Package 'TrialSize'

November 5, 2024

Title R Functions for Chapter 3,4,6,7,9,10,11,12,14,15 of Sample Size Calculation in Clinical Research

Version 1.4.1

Date 2020-07-01

Author Ed Zhang; Vicky Qian Wu; Shein-Chung Chow; Harry G.Zhang (Quality check) <ed.zhang.jr@gmail.com>

Maintainer Vicky Qian Wu <wuqian7@gmail.com>

Description Functions and Examples in Sample Size Calculation in Clinical Research.

License GPL (>= 2.15.1)

LazyLoad yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-11-05 05:38:51 UTC

Contents

rialSize-package	3
B.withDescalation	4
B.withoutDescalation	5
BE	6
NOVA.Repeat.Measure	7
^C arry.Over	8
Cochran.Armitage.Trend	8
Cox.Equality	9
Cox.Equivalence	10
Cox.NIS	11
CrossOver.ISV.Equality	12
SrossOver.ISV.Equivalence	12
YrossOver.ISV.NIS	13
Dose.Min.Effect	14
Dose.Response.binary	15

Dose.Response.Linear	. 16
Dose.Response.time.to.event	
gof.Pearson	. 18
gof.Pearson.twoway	
IBE	
InterSV.Equality	
InterSV.NIS	
ISCV.Equality	
ISCV.Equivalence	
ISCV.NIS	
ISV.Equality	
ISV.Equivalence	
ISV.NIS	
McNemar.Test	
MeanWilliamsDesign.Equality	
MeanWilliamsDesign.Equivalence	
MeanWilliamsDesign.NIS	
Multiple.Testing	
Nonpara.Independ	
Nonpara.One.Sample	
Nonpara.Two.Sample	. 31
OneSampleMean.Equality	. 32
OneSampleMean.Equivalence	
OneSampleMean.NIS	. 34
OneSampleProportion.Equality	
OneSampleProportion.Equivalence	
OneSampleProportion.NIS	
OneSide.fixEffect	. 37
OneSide.varyEffect	
OneWayANOVA.pairwise	
OneWayANOVA.PairwiseComparison	
PBE	
Propensity.Score.nostrata	
Propensity.Score.strata	
QOL	
QT.crossover	
QT.parallel	. 45
QT.PK.crossover	
QT.PK.parallel	
RelativeRisk.Equality	
RelativeRisk.Equivalence	
RelativeRisk.NIS	
RelativeRiskCrossOver.Equality	
RelativeRiskCrossOver.Equivalence	. 51
RelativeRiskCrossOver.NIS	. 51
Sensitivity.Index	. 52
Stuart.Maxwell.Test	. 53
TwoSampleCrossOver.Equality	. 53

TwoSampleCrossOver.Equivalence	54
TwoSampleCrossOver.NIS	55
TwoSampleMean.Equality	55
TwoSampleMean.Equivalence	56
TwoSampleMean.NIS	57
TwoSampleProportion.Equality	58
TwoSampleProportion.Equivalence	59
TwoSampleProportion.NIS	60
TwoSampleSeqCrossOver.Equality	61
TwoSampleSeqCrossOver.Equivalence	61
	62
TwoSampleSurvival.Conditional	63
TwoSampleSurvival.Equality	64
TwoSampleSurvival.Equivalence	65
	66
TwoSide.fixEffect	67
	68
Vaccine.CEM	69
Vaccine.ELDI	70
Vaccine.RDI	71
Vitro.BE	71
WilliamsDesign.Equality	72
WilliamsDesign.Equivalence	73
WilliamsDesign.NIS	74
	75

TrialSize-package Sample Size calculation in Clinical Research

Description

Index

More than 80 functions in this package are widely used to calculate sample size in clinical trial research studies.

This package covers the functions in Chapter 3,4,6,7,9,10,11,12,14,15 of the reference book.

Details

Package:	TrialSize
Type:	Package
Version:	1.3
Date:	2013-05-31
License:	GPL (>=2
LazyLoad:	yes

3

Author(s)

author: Ed Zhang <ed.zhang.jr@gmail.com> Vicky Qian Wu <wuqian7@gmail.com> Harry G. Zhang (Quality check) Shein-Chung Chow maintainer: Vicky Qian Wu <wuqian7@gmail.com>

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2008

AB.withDescalation A + B Escalation Design with Dose De-escalation

Description

The general A+B designs with dose de-escalation. There are A patients at dose level i.

(1) If less than C/A patients have dose limiting toxicity (DLTs), then the dose is escalated to the next dose level i+1.

(2)If more than D/A (D \geq C) patients have DLTs, then it will come back to dose i-1.If more than A patients have already been treated at dose level i-1, it will stop here and dose i-1 is the MTD. If there are only A patients treated at dose i-1, then Bmore patients are treated at this dose level i-1. This is dose de-escalation. The de-escalation may continue to the next dose level i-2 and so on if necessary.

(3)If no less than C/A but no more than D/A patients have DLTs, B more patients are treated at this dose level i.

(4)If no more than E (where $E \ge D$) of the total A+B patients have DLT, then the dose is escalated. (5)If more than E of the total of A+B patients have DLT, and the similar procedure in (2) will be applied.

Usage

```
AB.withDescalation(A, B, C, D, E, DLT)
```

Arguments

А	number of patients for the start A
В	number of patients for the continuous B
С	number of patients for the first cut off C
D	number of patients for the second cut off $D,D\geq C$
E	number of patients for the third cut off D, $E \geq D$
DLT	dose limiting toxicity rate for each dose level.

4

Note

For this design, the MTD is the dose level at which no more than E/(A+B) patients experience DLTs, and more than D/A or (no less than C/A and no more than D/A) if more than E/(A+B) patients treated with the next higher dose have DLTs.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
DLT=c(0.01,0.014,0.025,0.056,0.177,0.594,0.963)
Example.11.6.2<-AB.withDescalation(A=3,B=3,C=1,D=1,E=1,DLT=DLT)
Example.11.6.2
# Example.11.6.2[7]=0.2
```

AB.withoutDescalation A + B Escalation Design without Dose De-escalation

Description

The general A+B designs without dose de-escalation. There are A patients at dose level i.

(1) If less than C/A patients have dose limiting toxicity (DLTs), then the dose is escalated to the next dose level i+1.

(2)If more than D/A (D \geq C) patients have DLTs, then the previous dose i-1 will be considered the maximum tolerable dose (MTD).

(3)If no less than C/A but no more than D/A patients have DLTs, B more patients are treated at this dose level i.

(4)If no more than E (where $E \ge D$) of the total A+B patients have DLT, then the dose is escalated. (5)If more than E of the total of A+B patients have DLT, then the previous dose i-1 will be considered the MTD.

Usage

AB.withoutDescalation(A, B, C, D, E, DLT)

Arguments

A	number of patients for the start A
В	number of patients for the continuous B
С	number of patients for the first cut off C
D	number of patients for the second cut off $D,D\geq C$
E	number of patients for the third cut off $D,E\geq D$
DLT	dose limiting toxicity rate for each dose level.

6

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
DLT=c(0.01,0.014,0.025,0.056,0.177,0.594,0.963)
Example.11.6.1<-AB.withoutDescalation(A=3,B=3,C=1,D=1,E=1,DLT=DLT)
Example.11.6.1
# Example.11.6.1[1]=3.1</pre>
```

ABE

Average Bioequivalence

Description

The most commonly used design for ABE is a standard two-sequence and two-period crossover design. Ft is the fixed effect of the test formulation and Fr is the fixed effect of the reference formulation.

Ho: Ft-Fr $\leq \delta_L$ or Ft-Fr $\leq \delta_U$ Ha: $\delta_L <$ Ft-Fr $< \delta_U$

Usage

ABE(alpha, beta, sigma1.1, delta, epsilon)

Arguments

alpha	significance level
beta	power = 1- beta
sigma1.1	$\sigma_{a.b}$ with a=1 and b=1.
delta	delta is the bioequivalence limit. here delta=0.223
epsilon	epsilon=Ft-Fr

Value

$$\sigma_{a,b}^2 = \sigma_D^2 + a * \sigma_{WT}^2 + b * \sigma_{WR}^2$$

References

ANOVA.Repeat.Measure

Examples

```
Example.10.2<-ABE(0.05,0.2,0.4,0.223,0.05)
Example.10.2
# 21
```

ANOVA.Repeat.Measure ANOVA with Repeat Measures

Description

The study has multiple assessments in a parallel-group clinical trial. α_i is the fixed effect for the ith treatment $\sum \alpha_i = 0$.

