Package 'SurviMChd'

January 20, 2025

Title High Dimensional Survival Data Analysis with Markov Chain Monte Carlo Version 0.1.2 Date 2024-03-26 **Depends** R (>= 3.5.0) Imports rjags,R2jags,dplyr LazyData Yes LazyDataCompression xz ByteCompile Yes Description High dimensional survival data analysis with Markov Chain Monte Carlo(MCMC). Currently supports frailty data analysis. Allows for Weibull and Exponential distribution. Includes function for interval censored data. License GPL-3 **Encoding** UTF-8 NeedsCompilation no Maintainer Atanu Bhattacharjee <atanustat@gmail.com> RoxygenNote 7.3.1 Author Atanu Bhattacharjee [aut, cre, ctb],

Akash Pawar [aut, ctb]

Repository CRAN

Date/Publication 2024-03-28 16:30:05 UTC

Contents

fraidm	2
fraidpm	3
frailty	4
frairand	5
headnneck	6
hnscc	7

fraidm

Index

```
fraidm
```

Frailty with Discrete Mixture Model

Description

Discrete mixture model with MCMC

Usage

fraidm(m, n, Ins, Del, Time, T.min, chn, iter, data)

Arguments

m	Starting column number form where study variables to be selected.
n	Ending column number till where study variables will get selected.
Ins	Variable name of Institute information.
Del	Variable name containing the event information.
Time	Variable name containing the time information.
T.min	Variable name containing the time of event information.
chn	Number of MCMC chains
iter	Define number of iterations as number.
data	High dimensional data, event information given as (delta=0 if alive, delta=1 if died). If patient is censored then t.min=duration of survival. If patient is died then t.min=0. If patient is died then t=duration of survival. If patient is alive then t=NA.

Details

By given m and n, a total of 3 variables can be selected.

Value

fraidmout - b[1] is the posterior estimate of the regression coefficient for first covariate.

b[2] is the posterior estimate of the regression coefficient for second covariate.

b[3] is the posterior estimate of the regression coefficient for third covariate.

omega[1] and omega[2] are frailty effects.

c[1] and c[2] are regression intercept and coefficients of covariates over mean effect.

fraidpm

References

Bhattacharjee, A. (2020). Bayesian Approaches in Oncology Using R and OpenBUGS. CRC Press. Congdon, P. (2014). Applied bayesian modelling (Vol. 595). John Wiley & Sons.

See Also

fraidpm frairand

Examples

```
##
data(frailty)
fraidm(m=5,n=7,Ins="institute",Del="del",Time="timevar",T.min="time.min",chn=2,iter=6,data=frailty)
##
```

```
fraidpm
```

Frailty with drichlet process mixture

Description

Frailty analysis on high dimensional data by Drichlet process mixture.

Usage

fraidpm(m, n, Ins, Del, Time, T.min, chn, iter, adapt, data)

Arguments

m	Starting column number form where study variables to be selected.
n	Ending column number till where study variables will get selected.
Ins	Variable name of Institute information.
Del	Variable name containing the event information.
Time	Variable name containing the time information.
T.min	Variable name containing the time of event information.
chn	Number of MCMC chains.
iter	Define number of iterations as number.
adapt	Define number of adaptations as number.
data	High dimensional data, event information given as (delta=0 if alive, delta=1 if died). If patient is censored then t.min=duration of survival. If patient is died then t.min=0. If patient is died then t=duration of survival. If patient is alive then t=NA.

Details

By given m and n, a total of 3 variables can be selected.

Value

fraidpmout omeg[i] are frailty effects.

Author(s)

Atanu Bhattacharjee and Akash Pawar

References

Bhattacharjee, A. (2020). Bayesian Approaches in Oncology Using R and OpenBUGS. CRC Press. Congdon, P. (2014). Applied bayesian modelling (Vol. 595). John Wiley & Sons.

See Also

fraidm frairand

Examples

```
##
data(frailty)
fraidpm(m=5,n=7,Ins="institute",Del="del",Time="timevar",T.min="time.min",chn=2,iter=6,
adapt=100,data=frailty)
##
```

frailty

Frailty in high dimensional survival data.

