
Package ‘SRS’
January 20, 2025

Type Package

Title Scaling with Ranked Subsampling

Version 0.2.3

Description Analysis of species count data in ecology often requires normalization to an identi-
cal sample size. Rarefying (random subsampling without replacement), which is a popu-
lar method for normalization, has been widely criticized for its poor reproducibility and poten-
tial distortion of the community structure. In the context of microbiome count data, researchers ex-
plicitly advised against the use of rarefying. An alternative to rarefying is scaling with ranked sub-
sampling (SRS). SRS consists of two steps. In the first step, the total counts for all OTUs (opera-
tional taxonomic units) or species in each sample are divided by a scaling factor cho-
sen in such a way that the sum of the scaled counts Cscaled equals Cmin. In the sec-
ond step, the non-integer Cscaled values are converted into integers by an algo-
rithm that we dub ranked subsam-
pling. The Cscaled value for each OTU or species is split into the inte-
ger part Cint (Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled -
Cints). Since the sum of Cint is smaller or equal to Cmin, additional delta C = Cmin -
the sum of Cint counts have to be added to the library to reach the to-
tal count of Cmin. This is achieved as follows. OTUs are ranked in the descending or-
der of their Cfrac values. Beginning with the OTU of the highest rank, sin-
gle count per OTU is added to the normalized library until the total num-
ber of added counts reaches delta C and the sum of all counts in the normalized li-
brary equals Cmin. When the lowest Cfrag involved in picking delta C counts is shared by sev-
eral OTUs, the OTUs used for adding a single count to the library are selected in the or-
der of their Cint values. This selection minimizes the effect of normalization on the relative fre-
quencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled randomly without re-
placement. See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details.

Depends R (>= 3.4.0), vegan (>= 2.5-6), shiny (>= 1.5.0), DT (>=
0.16), shinycssloaders (>= 1.0.0), shinybusy (>= 0.2.2)

License CC BY-SA 4.0

Encoding UTF-8

Author Lukas Beule [aut, cre],
Vitor Heidrich [aut],
Petr Karlovsky [aut]

Maintainer Lukas Beule <lukas.beule@julius-kuehn.de>

1

https://doi.org/10.7717/peerj.9593

2 Scaling with ranked subsampling (SRS)

Repository CRAN

NeedsCompilation no

Date/Publication 2022-03-27 14:30:09 UTC

Contents
Scaling with ranked subsampling (SRS) . 2
Scaling with ranked subsampling (SRS) Shiny app . 4
Scaling with ranked subsampling curve (SRScurve) . 5

Index 7

Scaling with ranked subsampling (SRS)

Scaling with ranked subsampling (SRS)

Description

Scaling with ranked subsampling (SRS) for the normalization of ecological count data. It is recom-
mended to use SRS.shiny.app for the determination of Cmin.

Usage

SRS(data, Cmin, set_seed = TRUE, seed = 1)

Arguments

data Data frame (species count or OTU table) in which columns are samples and
rows are the counts of species or OTUs. Only integers are accepted as data.

Cmin The number of counts to which all samples will be normalized. Typically, the
total OTU count of the sample with the lowest sequencing depth is chosen as
Cmin. Samples with sequencing depth lower than the chosen Cmin will be
discarded.

set_seed Logical, if TRUE, a seed is set to enable reproducibility of SRS if OTUs with
identical Cfrag as well as Cint are sampled randomly without replacement. See
set.seed for details. Default is TRUE.

seed Integer, specifying the seed. See set.seed for details. Default is 1.

Details

It is recommended to use SRS.shiny.app for the determination of Cmin. SRS consists of two steps.
In the first step, the total counts for all OTUs (operational taxonomic units) or species in each sample
are divided by a scaling factor chosen in such a way that the sum of the scaled counts Cscaled equals
Cmin. In the second step, the non-integer Cscaled values are converted into integers by an algorithm
that we dub ranked subsampling. The Cscaled value for each OTU or species is split into the integer
part Cint (Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled − Cint).

Scaling with ranked subsampling (SRS) 3

Since ΣCint ≤ Cmin , additional ∆C = Cmin − ΣCint counts have to be added to the library
to reach the total count of Cmin. This is achieved as follows. OTUs are ranked in the descending
order of their Cfrac values. Beginning with the OTU of the highest rank, single count per OTU is
added to the normalized library until the total number of added counts reaches ∆C and the sum
of all counts in the normalized library equals Cmin. When the lowest Cfrag involved in picking
∆C counts is shared by several OTUs, the OTUs used for adding a single count to the library are
selected in the order of their Cint values. This selection minimizes the effect of normalization on
the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled randomly
without replacement.

Value

Data frame normalized to Cmin.

Author(s)

Lukas Beule, Vitor Heidrich, Devon O’rourke, Petr Karlovsky

References

Beule L, Karlovsky P. 2020. Improved normalization of species count data in ecology by scaling
with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

<https://doi.org/10.7717/peerj.9593>

Examples

##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:

example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data

##Selection of the desired number of counts
##(e.g., total OTU counts of the sample with the lowest sequencing depth):

Cmin <- min(colSums(example_input_data))
Cmin

##Running the SRS function
SRS_output <- SRS(example_input_data, Cmin)
SRS_output

##Samples that have a total number of counts < Cmin will be discarded:
SRS_output <- SRS(example_input_data, Cmin+1)
SRS_output

4 Scaling with ranked subsampling (SRS) Shiny app

Scaling with ranked subsampling (SRS) Shiny app

Shiny app for scaling with ranked subsampling (SRS)

Description

Shiny app for the determination of Cmin for scaling with ranked subsampling (SRS).