Ho: $\alpha_i = \alpha_{i'}$

Ha: not equal

Usage

ANOVA.Repeat.Measure(alpha, beta, sigma, delta, m)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	sigma ² is the sum of the variance components.
delta	a clinically meaningful difference
m	Bonferroni adjustment for alpha, totally m pairs comparison.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.15.3.4<-ANOVA.Repeat.Measure(0.05,0.2,1.25,1.5,3)
Example.15.3.4
# 15
```

Carry.Over

Description

2 by 2 crossover design. Test the treatment-by-period interaction (carry-over effect)

H0: the difference of the two sequence carry-over effects is equal to 0

Ha: not equal to 0

The test is finding whether there is a difference between the carry-over effect for sequence AB and BA.

Usage

Carry.Over(alpha, beta, sigma1, sigma2, gamma)

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	standard deviation of sequence AB
sigma2	standard deviation of sequence BA
gamma	the difference of carry-over effect between sequence AB and BA

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.6.5.2<-Carry.Over(0.025,0.2,2.3,2.4,0.89) Example.6.5.2 # 110

Cochran.Armitage.Trend

Cochran-Armitage's Test for Trend

Description

H0: p0=p1=p2=...=pK

Ha: p0 <= p1 <= p2 <=...<= pK with p0 < pK

Cox.Equality

Usage

Cochran.Armitage.Trend(alpha, beta, pi, di, ni, delta)

Arguments

alpha	significance level
beta	power = 1-beta
pi	pi is the response rate in ith group.
di	di is the dose level
ni	ni is the sample size for group i
delta	delta is the clinically meaningful minimal difference

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

pi=c(0.1,0.3,0.5,0.7); di=c(1,2,3,4); ni=c(10,10,10,10);

Example.11.5<-Cochran.Armitage.Trend(alpha=0.05,beta=0.2,pi=pi,di=di,ni=ni,delta=1)
Example.11.5
7.5 for one group. Total 28-32.</pre>

Cox.Equality Test for equality in Cox PH model.

Description

b is the log hazard ratio for treatment, b0 is the log hazard ratio for the controls

H0: b=b0

Ha: not equal to b0

The test is finding whether there is a difference between the hazard rates of the treatment and control.

Usage

Cox.Equality(alpha, beta, loghr, p1,d)

Arguments

alpha	significance level
beta	power = 1-beta
loghr	log hazard ratio=log(lamda2/lamda1)=b
p1	the proportion of patients in treatment 1 group
d	the probability of observing an event

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.7.3.4<-Cox.Equality(0.05,0.2,log(2),0.5,0.8) Example.7.3.4

Cox.Equivalence Test for Equivalence in Cox PH model.

Description

b is the log hazard ratio for treatment, delta is the margin Ho: |b| $\geq \delta$ Ha: |b| < δ

Usage

Cox.Equivalence(alpha, beta, loghr, p1, d, delta)

Arguments

alpha	significance level
beta	power = 1-beta
loghr	log hazard ratio=log(lamda2/lamda1)=b
p1	the proportion of patients in treatment 1 group
d	the probability of observing an event
delta	delta is the true difference of log hazard rates between control group lamda1 and a test drug group lamda2

References

Cox.NIS

Examples

Example.7.3.4<-Cox.Equivalence(0.05,0.2,log(2),0.5,0.8,0.5) Example.7.3.4

Cox.NIS

Test for non-inferiority/superiority in Cox PH model.

Description

b is the log hazard ratio for treatment, δ is the margin H0: b $\leq \delta$ Ha: b > δ

Usage

Cox.NIS(alpha, beta, loghr, p1, d, delta)

Arguments

alpha	significance level
beta	power = 1-beta
loghr	log hazard ratio=log(lamda2/lamda1)=b
p1	the proportion of patients in treatment 1 group
d	the probability of observing an event
delta	margin is the true difference of log hazard rates between control group lamda1 and a test drug group lamda2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.7.3.4<-Cox.NIS(0.05,0.2,log(2),0.5,0.8,0.5)
Example.7.3.4
```

CrossOver.ISV.Equality

Test for Equality of Intra-Subject Variabilities in Crossover Design

Description

H0: within-subject variance of treatment T is equal to within-subject variance of treatment R

Ha: not equal

The test is finding whether two drug products have the same intra-subject variability in crossover design

Usage

```
CrossOver.ISV.Equality(alpha, beta, sigma1, sigma2, m)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	within-subject variance of treatment 1
sigma2	within-subject variance of treatment 2
m	for each subject, there are m replicates.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

CrossOver.ISV.Equivalence

Test for Similarity of Intra-Subject Variabilities in Crossover Design

Description

the ratio = within-subject variance of treatment T / within-subject variance of treatment R H0: the ratio $\geq \delta$ or the ratio $\leq \frac{1}{\delta}$ Ha: $\frac{1}{\delta} <$ the ratio $< \delta$

Usage

```
CrossOver.ISV.Equivalence(alpha, beta, sigma1, sigma2, m, margin)
```

CrossOver.ISV.NIS

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	within-subject variance of treatment 1
sigma2	within-subject variance of treatment 2
m	for each subject, there are m replicates.
margin	margin= δ , the true ratio of sigma1/sigma2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

CrossOver.ISV.NIS Test for Non-Inferiority/Superiority of Intra-Subject Variabilitie in Crossover Design

Description

H0: the ratio that within-subject variance of treatment T / within-subject variance of treatment R $\geq \delta$

Ha: the ratio $< \delta$

if $\delta < 1$, the rejection of Null Hypothesis indicates the superiority of the test drug over the reference for the intra-subject variability;

if $\delta > 1$, the rejection of the null hypothesis implies the non-inferiority of the test drug against the reference for the intra-subject variability; .

Usage

CrossOver.ISV.NIS(alpha, beta, sigma1, sigma2, m, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	within-subject variance of treatment 1
sigma2	within-subject variance of treatment 2
m	for each subject, there are m replicates.
margin	margin= δ , the true ratio of sigma1/sigma2

References

Examples

```
Example.9.1.1<-CrossOver.ISV.NIS(0.05,0.2,0.3<sup>2</sup>,0.45<sup>2</sup>,2,1.1)
Example.9.1.1
```

Dose.Min.Effect Williams' Test for Minimum effective dose (MED)

Description

Ho: $\mu_1 = \mu_2 = ... = \mu_K$ Ha: $\mu_1 = \mu_2 = ... = \mu_{i-1} < \mu_i < \mu_{i+1} < \mu_K$

Usage

Dose.Min.Effect(alpha, beta, qt, sigma, delta)

Arguments

alpha	significance level
beta	power = 1-beta
qt	the critical value tk(alpha)
sigma	standard deviation
delta	δ is the clinically meaningful minimal difference

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.11.4.1<-Dose.Min.Effect(0.05,0.2,1.75,0.22,0.11)
Example.11.4.1
#54
```

14

Dose.Response.binary Linear Contrast Test for Binary Dose Response Study

Description

pi is the proportion of response in the ith group.

Ho: p1=p2=...=pk

Ha: L(p)= $\sum ci \times pi = \epsilon$, not equal to 0

Usage

Dose.Response.binary(alpha, beta, pi, ci, fi)

Arguments

alpha	significance level
beta	power = 1-beta
pi	pi is the proportion of response in the ith group.
ci	a linear contrast coefficients ci with $\sum ci = 0$.
fi	fi=ni/n is the sample size fraction for the ith group

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

pi=c(0.05,0.12,0.14,0.16); ci=c(-6,1,2,3);

Example.11.2<-Dose.Response.binary(alpha=0.05,beta=0.2,pi=pi,ci=ci,fi=1/4)
Example.11.2
#382</pre>

Description

For a multi-arm dose response design, we use a linear contrast coefficients ci with $\sum ci = 0$.

```
H0: L(mu)=\sum ci \times \mu_i = 0
```

Ha: L(mu)= $\sum ci \times \mu_i = \epsilon$, not equal to 0

Usage

Dose.Response.Linear(alpha, beta, sigma, mui, ci, fi)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation for the population
mui	mui is the population mean for group i.
ci	a linear contrast coefficients ci with $\sum ci = 0$.
fi	fi=ni/n is the sample size fraction for the ith group

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
mui=c(0.05,0.12,0.14,0.16);
ci=c(-6,1,2,3);
Example.11.1<-Dose.Response.Linear(alpha=0.05,beta=0.2,sigma=0.22,mui=mui,ci=ci,fi=1/4)
Example.11.1
#178
```

Dose.Response.time.to.event

Linear Contrast Test for Time-to-Event Endpoint in dose response study

Description

Under the exponential survival model, let lambdai be the proportion hazard rate for group i.

 $\sum ci = 0.$ Ho: $L(\mu) = \sum ci \times \lambda_i = 0$ Ha: $L(p) = \sum ci \times \lambda_i = \epsilon > 0$

Usage

Dose.Response.time.to.event(alpha, beta, T0, T, Ti, ci, fi)

Arguments

alpha	significance level
beta	power = 1-beta
ТØ	T0 is the accrual time period
Т	T is the total trial duration
Ti	$\lambda_i = log(2)/Ti,$ Ti is the estimated median time for each group.
ci	a linear contrast coefficients ci with sum(ci)=0.
fi	fi=ni/n is the sample size fraction for the ith group

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Ti=c(14,20,22,24);
ci=c(-6,1,2,3);
Example.11.3.1<-Dose.Response.time.to.event(alpha=0.05,beta=0.2,T0=9,T=16,Ti=Ti,ci=ci,fi=1/4)
Example.11.3.1
#412
fi1=c(1/9,2/9,2/9,2/9);
Example.11.3.2<</pre>
```

```
fi2=c(1/2.919,0.711/2.919,0.634/2.919,0.574/2.919);
Example.11.3.3<-Dose.Response.time.to.event(alpha=0.05,beta=0.2,T0=9,T=16,Ti=Ti,ci=ci,fi=fi2)
Example.11.3.3
#349
```

gof.Pearson

Test Goodness of Fit by Pearson's Test

Description

Test the goodness of fit and the primary study endpoint is non-binary categorical response. pk=nk/n, nk is the frequency count of the subjects with response value k. pk,0 is a reference value.

