ***

summary() returns a list of the summary statistics, in which we can find the plugin estimator, bias-corrected
estimator, and the standard error for the bias-corrected estimator. The bias-corrected estimators are closer
to the true values.

4

As a second example, we consider the logistic regression where the argument model is set as "logistic"
or "logistic alter".

Example 2 (LF for logistic regression) For n = 130, p = 120, the covariates Xi ∼ N(0p, Ip). The
regression vector β ∈ Rp is generated as shown in the following code. We generate the outcome Yi ∼
Bernoulli (f (a0 +X⊺

i β)) with f(z) = exp(z)/[1 + exp(z)]. Objective: The target parameter values are

x
(1)⊺
newβ = 2 and x

(2)⊺
newβ = −2.5 corresponding to the two loadings x

(1)
new and x

(2)
new.

1 # Generate Data

2 n = 300; p = 120

3 mu = rep(0,p); Cov = diag(p)

4 a0 = 0

5 beta = rep(0,p); beta[c(1,2)] = c(1, 1)

6 X = MASS:: mvrnorm(n, mu , Cov)

7 val = a0 + X %*% beta

8 y = rbinom(n, 1, exp(val)/(1+ exp(val)))

9

10 # Loadings

11 loading1 = c(1, 1, rep(0, p-2))

12 loading2 = c(-0.5, -2, rep(0, p-2))

13 loading.mat = cbind(loading1 , loading2)

To boost computation efficiency, we may specify the argument beta.init as the initial coefficients estimators.
For example, here we use cv.glmnet to construct β̂ and pass them on to the argument beta.init in LF.

1 cv.fit = glmnet ::cv.glmnet(X, y, family=’binomial ’, alpha=1, standardize=TRUE)

2 beta.init = as.vector(coef(cv.fit , s=cv.fit[[’lambda.min’]]))

3 Est = LF(X, y, loading.mat , model=’logistic ’, beta.init=beta.init)

The corresponding CIs and summary statistics are given below:

1 ci(Est)

2 #> loading lower upper

3 # >1 1 1.257559 2.492327

4 # >2 2 -3.186513 -1.605671

Consequently, we have two objective values x
(1)⊺
newβ = 2 and x

(2)⊺
newβ = −2.5. Both of these values lie within

their corresponding 95% CIs.

1 summary(Est)

2 #> Call:

3 #> Inference for Linear Functional

4 #>

5 #> Estimators:

6 #> loading est.plugin est.debias Std. Error z value Pr(>|z|)

7 #> 1 1.340 1.875 0.3150 5.952 2.645e-09 ***

8 #> 2 -1.741 -2.396 0.4033 -5.941 2.825e-09 ***

Note that the plugin estimators x
(1)⊺
new β̂ and x

(2)⊺
new β̂ are severely biased in such setting, the proposed bias-

correction approach significantly saves the bias with
̂
x
(1)⊺
newβ and

̂
x
(2)⊺
newβ.

2.2 QF

The function QF(), abbreviated for Quadratic Functional, conducts inference for β⊺

GAβG if A is the submatrix
pre-specified or β⊺

GΣG,GβG under the high-dimensional regression model (1). The function QF() can be called
with the following arguments.

QF(X, y, G, A=NULL, model=c("linear","logistic","logistic alter"), intercept=TRUE,

beta.init=NULL, split=TRUE, lambda=NULL, mu=NULL, prob.filter=0.05,

rescale=1.1,tau=c(0.25, 0.5, 1), alpha=0.05, verbose=FALSE)

5

2.2.1 Arguments

We only explain new arguments, as all other arguments for QF are defined similarly as the function LF.

• G is the set of indices of interest.

• If A is specified, it will conduct inference for β⊺

GAβG; otherwise, it will turn to β⊺

GΣG,GβG.

• split indicates whether we conduct the sample splitting for computing the initial estimator of regres-
sion coefficients. When split=TRUE, the initial estimator of regression coefficients is computed using
half of the available observations while the remaining half is used for bias correction. The option of
using sampling splitting might require a larger sample size.