Description

Data set listing institutional wise survival outcomes

Survival observations data for frailty model functions of SurviMChd

Usage

data(frailty)

frairand

Format

A tibble with 7 columns and 272 rows which are :

institute Institute of the sample observations
del Numberic values 0 or 1 containing death/event information
timevar Survival duration
time.min Minimum survival
female Covariate_1, gender variable indicating either a female or not
ph.karno Covariate_2
pat.karno Covariate_3

Examples

data(frailty)

```
frairand
```

Frailty with random effects in high dimensional data with MCMC

Description

Random effects frailty model

Usage

frairand(m, n, Ins, Del, Time, T.min, chn, iter, adapt, data)

Arguments

m	Starting column number form where study variables to be selected.
n	Ending column number till where study variables will get selected.
Ins	Variable name of Institute information.
Del	Variable name containing the event information.
Time	Variable name containing the time information.
T.min	Variable name containing the time of event information.
chn	Numner of MCMC chains.
iter	Define number of iterations as number.
adapt	Define number of adaptations as number.
data	High dimensional data having survival duration, event information and column of time for death cases.

Details

By given m and n, a total of 3 variables can be selected.

Value

frairandout omeg[i] are frailty effects.

Author(s)

Atanu Bhattacharjee and Akash Pawar

References

Tawiah, R., Yau, K. K., McLachlan, G. J., Chambers, S. K., & Ng, S. K. (2019). Multilevel model with random effects for clustered survival data with multiple failure outcomes. *Statistics in medicine*, **38(6)**, 1036-1055.

See Also

fraidm fraidpm

Examples

```
##
data(frailty)
frairand(m=5,n=7,Ins="institute",Del="del",Time="timevar",T.min="time.min",chn=2,iter=6,
    adapt=100,data=frailty)
##
```

headnneck

High dimensional genomic data on head and neck cancer

Description

Head and neck cancer data tibble on head and neck cancer patients for survexpMC and surveeibMC functions.

Usage

data(headnneck)

Format

A tibble with 13 columns which are :

Subjects Patients referred to as Subjects

OS Overall Survival

Death Death status for the particular subjects

randgrp1 Arm of group assigned to subjects

gender1 Demographic information of Subjects, i.e. Gender

hnscc

Stratum1 Stratum from where the sample is drawn
prevoi Categorical observation
Covariate_1 Continuous observations
Covariate_2 Continuous observations
Covariate_3 Continuous observations
Covariate_4 Continuous observations
Covariate_5 Continuous observations

Covariate_6 Continuous observations

Examples

data(headnneck)

hnscc

hnscc Head and neck cancer data

Description

High dimensional head and neck cancer gene expression data

Usage

data(hnscc)

Format

A dataframe with 565 rows and 104 variables

ID ID of subjects

leftcensoring Initial censoring time

death Survival event

os Duration of overall survival

PFS Duration of progression free survival

Prog Progression event

GJB1,...,HMGCS2 High dimensional covariates

Examples

data(hnscc)

mcsurv

Description

Observations made tibble on the head and neck cancer patients. Data for survMC function from SurviMChd package.

Usage

data(mcsurv)

Format

A tibble with 15 columns which are :

OS Overall Survival

Death Death status

- t Time at which event occurred
- x1 Variable measured on continuous scale
- x2 Variable measured on discrete scale
- x3 Variable measured on continuous scale
- x4 Variable measured on discrete scale
- x5 Variable measured on continuous scale

Examples

data(mcsurv)

survexpMC

Exponential survival analysis with MCMC

Description

Survival analysis with exponential distribution by MCMC

Usage

survexpMC(m1, n1, m2, n2, chains, iter, data)

survMC

Arguments

m1	Starting column number from where variables of high dimensional data will be selected.
n1	Ending column number till where variables of high dimensional data will get selected.
m2	Starting column number from where demographic observations starts
n2	Ending column number of the demographic observations
chains	Number of MCMC chains
iter	Number of MCMC iterations
data	High dimensional data having survival duration as (OS), event information as Death (1 if died, or 0 if alive).

Value

survexpMCout A data set listing estimated posterior means and deviances

Author(s)

Atanu Bhattacharjee and Akash Pawar

References

Kumar, M., Sonker, P. K., Saroj, A., Jain, A., Bhattacharjee, A., & Saroj, R. K. (2020). Parametric survival analysis using R: Illustration with lung cancer data. *Cancer Reports*, **3**(4), e1210.

See Also

survweibMC

Examples

```
##
data(headnneck)
survexpMC(m1=8,n1=12,m2=4,n2=7,chains=2,iter=10,data=headnneck)
##
```

survMC	
--------	--

Survival analysis using Cox Proportional Hazards with MCMC.