H0: pk=pk,0 for all k

Ha: not equal

Usage

```
gof.Pearson(alpha, beta, pk, pk0, r)
```

Arguments

alpha	significance level
beta	power = 1-beta
pk	pk is the proportion of each subject in treatment group.
pk0	pk0 is a reference value.
r	degree of freedom=r-1

Details

(*) is $\chi^2_{r-1}(\chi^2_{\alpha,r-1}|noncen) = \beta$

References

gof.Pearson.twoway Test Goodness of Fit by Pearson's Test for two-way table

Description

H0: pk=pk,0 for all k Ha: not equal

Usage

gof.Pearson.twoway(alpha, beta, trt, ctl, r, c)

Arguments

alpha	significance level
beta	power = 1-beta
trt	proportion of each subject in treatment group
ctl	proportion of each subject in control group
r	number of rows in the two-way table
с	number of column in the two-way table

Details

(*) is $\chi^{2}_{r-1}(\chi^{2}_{\alpha,r-1}|noncen) = \beta$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

IBE

Individual Bioequivalence

Description

Consider 2 by 2 crossover design. $\gamma = \delta^2 + \sigma_D^2 + \sigma_{WT}^2 - \sigma_{WR}^2 - \theta_{IBE} * max(\sigma_0^2, \sigma_{WR}^2)$ Ho: $\gamma \ge 0$ Ha: $\gamma < 0$

Usage

IBE(alpha, beta, delta, sigmaD, sigmaWT, sigmaWR, a, b, thetaIBE)

Arguments

alpha	significance level
beta	power = 1-beta
delta	delta is the mean difference
sigmaD	sigmaD^2=sigmaBT^2+sigmaBR^2-2*rho*sigmaBT*sigmaBR, sigmaBT^2 is the between-subjects variance in test formulation, sigmaBR^2 is the between- subjects variance in reference formulation
sigmaWT	sigmaWT ² is the within-subjects variance in test formulation
sigmaWR	sigmaWR^2 is the within-subjects variance in reference formulation
а	Sigma(a,b)=sigmaD^2+a*sigmaWT^2+b*sigmaWR^2 a=0.5 here
b	b=0.5 here
thetaIBE	thetaIBE=2.5

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.10.4<-IBE(0.05, 0.2, 0, 0.2,0.3,0.3,0.5,0.5,2.5) Example.10.4

n=22 IBE reach 0

InterSV.Equality Test for Equality of Inter-Subject Variabilities

Description

H0: between-subject variance of treatment T is equal to between-subject variance of treatment R

Ha: not equal

The test is finding whether two drug products have the same inter-subject variability.

Usage

InterSV.Equality(alpha, beta, vbt, vwt, vbr, vwr, m)

InterSV.NIS

Arguments

alpha	significance level
beta	power = 1-beta
vbt	between-subject variance of treatment T
vwt	within-subject variance of treatment T
vbr	between-subject variance of treatment R
vwr	within-subject variance of treatment R
m	for each subject, there are m replicates.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

InterSV	NTS
THEFAN	. NITO

Test for Equality of Inter-Subject Variabilities

Description

H0: between-subject variance of treatment T is equal to between-subject variance of treatment R Ha: not equal

The test is finding whether two drug products have the same inter-subject variability.

Usage

```
InterSV.NIS(alpha, beta, vbt, vwt, vbr, vwr, m,margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
vbt	between-subject variance of treatment T
vwt	within-subject variance of treatment T
vbr	between-subject variance of treatment R
vwr	within-subject variance of treatment R
m	for each subject, there are m replicates.
margin	margin=delta, the true ratio of sigma1/sigma2

References

ISCV.Equality

Description

H0: CVr = CVt

Ha: not equal

The test is finding whether two drug products have the same intra-subject CVs

Usage

```
ISCV.Equality(alpha, beta, CVt, CVr, m)
```

Arguments

alpha	significance level
beta	power = 1-beta
CVt	Coefficient Of Variation for treatment T
CVr	Coefficient Of Variation for treatment R
m	for each subject, there are m replicates.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

ISCV.Equivalence Test for Equivalence of Intra-Subject CVs

Description

H0: $|CVr - CVt| \ge \delta$ Ha: $|CVr - CVt| < \delta$

Usage

ISCV.Equivalence(alpha, beta, CVt, CVr, m, margin)

ISCV.NIS

Arguments

alpha	significance level
beta	power = 1-beta
CVt	Coefficient Of Variation for treatment T
CVr	Coefficient Of Variation for treatment R
m	for each subject, there are m replicates.
margin	margin=delta,

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

ISCV.NIS Test for Non-Inferiority/Superiority of Intra-Subject CVs	.NIS Test f	r Non-Inferiority/Superiority o	of Intra-Subject CVs
--	-------------	---------------------------------	----------------------

Description

H0: CVr - CVt < δ

Ha: CVr - CVt $\geq \delta$

if $\delta > 0$, the rejection of Null Hypothesis indicates the superiority of the test drug over the reference; if $\delta < 0$, the rejection of the null hypothesis implies the non-inferiority of the test drug against the reference.

Usage

ISCV.NIS(alpha, beta, CVt, CVr, m, margin)

Arguments

alpha	significance level
beta	power = 1-beta
CVt	Coefficient Of Variation for treatment T
CVr	Coefficient Of Variation for treatment R
m	for each subject, there are m replicates.
margin	margin=delta,

References

Examples

```
Example.9.2.1<-ISCV.NIS(0.05,0.2,0.7,0.5,2,0.1)
Example.9.2.1
```

ISV.Equality Test for

Test for Equality of Intra-Subject Variabilities

Description

H0: within-subject variance of treatment T is equal to within-subject variance of treatment R Ha: not equal

The test is finding whether two drug products have the same intra-subject variability.

Usage

ISV.Equality(alpha, beta, sigma1, sigma2, m)

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	within-subject variance of treatment 1
sigma2	within-subject variance of treatment 2
m	for each subject, there are m replicates.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

ISV.Equivalence Test for Similarity of Intra-Subject Variabilities

Description

the ratio = within-subject variance of treatment T / within-subject variance of treatment R Ho: the ratio $\geq \delta$ or the ratio $\leq \frac{1}{\delta}$ Ha: $\leq \frac{1}{\delta} <$ the ratio $< \delta$

Usage

```
ISV.Equivalence(alpha, beta, sigma1, sigma2, m, margin)
```

24

ISV.NIS

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	within-subject variance of treatment 1
sigma2	within-subject variance of treatment 2
m	for each subject, there are m replicates.
margin	margin=delta, the true ratio of sigma1/sigma2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

ISV.NIS Test for Non-Inferiority/Superiority of Intra-Subject Variabilities	
---	--

Description

the ratio = within-subject variance of treatment T / within-subject variance of treatment R

H0: the ratio $\geq \delta$

Ha: the ratio $< \delta$

if $\delta < 1$, the rejection of Null Hypothesis indicates the superiority of the test drug over the reference for the intra-subject variability;

if $\delta > 1$, the rejection of the null hypothesis implies the non-inferiority of the test drug against the reference for the intra-subject variability; .

Usage

ISV.NIS(alpha, beta, sigma1, sigma2, m, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma1	within-subject variance of treatment 1
sigma2	within-subject variance of treatment 2
m	for each subject, there are m replicates.
margin	margin=delta, the true ratio of sigma1/sigma2

References

Examples

```
Example.9.1.1<-ISV.NIS(0.05,0.2,0.3<sup>2</sup>,0.45<sup>2</sup>,3,1.1)
Example.9.1.1
```

McNemar.Test McNemar Test in 2 by 2 table

Description

2 by 2 table. Test either a shift from 0 to 1 or a shift from 1 to 0 before treatment and after treatment.

 $p_{1+} = P_{10} + P_{11}, p_{+1} = P_{01} + P_{11}$

Ho: $p_{1+} = p_{+1}$

Ha: not equal

The test is finding whether there is a categorical shift after treatment.

Usage

McNemar.Test(alpha, beta, psai, paid)

Arguments

alpha	significance level
beta	power = 1-beta
psai	the ratio of p01/p10
paid	the sum p10+p01

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.6.4.3<-McNemar.Test(0.05,0.2,0.2/0.5,.7)
Example.6.4.3
# 59
```

26

MeanWilliamsDesign.Equality

Test for Equality in Multiple-Sample William Design

Description

Compare more than two treatment under a crossover design.

H0: margin is equal to 0 Ha: margin is not equal to 0

The test is finding whether there is a difference between treatment i and treatment j

Usage

```
MeanWilliamsDesign.Equality(alpha, beta, sigma, k, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation
k	Total k treatments in the design
margin	$margin = \mu_i - \mu_j$ the difference between the true mean response of group i μ_i and group j μ_j

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.3.5.4<-MeanWilliamsDesign.Equality(0.025,0.2,0.1,6,0.05) Example.3.5.4 # 6 Example.3.5.4<-MeanWilliamsDesign.Equality(0.025,0.2,0.1,6,-0.05) Example.3.5.4 # 6 Example.3.5.4<-MeanWilliamsDesign.Equality(0.025,0.2,0.1,6,-0.1) Example.3.5.4 # 2 MeanWilliamsDesign.Equivalence

Test for Equivalence in Multiple-Sample William Design

Description

Compare more than two treatment under a crossover design.

H0: $|margin| \ge \delta$ Ha: $|margin| < \delta$

This test is whether the test drug is equivalent to the control in average if the null hypothesis is rejected at significant level alpha

Usage

```
MeanWilliamsDesign.Equivalence(alpha, beta, sigma, k, delta, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation
k	Total k treatments in the design
delta	the superiority or non-inferiority margin
margin	$margin = \mu_i - \mu_j$ the difference between the true mean response of group i μ_i and group j μ_j

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

MeanWilliamsDesign.NIS

Test for Non-Inferiority/Superiority in Multiple-Sample William Design

Description

Compare more than two treatment under a crossover design.