• tau.vec allows the user to supply a vector of possible values to enlarge the variance estimator for some
technical reasons. to include

2.2.2 Code

Example 3 (QF for linear regression) For n = 200, p = 150, the covariates Xi· is generated from mul-
tivariate normal distribution with mean µ = 0p and covariance Σ ∈ Rp×p, where Σj,k = 0.5|j−k|. See the fol-
lowing code for the vector of regression coefficients β. The outcome is generated by yi = Xi·β+ϵi with standard
normal distributed noise. Objective: We’re going to make inference for β⊺

GΣG,GβG with G = {40, . . . , 60}

1 # Generate Data

2 n = 200; p = 150

3 mu = rep(0,p)

4 Cov = matrix(0, p, p); for(j in 1:p) for(k in 1:p) Cov[j,k] = 0.5^{ abs(j-k)}

5 beta = rep(0, p); beta [25:50] = 0.2

6 X = MASS:: mvrnorm(n,mu ,Cov)

7 y = X%*%beta + rnorm(n)

8

9 # Specify set G

10 test.set =c(40:60)

11

12 # Run QF

13 Est = QF(X, y, G = test.set , A = NULL , model = "linear", split=FALSE)

Continuing running two functions ci() and summary():

1 ci(Est)

2 #> tau lower upper

3 # >1 0.25 0.8118792 1.466422

4 # >2 0.50 0.8046235 1.473677

5 # >3 1.00 0.7905648 1.487736

With the default τ = c(0.25, 0.5, 1), we obtain three different CIs for β⊺

GΣG,GβG. Note that the true value
β⊺

GΣG,GβG = 1.16 belongs to all of these constructed CIs.

1 summary(Est)

2 #> Call:

3 #> Inference for Quadratic Functional

4 #>

5 #> tau est.plugin est.debias Std. Error z value Pr(>|z|)

6 #> 0.25 0.904 1.139 0.1670 6.822 8.969e-12 ***

7 #> 0.50 0.904 1.139 0.1707 6.674 2.486e-11 ***

8 #> 1.00 0.904 1.139 0.1779 6.405 1.504e-10 ***

For different τ value, the plugin estimator and bias-corrected estimator of β⊺

GΣG,GβG remain the same;
whereas bigger τ value yields a larger standard error, leading to a wider CI. Similarly to the LF() case, our
proposed bias-corrected estimator is effective in correcting the bias of plugin estimator.

6

3 Two-Samples Regime

3.1 CATE

The function CATE(), shorthanded for Conditional Average Treatment Effect, conducts inference for ∆(xnew) =
f(x⊺

newβ
(2))− f(x⊺

newβ
(1)) under the high-dimensional regression model (2).

CATE(X1, y1, X2, y2, loading.mat, model=c("linear","logistic","logistic alter"),

intercept=TRUE, intercept.loading=FALSE, beta.init1=NULL, beta.init2=NULL,

lambda=NULL, mu=NULL, prob.filter=0.05, rescale=1.1, alpha=0.05, verbose=FALSE)

3.1.1 Arguments

Here, X1 and y1 denote the design matrix and the response vector for the first sample of data respectively,
while X2 and y2 denote those for the second sample of data. beta.init1 and beta.init2 are the initial
estimator of the regression vector for the first and second samples. All other arguments are similarly defined
as for the function LF().

3.1.2 Code

We consider the logistic regression case to illustrate CATE() with the argument model=’logistic alter’.

Example 4 (CATE for logistic regression) In the first group of data, the covariates X
(1)
i· , for 1 ≤ i ≤

n1 with n1 = 100, follows multivariate normal distribution with µ = 0p and covariance Σ = Ip; in the second

group of data, the covariates X
(2)
i· , for 1 ≤ i ≤ n2 with n2 = 180, follows multivariate normal distribution

with µ = 0p and covariance Σ ∈ Rp×p with p = 120 and Σj,k = 0.5|j−k|. We generate following the model

y
(k)
i ∼ Bernoulli(f(X

(k)⊺
i· β(k)) with f(z) = exp(z)/[1 + exp(z)] for k = 1, 2. See the following code for

details of β(1), β(2). Objective: We perform inference for ∆(xnew), where the loading xnew is generated in
the following line of code.

1 # Generate Data

2 n1 = 100; n2 = 180; p = 120

3 mu1 = mu2 = rep(0,p)

4 Cov1 = diag(p)

5 Cov2 = matrix(0, p, p); for(j in 1:p) for(k in 1:p) Cov2[j,k] = 0.5^{ abs(j-k)}

6 beta1 = rep(0, p); beta1[c(1,2)] = c(0.5, 0.5)

7 beta2 = rep(0, p); beta2[c(1,2)] = c(1.8, 1.8)

8 X1 = MASS:: mvrnorm(n1 ,mu1 ,Cov1); val1 = X1%*%beta1

9 X2 = MASS:: mvrnorm(n2 ,mu2 ,Cov2); val2 = X2%*%beta2

10 y1 = rbinom(n1 , 1, exp(val1)/(1+ exp(val1)))

11 y2 = rbinom(n2 , 1, exp(val2)/(1+ exp(val2)))

12

13 # Loading

14 loading.mat = c(1, 1, rep(0, p-2))

15

16 # Run CATE

17 Est = CATE(X1 , y1 , X2 , y2 ,loading.mat , model="logistic_alter")

Having fitted the model, it allows for method ci() and summary() as LF() does.