Description

Performs survival analysis using Cox Proportional Hazards with MCMC.

Usage

survMC(m, n, Time, Event, chains, adapt, iter, data)

Arguments

m	Starting column number from where variables of high dimensional data will get selected.
n	Ending column number till where variables of high dimensional data will get selected.
Time	Variable/Column name containing the information on duration of survival
Event	Variable/Column name containing the information of survival event
chains	Number of chains to perform
adapt	Number of adaptations to perform
iter	Number of iterations to perform
data	High dimensional data having survival duration and event.

Details

The survival columns of the data should be arranged as follows - Death Death status=1 if died otherwise 0. OS Survival duration measured as 'OS' t.len Number of censored times

Value

Data set containing Posterior HR estimates, SD and quantiles.

Author(s)

Atanu Bhattacharjee and Akash Pawar

References

Bhattacharjee, A. (2020). Bayesian Approaches in Oncology Using R and OpenBUGS. CRC Press.

See Also

survintMC

Examples

```
##
data(mcsurv)
survMC(m=4,n=8,Time="OS",Event="Death",chains=2,adapt=100,iter=1000,data=mcsurv)
##
```

survMCmulti

Description

Performs survival analysis using Cox Proportional Hazards with MCMC with an option to input select multiple variables.

Usage

```
survMCmulti(
  var1 = NULL,
  var2 = NULL,
  var3 = NULL,
  var4 = NULL,
  var5 = NULL,
  Time,
  Event,
  chains,
  adapt,
  iter,
  data
)
```

Arguments

var1	Variable name (first one)
var2	Variable name (second one)
var3	Variable name (third one)
var4	Variable name (fourth one)
var5	Variable name (fifth one)
Time	Variable/Column name containing the information on duration of survival
Event	Variable/Column name containing the information of survival event
chains	Number of chains to perform
adapt	Number of chains to perform
iter	Number of iterations to perform
data	High dimensional data having survival duration and event.

Details

The survival columns of the data should be arranged as follows - Death Death status=1 if died otherwise 0. OS Survival duration measured as 'OS'

Value

Data set containing Posterior HR estimates, SD, quantiles and meandeviance.

Author(s)

Atanu Bhattacharjee and Akash Pawar

References

Bhattacharjee, A. (2020). Bayesian Approaches in Oncology Using R and OpenBUGS. CRC Press.

See Also

survintMC

Examples

```
##
data(mcsurv)
survMCmulti(var1="x1",var2=NULL,var3="x3",var4="x2",
    var5="x4",Time="0S",Event="Death",chains=2,adapt=100,iter=1000,data=mcsurv)
##
```

survweibMC	Weibull survival	analysis with MCMC
------------	------------------	--------------------

Description

Survival analysis with weibull distribution by MCMC

Usage

survweibMC(m1, n1, m2, n2, chains, iter, data)

Arguments

m1	Starting column number from where variables of high dimensional data will be selected.
n1	Ending column number till where variables of high dimensional data will get selected.
m2	Starting column number from where demographic observations starts
n2	Ending column number of the demographic observations
chains	Number of MCMC chains
iter	Number of MCMC iterations
data	High dimensional data having survival duration as (OS), event information as Death (1 if died, or 0 if alive).

survweibMC

Value

beta1[1] Posterior estimates of regression coefficients and deviance

Author(s)

Atanu Bhattacharjee and Akash Pawar

References

Kumar, M., Sonker, P. K., Saroj, A., Jain, A., Bhattacharjee, A., & Saroj, R. K. (2020). Parametric survival analysis using R: Illustration with lung cancer data. *Cancer Reports*, **3**(4), e1210.

Khan, S. A. (2018). Exponentiated Weibull regression for time-to-event data. *Lifetime data analysis*, **24(2)**, 328-354.

See Also

survexpMC

Examples

```
##
data(headnneck)
survweibMC(m1=8,n1=12,m2=4,n2=7,chains=2,iter=10,data=headnneck)
##
```

Index

* datasets frailty, 4 headnneck, 6 hnscc, 7 mcsurv, 8 fraidm, 2 fraidpm, 3 frailty, 4 frairand, 5 headnneck, 6 hnscc, 7 mcsurv, 8 survexpMC, 8 survMC, 9 survMCmulti, 11

survweibMC, 12