H0: margin $\leq \delta$ Ha: margin > δ

if $\delta > 0$, the rejection of Null Hypothesis indicates the superiority of the test over the control;

if $\delta < 0$, the rejection of the null hypothesis implies the non-inferiority of the test against the control.

Multiple.Testing

Usage

MeanWilliamsDesign.NIS(alpha, beta, sigma, k, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation
k	Total k treatments in the design
delta	the superiority or non-inferiority margin
margin	$margin=\mu_i-\mu_j$ the difference between the true mean response of group i μ_i and group j μ_j

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Multiple.Testing Multiple Testing procedures

Description

Ho: $\mu_{1j} - \mu_{2j} = 0$ Ha: $\mu_{1j} - \mu_{2j} > 0$

Usage

Multiple.Testing(s1, s2, m, p, D, delta, BCS, pho, K, alpha, beta)

Arguments

s1	We use bisection method to find the sample size, which let the equation $h(n)=0$. Here s1 and s2 are the initial value, $0 < s1 < s2$. $h(s1)$ should be smaller than 0.
s2	s2 is also the initial value, which is larger than s1 and $h(s2)$ should be larger than 0.
m	m is the total number of multiple tests
р	p=n1/n. n1 is the sample size for group 1, n2 is the sample size for group 2, $n=n1+n2$.
D	D is the number of predictive genes.
delta	δ_j is the fix effect size among the predictive genes. We assume $\delta_j = delta, j = 1,, D$ and $\delta_j = 0, j = D + 1,, m$.
BCS	BCS means block compound symmetry, which is the length of each blocks. If we only have one block, BCS=m, which is refer to compound symmetry(CS).

pho	pho is the correlation parameter. If j and j' in the same block, $\rho_{jj'} = pho$; otherwise $\rho_{jj'} = 0$.
К	K is the number of replicates for the simulation.
alpha	here alpha is the adjusted Familywise error rate (FWER)
beta	here power is a global power. power=1-beta

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Nonpara. Independ Test for independence for nonparametric study

Description

Ho: $P(x \le a \text{ and } y \le b) = P(x \le a)P(y \le b)$ for all a and b. Ha: not equal

Usage

Nonpara.Independ(alpha, beta, p1, p2)

Arguments

alpha	significance level
beta	power = 1-beta
p1	p1 = P((x1 - x2)(y1 - y2) > 0)
p2	p2 = P((x1 - x2)(y1 - y2)(x1 - x3)(y1 - y3) > 0)

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.14.4<-Nonpara.Independ(0.05,0.2,0.6,0.7)
Example.14.4
# 135
```

Nonpara.One.Sample One Sample Location problem in Nonparametric

Description

Ho: theta=0

Ha: theta is not equal to 0.

Usage

Nonpara.One.Sample(alpha, beta, p2, p3, p4)

Arguments

alpha	significance level
beta	power = 1-beta
p2	$p2 = P(z_i \ge z_j , z_i \ge 0)$
р3	$p3 = P(z_i \ge z_{j1} , z_i \ge z_{j2} , z_i \ge 0)$
p4	$p4 = P(z_{j1} \ge z_i \ge z_{j2} , z_{j1} \ge 0, z_i \ge 0)$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.14.2<-Nonpara.One.Sample(0.05,0.2,0.3,0.4,0.05)
Example.14.2
# 383
```

Nonpara. Two. Sample Two sample location problem for Nonparametric

Description

Ho: theta=0;

Ha: theta is not equal to 0.

Usage

Nonpara.Two.Sample(alpha, beta, k, p1, p2, p3)

Arguments

alpha	significance level
beta	power = 1-beta
k	k=n1/n2
p1	$p1 = P(y_i \ge x_j)$
p2	$p2 = P(y_i \ge x_{j1} \text{ and } y_i \ge x_{j2})$
р3	$p3 = P(y_{i1} \ge x_j \text{ and } y_{i2} \ge x_j)$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.14.3<-Nonpara.Two.Sample(0.05,0.2,1,0.7,0.8,0.8)
Example.14.3
#54
```

```
OneSampleMean.Equality
```

One Sample Mean Test for Equality

Description

H0: margin is equal to 0 Ha: margin is not equal to 0

The test is finding whether there is a difference between the mean response of the test \bar{x} and the reference value μ_0

Usage

```
OneSampleMean.Equality(alpha, beta, sigma, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation
margin	$margin = \bar{x} - \mu_0$
	the difference between the true mean response of a test \bar{x} and a reference value
	μ_0

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
OneSampleMean.Equality(0.05,0.2,1,0.5)
# 32
```

OneSampleMean.Equivalence

One Sample Mean Test for Equivalence

Description

Ho: $|margin| \ge delta$ Ha: |margin| < delta

The test is concluded to be equivalent to a gold standard on average if the null hypothesis is rejected at significance level alpha

Usage

```
OneSampleMean.Equivalence(alpha, beta, sigma,margin, delta)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation
margin	$margin = \bar{x} - \mu_0$
	the difference between the true mean response of a test \bar{x} and a reference value
	μ_0
delta	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
OneSampleMean.Equivalence(0.05,0.2,0.1,0.05,0)
# 35
```

OneSampleMean.NIS One Sample Mean Test for Non-Inferiority/Superiority

Description

Ho: $margin \leq delta$ Ha: margin > delta

if delta >0, the rejection of Null Hypothesis indicates the true mean is superior over the reference value mu0;

if delta <0, the rejection of the null hypothesis implies the true mean is non-inferior against the reference value mu0.

Usage

OneSampleMean.NIS(alpha, beta, sigma, margin, delta)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation
delta	the superiority or non-inferiority margin
margin	$margin = ar{x} - \mu_0$
	the difference between the true mean response of a test \bar{x} and a reference value
	μ_0

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

OneSampleMean.NIS(0.05,0.2,1,0.5,-0.5) # 7 OneSampleProportion.Equality

One sample proportion test for equality

Description

Ho: p=p0

Ha: not equal

The test is finding whether there is a difference between the true rate of the test drug and reference value p0

Usage

OneSampleProportion.Equality(alpha, beta, p, differ)

Arguments

alpha	significance level
beta	power = 1-beta
р	the true response rate
differ	differ=p-p0
	the difference between the true response rate of a test drug and a reference value
	p0

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.1.4<-OneSampleProportion.Equality(0.05,0.2,0.5,0.2)
Example.4.1.4</pre>

OneSampleProportion.Equivalence

One sample proportion test for equivalence

Description

Ho: $|p - p0| \ge margin$

Ha: |p-p0| < margin

The proportion of response is equivalent to the reference p0 is the null hypothesis is rejected

Usage

OneSampleProportion.Equivalence(alpha, beta, p, delta, differ)

Arguments

alpha	significance level
beta	power = 1-beta
р	the true response rate
delta	delta=p-p0 the difference between the true response rate of a test drug and a reference value p0
differ	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.1.4<-OneSampleProportion.Equivalence(0.05,0.2,0.6,0.05,.2)
Example.4.1.4</pre>

OneSampleProportion.NIS

One sample proportion test for Non-inferiority/Superiority

Description

Ho: $p - p0 \le margin$

Ha: p-p0 > margin

if margin >0, the rejection of Null Hypothesis indicates the true rate is superior over the reference value p0;

if margin <0, the rejection of the null hypothesis implies the true rate is non-inferior against the reference value p0.

Usage

```
OneSampleProportion.NIS(alpha, beta, p, delta, differ)
```
OneSide.fixEffect

Arguments

alpha	significance level
beta	power = 1-beta
р	the true response rate
delta	delta=p-p0
	the difference between the true response rate of a test drug and a reference value
	p0
differ	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.1.4<-OneSampleProportion.NIS(0.025,0.2,0.5,0.2,-0.1)
Example.4.1.4</pre>

OneSide.fixEffect One-Sided Tests with fixed effect sizes

Description

One-sided tests Ho: $\delta_j = 0$ Ha: $\delta_j > 0$

Usage

OneSide.fixEffect(m, m1, delta, a1, r1, fdr)

Arguments

m	m is the total number of multiple tests
m1	m1 = m - m0. m0 is the number of tests which the null hypotheses are true; m1 is the number of tests which the alternative hypotheses are true. (or m1 is the number of prognostic genes)
delta	δ_j is the constant effect size for jth test. $\delta_j = (E(Xj) - E(Yj))/\sigma_j$. $X_{ij}(Y_{ij})$ denote the expression level of gene j for subject i in group 1(and group 2, respectively) with common variance σ_j^2 . We assume $\delta_j = 0$, j in M0 and $\delta_j > 0$, j in M1=effect size for prognostic genes.
a1	a1 is the allocation proportion for group 1. a2=1-a1.
r1	r1 is the number of true rejection
fdr	fdr is the FDR level.

Details

 $alpha_star=r1*fdr/((m-m1)*(1-fdr))$, which is the marginal type I error level for r1 true rejection with the FDR controlled at f.

beta_star=1-r1/m1, which is equal to 1-power.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.12.2.1<-OneSide.fixEffect(m=4000,m1=40,delta=1,a1=0.5,r1=24,fdr=0.01)
Example.12.2.1
# n=68; n1=34=n2</pre>
```

OneSide.varyEffect One-Sided Tests with varying effect sizes

Description

```
One-sided tests
Ho: \delta_j = 0
Ha: \delta_j > 0
```

Usage

```
OneSide.varyEffect(s1, s2, m, m1, delta, a1, r1, fdr)
```

Arguments

s1	We use bisection method to find the sample size, which let the equation $h(n)=0$. Here s1 and s2 are the initial value, $0 < s1 < s2$. $h(s1)$ should be smaller than 0.
s2	s2 is also the initial value, which is larger than s1 and $h(s2)$ should be larger than 0.
m	m is the total number of multiple tests
m1	m1 = m - m0. m0 is the number of tests which the null hypotheses are true; m1 is the number of tests which the alternative hypotheses are true. (or m1 is the number of prognostic genes)
delta	δ_j is the constant effect size for jth test. $\delta_j = (E(Xj) - E(Yj))/\sigma_j$. $X_{ij}(Y_{ij})$ denote the expression level of gene j for subject i in group 1(and group 2, respectively) with common variance σ_j^2 . We assume $\delta_j = 0$, j in M0 and $\delta_j > 0$, j in M1=effect size for prognostic genes.
a1	a1 is the allocation proportion for group 1. a2=1-a1.
r1	r1 is the number of true rejection
fdr	fdr is the FDR level.