1 ci(Est)

2 #> loading lower upper

3 # >1 1 1.614269 4.514703

The true value x⊺

new(β
(2) − β(1)) = 2.6 is included in the above 95% CI.

1 ci(Est , probability = TRUE)

2 #> loading lower upper

3 # >1 1 0.1531872 0.5086421

If we specify probability as TRUE, for the logistic regression, ci() yields the CI for f(x⊺

newβ
(2))−f(x⊺

newβ
(1))

whose true value is 0.2423.

7

3.2 InnProd

The function InnProd(), shorthanded for Inner Product, conducts inference for β
(1)⊺
G Aβ

(2)
G if A is the

submatrix pre-specified or β
(1)⊺
G ΣG,Gβ

(2)
G under the high-dimensional regression models. All arguments are

similarly defined as previous functions.

InnProd(X1, y1, X2, y2, G, A = NULL, model=c("linear","logistic","logistic alter"),

intercept=TRUE, beta.init1=NULL, beta.init2=NULL, split = TRUE,lambda=NULL,

mu=NULL, prob.filter=0.05, rescale=1.1, tau = c(0.25,0.5,1), alpha=0.05,

verbose=FALSE)

3.2.1 Code

Example 5 (InnProd for linear regression) In the first group of data, the covariates X
(1)
i· , for 1 ≤ i ≤

n1 with n1 = 200, follows multivariate normal distribution with µ = 0p and covariance Σ = Ip; in the second

group of data, the covariates X
(2)
i· , for 1 ≤ i ≤ n2 with n2 = 260, follows multivariate normal distribution

with µ = 0p and covariance Σ ∈ Rp×p with p = 120 and Σj,k = 0.5|j−k|. See the following code to see how the

sparse β(1), β(2) are generated. We generate following the model y
(k)
i = X

(k)⊺

i· β(k)+ϵ
(k)
i with standard normal

error ϵ(k) for k = 1, 2. Objective: We perform inference for β
(1)⊺

G β
(2)
G = β

(1)⊺

G IGβ
(2)
G with G = {1, 2, . . . , 20}

where IG denotes the identity matrix of order |G| × |G|.

1 # Generate Data

2 n1 = 200; n2 = 260; p = 120

3 mu1 = mu2 = rep(0,p)

4 Cov1 = diag(p)

5 Cov2 = matrix(0, p, p); for(j in 1:p) for(k in 1:p) Cov2[j,k] = 0.5^{ abs(j-k)}

6 beta1 = rep(0, p); beta1 [1:10] = 0.5

7 beta2 = rep(0, p); beta2 [3:12] = 0.4

8 X1 = MASS:: mvrnorm(n1 ,mu1 ,Cov1)

9 X2 = MASS:: mvrnorm(n2 ,mu2 ,Cov2)

10 y1 = X1%*%beta1 + rnorm(n1)

11 y2 = X2%*%beta2 + rnorm(n2)

12

13 # Specify set G and matrix A

14 test.set = c(1:20)

15 A = diag(length(test.set))

16

17 # Run InnProd

18 Est = InnProd(X1 , y1 , X2 , y2 , G=test.set , A, model="linear")

Having fitted the model, it allows for method ci() and summary() as QF() does.

1 ci(Est)

2 #> tau lower upper

3 #> 1 0.25 0.7432061 2.490451

4 #> 2 0.50 0.7128181 2.520839

5 #> 3 1.00 0.6520422 2.581615

The true value β
(1)⊺
G β

(2)
G = 1.6 is included in the above CIs with all default τ values.

3.3 Dist

The function Dist(), shorthanded for Distance, conducts inference for γ⊺

GAγG, where γ = β(2)−β(1), if A is
the submatrix pre-specified or γ⊺

GΣG,GγG under the high-dimensional regression models. All argument are
similarly defined previously.

8

Dist(X1, y1, X2, y2, G, A = NULL, model=c("linear","logistic","logistic alter"),

intercept=TRUE, beta.init1=NULL, beta.init2=NULL, split = TRUE, lambda=NULL,

mu=NULL, prob.filter=0.05, rescale=1.1, tau = c(0.25,0.50,1), alpha=0.05,

verbose=FALSE)

3.3.1 Code

Example 6 (Dist for linear regression) In the first group of data, the covariates X
(1)
i· , for 1 ≤ i ≤ n1

with n1 = 220, follows multivariate normal distribution with µ = 0p and covariance Σ = Ip; in the second

group of data, the covariates X
(2)
i· , for 1 ≤ i ≤ n2 with n2 = 180, follows multivariate normal distribution

with µ = 0p and covariance Σ ∈ Rp×p with p = 100 and Σj,k = 0.5|j−k|. We generate a sparse β(1) as