Usage

SRS.shiny.app(data)

Arguments

data Data frame (species count or OTU table) in which columns are samples and
rows are the counts of species or OTUs. Only integers are accepted as data.

Details

Shiny app that generates a visualization of retained samples, summary statistics, SRS curves, and
an interactive table in response to varying minimum sample size (Cmin).

Value

Launches Shiny app for SRS in the default web browser.

Author(s)

Vitor Heidrich, Devon O’rourke, Petr Karlovsky, Lukas Beule

References

Beule L, Karlovsky P. 2020. Improved normalization of species count data in ecology by scaling
with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

<https://doi.org/10.7717/peerj.9593>

Examples

##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:

example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data

Scaling with ranked subsampling curve (SRScurve) 5

##Launching the SRS shiny app with example_input_data as input
if (interactive()) {SRS.shiny.app(example_input_data)}

Scaling with ranked subsampling curve (SRScurve)

Scaling with ranked subsampling curve (SRScurve)

Description

For each column of the input data, draws a line plot of alpha diversity indices (see metric) at differ-
ent sample sizes (specified by step) normalized by scaling with ranked subsampling (using SRS).
Minimum sample size (cutoff-level) can be evaluated by specifying sample. The function further al-
lows to visualize trade-offs between cutoff-level and alpha diversity and enables direct comparison
of SRS and repeated rarefying.

See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details regarding SRS.

Usage

SRScurve(data, metric = "richness", step = 50, sample = 0, max.sample.size = 0,
rarefy.comparison = FALSE, rarefy.repeats = 10,
rarefy.comparison.legend = FALSE, xlab = "sample size",
ylab = "richness", label = FALSE, col, lty, ...)

Arguments

data Data frame (species count or OTU table) in which columns are samples and
rows are the counts of species or OTUs. Only integers are accepted as data.

metric Character, "richness" (using specnumber) for species richness or "shannon",
"simpson" or "invsimpson" (using diversity) for common diversity indices. De-
fault is "richness".

step Numeric, specifying the step used to vary the sample size. Default is 50.
sample Numeric, specifying the cutoff-level to visualize trade-offs between cutoff-level

and alpha diversity.
max.sample.size

Numeric, specifying the maximum sample size to which SRS curves are drawn.
Default is 0 which does not limit the maximum sample size.

rarefy.comparison

Logical, if TRUE, median values of rarefy with n repeats (specified by rar-
efy.repeats) will be drawn for comparison. Default is FALSE.

rarefy.repeats Numeric, specifying the number of repeats used to obtain median values for
rarefying. Default is 10.

rarefy.comparison.legend

Logical, if TRUE, a legend for the comparison between SRS and rarefy is plot-
ted. Default is FALSE.

xlab, ylab, label, col, lty, ...
Graphical parameters.

6 Scaling with ranked subsampling curve (SRScurve)

Details

See Beule & Karlovsky (2020) <doi:10.7717/peerj.9593> for details regarding scaling with ranked
subsampling.

Value

Returns a line plot visualizing the change in alpha diversity indices with changing sample size.

Author(s)

Vitor Heidrich, Petr Karlovsky, Lukas Beule

References

Beule L, Karlovsky P. 2020. Improved normalization of species count data in ecology by scaling
with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593

<https://doi.org/10.7717/peerj.9593>

Examples

##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:

example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data

##Default settings of SRScurve.
SRScurve(example_input_data, metric = "richness", step = 50,

ylab = "richness",
col = c("#000000", "#E69F00", "#56B4E9"))

##Limit the compution of SRS curves to a sample size of 200.
SRScurve(example_input_data, metric = "richness", step = 50,

max.sample.size = 200, ylab = "richness",
col = c("#000000", "#E69F00", "#56B4E9"))

##SRScurve with comparison of SRS (solid lines) and repeated rarefying (dashed lines).
##Different colors correspond to indiviual samples. Cuttoff-level set to 200.
SRScurve(example_input_data, metric = "richness", step = 50,

sample = 200, max.sample.size = 200,
rarefy.comparison = TRUE, rarefy.repeats = 10, rarefy.comparison.legend = TRUE,
ylab = "richness",
col = c(rep(c("#000000", "#E69F00", "#56B4E9"),2)),
lty = c(1,2))

Index

diversity, 5

invsimpson, 5

metric, 5

rarefy.repeats, 5

sample, 5
Scaling with ranked subsampling (SRS),

2
Scaling with ranked subsampling (SRS)

Shiny app, 4
Scaling with ranked subsampling curve

(SRScurve), 5
set.seed, 2
shannon, 5
simpson, 5
specnumber, 5
SRS, 5
SRS (Scaling with ranked subsampling

(SRS)), 2
SRS.shiny.app, 2
SRS.shiny.app (Scaling with ranked

subsampling (SRS) Shiny app), 4
SRScurve (Scaling with ranked

subsampling curve (SRScurve)),
5

step, 5

7

	Scaling with ranked subsampling (SRS)
	Scaling with ranked subsampling (SRS) Shiny app
	Scaling with ranked subsampling curve (SRScurve)
	Index