Details

 $alpha_star=r1*fdr/((m-m1)*(1-fdr))$, which is the marginal type I error level for r1 true rejection with the FDR controlled at f.

beta_star=1-r1/m1, which is equal to 1-power.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
delta=c(rep(1,40/2),rep(1/2,40/2));
```

```
Example.12.2.2 <- OneSide.varyEffect(100,150,4000,40,delta,0.5,24,0.01)
Example.12.2.2
# n=148 s1<n<s2, h(s1)<0,h(s2)<0</pre>
```

OneWayANOVA.pairwise Pairwise Comparison for Multiple-Sample One-Way ANOVA

Description

Ho: μ_i is equal to μ_j Ha: μ_i is not equal to μ_j

The test is comparing the means among treatments. There are tau pair comparisons of interested. Adjusted the multiple comparison by Bonferroni method,

Usage

OneWayANOVA.pairwise(alpha, beta, tau, sigma, margin)

Arguments

alpha	significance level
beta	power = 1-beta
tau	there are tau pair comparisons
sigma	standard deviation
	$margin = \mu_i - \mu_j$ the difference between the true mean response of group i μ_i and group j μ_j

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

OneWayANOVA.PairwiseComparison

One-way ANOVA pairwise comparison

Description

Ho: $p_i = p_j$ Ha: not all equal

Usage

```
OneWayANOVA.PairwiseComparison(alpha, beta, tau, p1, p2, delta)
```

Arguments

alpha	significance level
beta	power = 1-beta
tau	there are tau comparisons here
p1	the mean response rate for test drug
p2	the rate for reference drug
delta	delta= $p_i - p_j$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.4.4.2<-OneWayANOVA.PairwiseComparison(0.05,0.2,2,0.2,0.4,-0.2)
Example.4.4.2
```

```
Example.4.4.2<-OneWayANOVA.PairwiseComparison(0.05,0.2,2,0.2,0.5,-0.3)
Example.4.4.2</pre>
```

PBE

Population Bioequivalence

Description

Consider 2 by 2 crossover design. H0: lamda >= 0 Ha: lamda < 0

Usage

```
PBE(alpha, beta, sigma1.1, sigmatt, sigmatr, sigmabt, sigmabr, rho, a, delta, lamda)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma1.1	$\sigma_{a,b}^2 = \sigma_D^2 + a\sigma_{WT}^2 + b\sigma_{WR}^2$. Here a=b=1.
sigmatt	$\sigma_{tt}^2 = \sigma_{BT}^2 + \sigma_{WT}^2$, σ_{wt}^2 is the within-subjects variance in test formulation
sigmatr	$\sigma_{tr}^2=\sigma_{BR}^2+\sigma_{WR}^2, \sigma_{wr}^2$ is the within-subjects variance in reference formulation
sigmabt	σ_{bt}^2 is the between-subjects variance in test formulation
sigmabr	σ_{br}^2 is the between-subjects variance in reference formulation
rho	rho is the inter-subject correlation coefficient.
а	a= thetaPBE =1.74
delta	delta is the mean difference of AUC
lamda	$lamda = delta^2 + \sigma^2 - \sigma_{TR}^2 - thetaPBE * max(\sigma_0^2, \sigma_{TR}^2)$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.10.3<-PBE(0.05,0.2,0.2,sqrt(0.17),sqrt(0.17),0.4,0.4,0.75,1.74,0.00,-0.2966)
Example.10.3
12</pre>

Propensity.Score.nostrata

Propensity Score ignoring strata

Description

Combining data across J strata. Still use weighted Mantel_Haenszel test.

Ho: $p_{j1} = p_{j2}$,

Ha: $p_{j2}q_{j1}/(p_{j1}q_{j2})$ =phi, which is not equal to 1

Usage

```
Propensity.Score.nostrata(alpha, beta, J, a, b, p1, phi)
```

Arguments

alpha	significance level
beta	power = 1-beta
J	There are totally J stratas.
а	a=c(a1,a2,,aJ), $aj=nj/n$ denote the allocation proportion for stratuum j (sum(aj)=1)
b	b=c(b11,b21,,bJ1), bjk=njk/nj, k=1,2 denote the allocation proportion for group k within stratum j (bj1+bj2=1). Assume group 1 is the control.
p1	p1=c(p11,p21,,pj1), pjk denote the response probability for group k in stratum j. qjk=1-pjk.
phi	$p_{j2}q_{j1}/(p_{j1}q_{j2})$ =phi, so that $p_{j2} = phip_{j1}/(q_{j1} + phip_{j1})$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
a=c(0.15,0.15,0.2,0.25,0.25);
b=c(0.4,0.4,0.5,0.6,0.6);
p1=c(0.5,0.6,0.7,0.8,0.9);
Example.15.2.3.2<-Propensity.Score.nostrata(alpha=0.05,beta=0.2,J=5,a,b,p1,phi=2)
Example.15.2.3.2
# 1151
```

Propensity.Score.strata

Propensity Score with Stratas

Description

Using weighted Mantel_Haenszel test in propensity analysis with stratas.

Ho: $p_{j1} = p_{j2}$,

Ha: $p_{j2}q_{j1}/(p_{j1}q_{j2})$ =phi, which is not equal to 1

Usage

```
Propensity.Score.strata(alpha, beta, J, a, b, p1, phi)
```

QOL

Arguments

alpha	significance level
beta	power = 1-beta
J	There are totally J stratas.
а	a=c(a1,a2,,aJ), $aj=nj/n$ denote the allocation proportion for stratuum j (sum(aj)=1)
b	b=c(b11,b21,,bJ1), bjk=njk/nj, k=1,2 denote the allocation proportion for group k within stratum j (bj1+bj2=1). Assume group 1 is the control.
p1	p1=c(p11,p21,,pj1), pjk denote the response probability for group k in stratum j. qjk=1-pjk.
phi	$p_{j2}q_{j1}/(p_{j1}q_{j2})$ =phi, so that $p_{j2} = phip_{j1}/(q_{j1} + phip_{j1})$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
a=c(0.15,0.15,0.2,0.25,0.25);
b=c(0.4,0.4,0.5,0.6,0.6);
p1=c(0.5,0.6,0.7,0.8,0.9);
Example.15.2.3.1<-Propensity.Score.strata(alpha=0.05,beta=0.2,J=5,a,b,p1,phi=2)
Example.15.2.3.1
# 447
```

QOL

Quality of life

Description

Under the time series model, determine sample size based on normal approximation.

Usage

```
QOL(alpha, beta, c, epsilon)
```

Arguments

alpha	significance level
beta	power = 1-beta
С	constant c=0.5
epsilon	a meaningful difference epsilon. If the chosen acceptable limits are $(-\delta, \delta)$. $epsilon = \delta - \eta, \eta$ is the measure for detecting an equivalence when the true difference in treatment means is less than a small constant η .

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.15.4.3<-QOL(0.05,0.1,0.5,0.25) Example.15.4.3

QT.crossover

Crossover Design in QT/QTc Studies without covariates

Description

Ho: $\mu_1 - \mu_2 = 0$

Ha: $\mu_1 - \mu_2 = d$

The test is finding the treatment difference in QT interval for crossover design . d is not equal to 0, which is the difference of clinically importance.

Usage

QT.crossover(alpha, beta, pho, K, delta, gamma)

Arguments

alpha	significance level
beta	power = 1-beta
pho	pho=between subject variance σ_s^2 /(between subject variance σ_s^2 +within subject variance σ_e^2)
К	There are K recording replicates for each subject.
delta	$\sigma^2 = \sigma_s^2 + \sigma_e^2$. d is the difference of clinically importance. $\delta = d/\sigma$
gamma	σ_p^2 is the extra variance from the random period effect for the crossover design. $\gamma=\sigma_p^2/\sigma^2$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.15.1.3<-QT.crossover(0.05,0.2,0.8,3,0.5,0.002) Example.15.1.3 # 29

44

QT.parallel

Description

Ho: $\mu_1 - \mu_2 = 0$

Ha: $\mu_1 - \mu_2 = d$

The test is finding the treatment difference in QT interval. d is not equal to 0, which is the difference of clinically importance.

Usage

QT.parallel(alpha, beta, pho, K, delta)

Arguments

alpha	significance level
beta	power = 1-beta
pho	pho=between subject variance σ_s^2 /(between subject variance σ_s^2 +within subject variance σ_e^2)
К	There are K recording replicates for each subject.
delta	$\sigma^2=\sigma_s^2+\sigma_e^2.$ d is the difference of clinically importance. $\delta=d/\sigma$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.15.1.2<-QT.parallel(0.05,0.2,0.8,3,0.5)
Example.15.1.2
# 54
```

QT.PK.crossover

Description

Ho: $\mu_1 - \mu_2 = 0$

Ha: $\mu_1 - \mu_2 = d$

The test is finding the treatment difference in QT interval for crossover design. d is not equal to 0, which is the difference of clinically importance.