β
(1)
j = 0.2 for j = 1, 2 and β

(1)
j = 0 otherwise, whereas β(2) is generated as a relatively dense vector of

coefficients : β
(2)
1 = 0.3, β

(2)
2 = 1.5 and β

(2)
j = 0.08 if 3 ≤ j ≤ 10 and β

(2)
j = 0. otherwise. We generate

following the model y
(k)
i = X

(k)⊺

i· β(k) + ϵ
(k)
i with standard normal error ϵ(k) for k = 1, 2. Objective: we

perform inference for γ⊺

G
ΣG,GγG, where γ = β(2) − β(1) and G = {1, ..., 10}.

1 # Generate Data

2 n1 = 220; n2 = 180; p = 100

3 mu = rep(0,p); Cov = diag(p)

4 beta1 = rep(0, p); beta1 [1:2] = c(0.5, 1)

5 beta2 = rep(0, p); beta2 [1:10] = c(0.3, 1.5, rep (0.08 , 8))

6 X1 = MASS:: mvrnorm(n1 ,mu ,Cov)

7 X2 = MASS:: mvrnorm(n2 ,mu ,Cov)

8 y1 = X1%*%beta1 + rnorm(n1)

9 y2 = X2%*%beta2 + rnorm(n2)

10

11 # Specify set G

12 test.set = c(1:10)

13

14 # Run Dist

15 Est = Dist(X1 , y1 , X2 , y2 , G=test.set , A=NULL , model="linear", split=FALSE)

Having fitted the model, it allows for method ci() and summary() as LF() does.

1 ci(Est)

2 #> tau lower upper

3 # >1 0.25 0.028202 0.6831165

4 # >2 0.50 0.000000 0.7196383

5 # >3 1.00 0.000000 0.7926819

1 summary(Est)

2 #> Call:

3 #> Inference for Distance

4 #>

5 #> tau est.plugin est.debias Std. Error z value Pr(>|z|)

6 #> 0.25 0.4265 0.3557 0.1671 2.129 0.03327 *

7 #> 0.50 0.4265 0.3557 0.1857 1.915 0.05547 .

8 #> 1.00 0.4265 0.3557 0.2230 1.595 0.11070

The true value γ⊺

GΣG,GγG = 0.3412. Similar to the previous instances, we note that the bias-corrected
estimator effectively correct the bias of the plugin estimator. Depending on the τ values, we obtain various
CIs, all of which encompass the true value. It is important to mention that in case of negative lower
boundaries, they will be truncated at 0 for τ = 0.5 and τ = 1.

References

[1] T. Cai, T. Tony Cai, and Z. Guo. Optimal statistical inference for individualized treatment effects in
high-dimensional models. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
83(4):669–719, 2021.

9

[2] T. T. Cai and Z. Guo. Semisupervised inference for explained variance in high dimensional linear regres-
sion and its applications. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
82(2):391–419, 2020.

[3] T. T. Cai, Z. Guo, and R. Ma. Statistical inference for high-dimensional generalized linear models with
binary outcomes. Journal of the American Statistical Association, pages 1–14, 2021.

[4] Z. Guo, W. Wang, T. T. Cai, and H. Li. Optimal estimation of genetic relatedness in high-dimensional
linear models. Journal of the American Statistical Association, 114:358–369, 2019.

[5] Z. Guo, C. Renaux, P. Bühlmann, and T. Cai. Group inference in high dimensions with applications to
hierarchical testing. Electronic Journal of Statistics, 15(2):6633–6676, 2021.

[6] Z. Guo, X. Li, L. Han, and T. Cai. Robust inference for federated meta-learning. arXiv preprint
arXiv:2301.00718, 2023.

[7] A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-dimensional
regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014.

[8] R. Ma, Z. Guo, T. T. Cai, and H. Li. Statistical inference for genetic relatedness based on high-
dimensional logistic regression. arXiv preprint arXiv:2202.10007, 2022.

[9] S. van de Geer, P. Bühlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence regions
and tests for high-dimensional models. The Annals of Statistics, 42:1166–1202, 2014.

[10] C.-H. Zhang and S. S. Zhang. Confidence intervals for low dimensional parameters in high dimensional
linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):217–
242, 2014.

10

	Overview of SIHR
	One-Sample Regime
	LF
	Arguments
	Code

	QF
	Arguments
	Code

	Two-Samples Regime
	CATE
	Arguments
	Code

	InnProd
	Code

	Dist
	Code