Usage

QT.PK.crossover(alpha, beta, pho, K, delta, gamma, v1, v2, tau1, tau2)

Arguments

alpha	significance level
beta	power = 1-beta
pho	pho=between subject variance σ_s^2 /(between subject variance σ_s^2 +within subject variance σ_e^2)
К	There are K recording replicates for each subject.
delta	$\sigma^2=\sigma_s^2+\sigma_e^2.$ d is the difference of clinically importance. $\delta=d/\sigma$
gamma	σ_p^2 is the extra variance from the random period effect for the crossover design. $\gamma=\sigma_p^2/\sigma^2$
v1	sample mean for group 1
v2	sample mean for group 2
tau1	sample variance for group 1
tau2	sample variance for group 2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.15.1.4.2<-QT.PK.crossover(0.05,0.2,0.8,3,0.5,0.002,1,1,4,5)
Example.15.1.4.2
# 29
```

QT.PK.parallel

Description

Ho: $\mu_1 - \mu_2 = 0$

Ha: $\mu_1 - \mu_2 = d$

The test is finding the treatment difference in QT interval. d is not equal to 0, which is the difference of clinically importance.

Usage

QT.PK.parallel(alpha, beta, pho, K, delta, v1, v2, tau1, tau2)

Arguments

significance level
power = 1-beta
pho=between subject variance σ_s^2 /(between subject variance σ_s^2 +within subject variance σ_e^2)
There are K recording replicates for each subject.
$\sigma^2=\sigma_s^2+\sigma_e^2.$ d is the difference of clinically importance. $\delta=d/\sigma$
sample mean for group 1
sample mean for group 2
sample variance for group 1
sample variance for group 2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.15.1.4.1<-QT.PK.parallel(0.05,0.2,0.8,3,0.5,1,1,4,5)
Example.15.1.4.1
# 54</pre>
```

RelativeRisk.Equality Relative Risk in Parallel Design test for Equality

Description

Ho: OR=1 Ha: not equal to 1

Usage

RelativeRisk.Equality(alpha, beta, or, k, pt, pc)

Arguments

alpha	significance level
beta	power = 1-beta
or	or=pt(1-pc)/pc(1-pt)
k	k=nT/nC
pt	the probability of observing an outcome of interest for a patient treatment by a test treatment
рс	the probability of observing an outcome of interest for a patient treatment by a control

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.4.6.4<-RelativeRisk.Equality(0.05,0.2,2,1,0.4,0.25)
Example.4.6.4
```

RelativeRisk.Equivalence

Relative Risk in Parallel Design test for Equivalence

Description

Ho: $|log(OR)| \ge margin$ Ha: |log(OR)| < margin

RelativeRisk.NIS

Usage

RelativeRisk.Equivalence(alpha, beta, or, k, pt, pc, margin)

Arguments

alpha	significance level
beta	power = 1-beta
or	or=pt(1-pc)/pc(1-pt)
k	k=nT/nC
pt	the probability of observing an outcome of interest for a patient treatment by a test treatment
рс	the probability of observing an outcome of interest for a patient treatment by a control
margin	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.6.4<-RelativeRisk.Equivalence(0.05,0.2,2,1,0.25,0.25,.5)
Example.4.6.4</pre>

RelativeRisk.NIS Relative Risk in Parallel Design test for Non-inferiority/Superiority

Description

Ho: $OR \leq margin$

Ha: OR > margin

Usage

```
RelativeRisk.NIS(alpha, beta, or, k, pt, pc, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
or	or=pt(1-pc)/pc(1-pt)
k	k=nT/nC
pt	the probability of observing an outcome of interest for a patient treatment by a test treatment
рс	the probability of observing an outcome of interest for a patient treatment by a control
margin	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.6.4<-RelativeRisk.NIS(0.05,0.2,2,1,0.4,0.25,.2) Example.4.6.4

```
RelativeRiskCrossOver.Equality
```

Relative Risk in Crossover Design test for Equality

Description

Ho: log(OR)=0 Ha: not equal to 0

Usage

RelativeRiskCrossOver.Equality(alpha, beta, sigma, or)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
or	or=pt(1-pc)/pc(1-pt)

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

RelativeRiskCrossOver.Equivalence Relative Risk in Crossover Design test for Equivalence

Description

```
Ho: |log(OR)| \ge margin
Ha: |log(OR)| < margin
```

Usage

```
RelativeRiskCrossOver.Equivalence(alpha, beta, sigma, or, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
or	or=pt(1-pc)/pc(1-pt)
margin	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

RelativeRiskCrossOver.NIS

Relative Risk in Crossover Design test for Non-inferiority/Superiority

Description

Ho: $log(OR) \le margin$ Ha: log(OR) > margin

Usage

```
RelativeRiskCrossOver.NIS(alpha, beta, sigma, or, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
or	or=pt(1-pc)/pc(1-pt)
margin	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Sensitivity.Index Calculate the power for Sensitivity Index

Description

Ho: $\mu_1 = \mu_2$

Ha: μ_1 is not equal to μ_2

The test is finding the treatment difference in QT interval.

d is not equal to 0, which is the difference of clinically importance.

Usage

```
Sensitivity.Index(alpha, n, deltaT)
```

Arguments

alpha	significance level
n	sample size n
deltaT	a measure of change in the signal-to-noise ratio for the population difference, which is the sensitivity index of population difference between regions.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.15.5.1<-Sensitivity.Index(0.05,30,2.92)
Example.15.5.1
# power=0.805
```

Description

Extention from McNemar test to r by r table (r>2).

Ho: $p_{ij} = p_{ji}$ for all different i,j.

Ha: not equal

The test is finding whether there is a categorical shift from i pre-treatment to j post-treatment.

Usage

```
Stuart.Maxwell.Test(noncen, p.ij, p.ji, r)
```

Arguments

noncen	the solution of the equation, which is non-central parameter of non-central chisquare distribution .
p.ij	the probability of shift from i pre-treatment to j post-treatment
p.ji	the probability of shift from j pre-treatment to i post-treatment
r	r by r tables, r is df

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

TwoSampleCrossOver.Equality

Two Sample Crossover Design Test for Equality

Description

Ho: margin is equal to 0 Ha: margin is unequal to 0

The test is finding whether there is a difference between the mean responses of the test group and control group.

Usage

```
TwoSampleCrossOver.Equality(alpha, beta, sigma, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
margin	$margin = \mu_2 - \mu_1$
	the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

TwoSampleCrossOver.Equivalence

Two Sample Crossover Design Test for Equivalence

Description

Ho: $|margin| \ge delta$ Ha: |margin| < delta

This test is whether the test drug is equivalent to the control in average if the null hypothesis is rejected at significant level alpha

Usage

TwoSampleCrossOver.Equivalence(alpha, beta, sigma, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
delta	the superiority or non-inferiority margin
margin	$margin = \mu_2 - \mu_1$
	the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.3.3.4<-TwoSampleCrossOver.Equivalence(0.05,0.1,0.2,0.25,-0.1)
Example.3.3.4 # 8</pre>

TwoSampleCrossOver.NIS

Two Sample Crossover Design Test for Non-Inferiority/Superiority

Description

Ho: $|margin| \ge delta$ Ha: |margin| < delta

if delta >0, the rejection of Null Hypothesis indicates the superiority of the test over the control; if delta <0, the rejection of the null hypothesis implies the non-inferiority of the test against the control.

Usage

```
TwoSampleCrossOver.NIS(alpha, beta, sigma, delta, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
delta	the superiority or non-inferiority margin
margin	$margin = \mu_2 - \mu_1$
	the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.3.3.4<-TwoSampleCrossOver.NIS(0.05,0.2,0.2,-0.2,-0.1)
Example.3.3.4 # 13
```

TwoSampleMean.Equality

Two Sample Mean Test for Equality

Description

H0: margin is equal to 0 Ha: margin is unequal to 0

The test is finding whether there is a difference between the mean responses of the test group and control group.

Usage

TwoSampleMean.Equality(alpha, beta, sigma, k, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	pooled standard deviation of two groups
k	k=n1/n2
	Example: k=2 indicates a 1 to 2 test-control allocation.
margin	$margin = \mu_2 - \mu_1$
	the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.3.2.4<-TwoSampleMean.Equality(0.05,0.2,0.1,1,0.05)
Example.3.2.4 # 63
```

TwoSampleMean.Equivalence

```
Two Sample Mean Test for Equivalence
```

Description

Ho: $|margin| \ge delta$ Ha: |margin| < delta

This test is whether the test drug is equivalent to the control in average if the null hypothesis is rejected at significant level alpha

Usage

```
TwoSampleMean.Equivalence(alpha, beta, sigma, k, delta, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	pooled standard deviation of two groups
k	k=n1/n2
	Example: k=2 indicates a 1 to 2 test-control allocation.

56

delta	the superiority or non-inferiority margin
margin	$margin = \mu_2 - \mu_1$
	the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.3.2.4<-TwoSampleMean.Equivalence(0.1,0.1,0.1,1,0.05,0.01) Example.3.2.4 #107

TwoSampleMean.NIS Two Sample Mean Test for Non-Inferiority/Superiority

Description

Ho: $margin \leq delta$ Ha: margin > delta

if delta >0, the rejection of Null Hypothesis indicates the superiority of the test over the control;

if delta <0, the rejection of the null hypothesis implies the non-inferiority of the test against the control.

Usage

TwoSampleMean.NIS(alpha, beta, sigma, k, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	pooled standard deviation of two groups
k	k=n1/n2
	Example: k=2 indicates a 1 to 2 test-control allocation.
delta	the superiority or non-inferiority margin
margin	$margin = \mu_2 - \mu_1$
	the true mean difference between a test mu2 and a control mu1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.3.2.4<-TwoSampleMean.NIS(0.05,0.2,0.1,1,-0.05,0) Example.3.2.4 # 50

TwoSampleProportion.Equality

Two sample proportion test for equality

Description

H0: p1=p2

Ha: not equal

The test is finding whether there is a difference between the mean response rates of the test drug and reference drug

Usage

TwoSampleProportion.Equality(alpha, beta, p1, p2, k)

Arguments

alpha	significance level
beta	power = 1-beta
p1	the mean response rate for test drug
p2	the rate for reference drug
k	k=n1/n2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.2.4<-TwoSampleProportion.Equality(0.05,0.2,0.65,0.85,1)
Example.4.2.4</pre>

58

TwoSampleProportion.Equivalence

Two sample proportion test for equivalence

Description

```
Ho: |p1 - p2| \ge margin
```

Ha: |p1-p2| < margin

The proportion of response p1 is equivalent to the reference drug p2 is the null hypothesis is rejected

Usage

TwoSampleProportion.Equivalence(alpha, beta, p1, p2, k, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
p1	the mean response rate for test drug
p2	the rate for reference drug
k	k=n1/n2
delta	delta=p1-p2
margin	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.2.4<-TwoSampleProportion.Equivalence(0.05,0.2,0.75,0.8,1,0.2,0.05) Example.4.2.4 TwoSampleProportion.NIS

Two sample proportion test for Non-Inferiority/Superiority

Description

Ho: $p1 - p2 \leq margin$ Ha: p1-p2 > margin

if margin >0, the rejection of Null Hypothesis indicates the true rate p1 is superior over the reference value p2;

if margin <0, the rejection of the null hypothesis implies the true rate p1 is non-inferior against the reference value p2.

Usage

TwoSampleProportion.NIS(alpha, beta, p1, p2, k, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
p1	the mean response rate for test drug
p2	the rate for reference drug
k	k=n1/n2
delta	delta=p1-p2
margin	the superiority or non-inferiority margin

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.2.4<-TwoSampleProportion.NIS(0.05,0.2,0.65,0.85,1,0.2,0.05) Example.4.2.4 TwoSampleSeqCrossOver.Equality

Two sample proportion Crossover design test for equality

Description

H0: p2-p1 = 0 Ha: not equal to 0

Usage

```
TwoSampleSeqCrossOver.Equality(alpha, beta, sigma, sequence, delta)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
sequence	total sequence number
delta	delta=p2-p1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.4.3.4<-TwoSampleSeqCrossOver.Equality(0.05,0.2,0.25,2,0.2)
Example.4.3.4</pre>
```

TwoSampleSeqCrossOver.Equivalence

Two sample proportion Crossover design test for equivalence

Description

Ho: $|p1 - p2| \ge margin$ Ha: |p1-p2| < margin

Usage

TwoSampleSeqCrossOver.Equivalence(alpha, beta, sigma, sequence, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
sequence	total sequence number
delta	the superiority or non-inferiority margin
margin	margin=p2-p1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.3.4<-TwoSampleSeqCrossOver.Equivalence(0.05,0.2,0.25,2,0,0.2)
Example.4.3.4</pre>

TwoSampleSeqCrossOver.NIS

Two sample proportion Crossover design for Noninferiority/Superiority

Description

H0: p2-p1 <= margin

Ha: p2-p1 > margin

Usage

```
TwoSampleSeqCrossOver.NIS(alpha, beta, sigma, sequence, delta, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
sequence	total sequence number
delta	the superiority or non-inferiority margin
margin	margin=p2-p1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.3.4<-TwoSampleSeqCrossOver.NIS(0.05,0.2,0.25,2,0,-0.2) Example.4.3.4

TwoSampleSurvival.Conditional

Test for two sample conditional data in exponential model for survival data

Description

unconditional versus conditional

Usage

TwoSampleSurvival.Conditional(alpha, beta, lam1, lam2, eta1, eta2, k, ttotal, taccrual, g1, g2)

Arguments

alpha	significance level
beta	power = 1-beta
lam1	the hazard rates of control group
lam2	the hazard rates of a test drug
eta1	in control group, the losses are exponentially distributed with loss hazard rate eta1
eta2	in treatment group, the losses are exponentially distributed with loss hazard rate eta2
k	k=n1/n2 sample size ratio
ttotal	Total trial time
taccrual	accrual time period
g1	parameter for the entry distribution of control group, which is uniform patient entry with gamma1=0.
g2	parameter for the entry distribution of treatment group, which is uniform patient entry with gamma2=0.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
TwoSampleSurvival.Equality
```

Test for two sample equality in exponential model for survival data

Description

H0: the difference between the hazard rates of two samples is equal to

Ha: not equal to 0

The test is finding whether there is a difference between the hazard rates of the test drug and the reference drug.

Usage

```
TwoSampleSurvival.Equality(alpha, beta, lam1, lam2, k, ttotal, taccrual, gamma)
```

Arguments

alpha	significance level
beta	power = 1-beta
lam1	the hazard rates of control group
lam2	the hazard rates of a test drug
k	k=n1/n2 sample size ratio
ttotal	Total trial time
taccrual	accrual time period
gamma	parameter for exponential distribution. Assume Uniform patient entry if gamma $=0$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.7.2.4<-TwoSampleSurvival.Equality(0.05,0.2,1,2,1,3,1,0.00001)
Example.7.2.4
```

TwoSampleSurvival.Equivalence

Test for two sample equivalence in exponential model for survival data

Description

margin=lamda1-lamda2, the true difference of hazard rates between control group lamda1 and a test drug group lamda2

H0: |margin| >= delta

Ha: |margin| < delta

This test is whether the test drug is equivalent to the control in average if the null hypothesis is rejected at significant level alpha

Usage

TwoSampleSurvival.Equivalence(alpha, beta, lam1, lam2, k, ttotal, taccrual, gamma, margin)

Arguments

alpha	significance level
beta	power = 1-beta
lam1	the hazard rates of control group
lam2	the hazard rates of a test drug
k	k=n1/n2 sample size ratio
ttotal	Total trial time
taccrual	accrual time period
gamma	parameter for exponential distribution. Assume Uniform patient entry if gamma =0
margin	margin=lamda1-lamda2, the true difference of hazard rates between control group lamda1 and a test drug group lamda2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.7.2.4<-TwoSampleSurvival.Equivalence(0.05,0.2,1,1,1,3,1,0.00001,0.5) Example.7.2.4 TwoSampleSurvival.NIS Test for two sample Non-Inferiority/Superiority in exponential model for survival data

Description

margin=lamda1-lamda2, the true difference of hazard rates between control group lamda1 and a test drug group lamda2

H0: margin <= delta

Ha: margin > delta

if delta >0, the rejection of Null Hypothesis indicates the superiority of the test drug over the control; if delta <0, the rejection of the null hypothesis implies the non-inferiority of the test test drug against the control.

Usage

TwoSampleSurvival.NIS(alpha, beta, lam1, lam2, k, ttotal, taccrual, gamma, margin)

Arguments

alpha	significance level
beta	power = 1-beta
lam1	the hazard rates of control group
lam2	the hazard rates of a test drug
k	k=n1/n2 sample size ratio
ttotal	Total trial time
taccrual	accrual time period
gamma	parameter for exponential distribution. Assume Uniform patient entry if gamma =0
margin	margin=lamda1-lamda2, the true difference of hazard rates between control group lamda1 and a test drug group lamda2

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.7.2.4<-TwoSampleSurvival.NIS(0.05,0.2,1,2,1,3,1,0.00001,0.2) Example.7.2.4

Description

Two-sided tests Ho: $\delta_j = 0$ Ha: δ_j is not equal to 0

Usage

TwoSide.fixEffect(m, m1, delta, a1, r1, fdr)

Arguments

m	m is the total number of multiple tests
m1	m1 = m - m0. m0 is the number of tests which the null hypotheses are true; m1 is the number of tests which the alternative hypotheses are true. (or m1 is the number of prognostic genes)
delta	δ_j is the constant effect size for jth test. $\delta_j = (E(Xj) - E(Yj))/\sigma_j$. $X_{ij}(Y_{ij})$ denote the expression level of gene j for subject i in group 1(and group 2, respectively) with common variance σ_j^2 . We assume $\delta_j = 0$, j in M0 and $\delta_j > 0$, j in M1=effect size for prognostic genes.
a1	a1 is the allocation proportion for group 1. a2=1-a1.
r1	r1 is the number of true rejection
fdr	fdr is the FDR level.

Details

 $alpha_star=r1*fdr/((m-m1)*(1-fdr))$, which is the marginal type I error level for r1 true rejection with the FDR controlled at f.

beta_star=1-r1/m1, which is equal to 1-power.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.12.2.3<-TwoSide.fixEffect(m=4000,m1=40,delta=1,a1=0.5,r1=24,fdr=0.01)
Example.12.2.3
# n=73</pre>
```

TwoSide.varyEffect Two-Sided Tests with varying effect sizes

Description

Two-sided tests Ho: $\delta_j = 0$ Ha: δ_j is not equal to 0

Usage

TwoSide.varyEffect(s1, s2, m, m1, delta, a1, r1, fdr)

Arguments

s1	We use bisection method to find the sample size, which let the equation $h(n)=0$. Here s1 and s2 are the initial value, $0 < s1 < s2$. $h(s1)$ should be smaller than 0.
s2	s2 is also the initial value, which is larger than s1 and $h(s2)$ should be larger than 0.
m	m is the total number of multiple tests
m1	m1 = m - m0. m0 is the number of tests which the null hypotheses are true; m1 is the number of tests which the alternative hypotheses are true. (or m1 is the number of prognostic genes)
delta	δ_j is the constant effect size for jth test. $\delta_j = (E(Xj) - E(Yj))/\sigma_j$. $X_{ij}(Y_{ij})$ denote the expression level of gene j for subject i in group 1(and group 2, respectively) with common variance σ_j^2 . We assume $\delta_j = 0$, j in M0 and $\delta_j > 0$, j in M1=effect size for prognostic genes.
a1	a1 is the allocation proportion for group 1. a2=1-a1.
r1	r1 is the number of true rejection
fdr	fdr is the FDR level.

Details

 $alpha_star=r1*fdr/((m-m1)*(1-fdr))$, which is the marginal type I error level for r1 true rejection with the FDR controlled at f.

beta_star=1-r1/m1, which is equal to 1-power.

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Vaccine.CEM

Examples

```
delta=c(rep(1,40/2),rep(1/2,40/2));
Example.12.2.4<-TwoSide.varyEffect(s1=100,s2=200,m=4000,m1=40,delta=delta,a1=0.5,r1=24,fdr=0.01)
Example.12.2.4
# n=164 s1<n<s2, h(s1)<0,h(s2)<0</pre>
```

```
Vaccine.CEM
```

Composite Efficacy Measure(CEM) for Vaccine clinical trials.

Description

Let sij be the severity score associated with the jth case in the ith treatment group. $\mu_i = mean(s_{ij})$, $\sigma_i^2 = var(s_{ij})$.

H0: pT=pC and muT=muC

Ha: pT is not equal to pC and muT is not equal to muC

Usage

```
Vaccine.CEM(alpha, beta, mu_t, mu_c, sigma_t, sigma_c, pt, pc)
```

Arguments

alpha	significance level
beta	power=1-beta
mu_t	mean of treatment group
mu_c	mean of control group
sigma_t	standard deviation of treatment group
sigma_c	standard deviation of control group
pt	the true disease incidence rates of the nt vaccines
рс	the true disease incidence rates of the nc controls

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.15.6.4<-Vaccine.CEM(0.05,0.2,0.2,0.3,sqrt(0.15),sqrt(0.15),0.1,0.2)
Example.15.6.4
```

Vaccine.ELDI

Description

If the disease incidence rate is extremely low, the number of cases in the vaccine group given the total number of cases is distributed as a binomial random variable with parameter theta.

Ho: $\theta \geq \theta_0$

Ha: $\theta < \theta_0$

Usage

Vaccine.ELDI(alpha, beta, theta0, theta, pt, pc)

Arguments

alpha	significance level
beta	power=1-beta
theta0	the true parameter for binomial distribution. Theta0 is usually equal to 0.5
theta	theta=disease rate for treatment group/(disease rate for treatment group + for control group)
pt	the true disease incidence rates of the nt vaccines
рс	the true disease incidence rates of the nc controls

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.15.6.2<-Vaccine.ELDI(0.05,0.2,0.5,1/3,0.001,0.002)
Example.15.6.2
# 17837
```

Vaccine.RDI

Description

The test is to find whether the vaccine can prevent the disease or reduce the incidence of the disease in the target population. Usually use prospective, randomized, placebo-controlled trials.

Usage

```
Vaccine.RDI(alpha, d, pt, pc)
```

Arguments

alpha	significance level
d	the half length of the confidence interval of pt/pc
pt	the true disease incidence rates of the nt vaccines
рс	the true disease incidence rates of the nc controls

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.15.6.1<-Vaccine.RDI(0.05,0.2,0.01,0.02) Example.15.6.1 # 14214

Vitro.BE

In Vitro Bioequivalence

Description

Consider 2 by 2 crossover design. $\zeta = \delta^2 + sT^2 + sR^2 - thetaBE * max(\sigma_0^2, sR^2)$. $sT^2 = \sigma_{BT}^2 + \sigma_{WT}^2$, $sR^2 = \sigma_{BR}^2 + \sigma_{WR}^2$ Ho: $\zeta \ge 0$ Ha: $\zeta < 0$

Usage

Vitro.BE(alpha, beta, delta, sigmaBT, sigmaBR, sigmaWT, sigmaWR, thetaBE)

Arguments

alpha	significance level
beta	power = 1-beta
delta	delta is the mean difference
sigmaBT	σ_{BT}^2 is the between-subjects variance in test formulation
sigmaBR	σ_{BR}^2 is the between-subjects variance in reference formulation
sigmaWT	σ^2_{WT} is the within-subjects variance in test formulation
sigmaWR	σ^2_{WR} is the within-subjects variance in reference formulation
thetaBE	here thetaBE=1

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.10.5<-Vitro.BE(0.05,0.2,0,0.5,0.5,0.5,0.5,1)
Example.10.5
```

n=43 Vitro.BE reach 0

WilliamsDesign.Equality

William Design test for equality

Description

Ho: $\mu_1 - \mu_2 = 0$ Ha: not equal to 0

Usage

```
WilliamsDesign.Equality(alpha, beta, sigma, sequence, delta)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
sequence	total sequence number
delta	delta= $\mu_1 - \mu_2$

WilliamsDesign.Equivalence

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

```
Example.4.5.4<-WilliamsDesign.Equality(0.05,0.2,0.75<sup>2</sup>,6,0.2)
Example.4.5.4
```

WilliamsDesign.Equivalence

Williams Design test for equivalence

Description

Ho: $|\mu_2 - \mu_1| \ge margin$ Ha: $|\mu_2 - \mu_1| < margin$

Usage

WilliamsDesign.Equivalence(alpha, beta, sigma, sequence, delta, margin)

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
sequence	total sequence number
delta	the superiority or non-inferiority margin
margin	margin= $\mu_1 - \mu_2$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

Examples

Example.4.5.4<-WilliamsDesign.Equivalence(0.05,0.2,0.75²,6,0.2,0.3) Example.4.5.4 WilliamsDesign.NIS Williams Design test for Non-inferiority/Superiority

Description

H0: $\mu_1 - \mu_2 \leq margin$ Ha: $\mu_1 - \mu_2 > margin$

Usage

```
WilliamsDesign.NIS(alpha, beta, sigma, sequence, delta, margin)
```

Arguments

alpha	significance level
beta	power = 1-beta
sigma	standard deviation in crossover design
sequence	total sequence number
delta	the superiority or non-inferiority margin
margin	margin= $\mu_1 - \mu_2$

References

Chow SC, Shao J, Wang H. Sample Size Calculation in Clinical Research. New York: Marcel Dekker, 2003

```
Example.4.5.4<-WilliamsDesign.NIS(0.05,0.2,0.75<sup>2</sup>,6,0.2,0.05)
Example.4.5.4
```

Index

* package TrialSize-package, 3 AB.withDescalation, 4 AB.withoutDescalation, 5 ABE, 6 ANOVA.Repeat.Measure, 7 Carry.Over, 8

Cochran.Armitage.Trend, 8 Cox.Equality, 9 Cox.Equivalence, 10 Cox.NIS, 11 CrossOver.ISV.Equality, 12 CrossOver.ISV.Equivalence, 12 CrossOver.ISV.NIS, 13

Dose.Min.Effect, 14 Dose.Response.binary, 15 Dose.Response.Linear, 16 Dose.Response.time.to.event, 17

gof.Pearson, 18
gof.Pearson.twoway, 19

IBE, 19 InterSV.Equality, 20 InterSV.NIS, 21 ISCV.Equality, 22 ISCV.Equivalence, 22 ISCV.NIS, 23 ISV.Equality, 24 ISV.Equivalence, 24 ISV.NIS, 25

McNemar.Test, 26 MeanWilliamsDesign.Equality, 27 MeanWilliamsDesign.Equivalence, 28 MeanWilliamsDesign.NIS, 28 Multiple.Testing, 29 Nonpara.Independ, 30 Nonpara.One.Sample, 31 Nonpara.Two.Sample, 31

OneSampleMean.Equality, 32 OneSampleMean.Equivalence, 33 OneSampleMean.NIS, 34 OneSampleProportion.Equality, 35 OneSampleProportion.Equivalence, 35 OneSampleProportion.NIS, 36 OneSide.fixEffect, 37 OneSide.varyEffect, 38 OneWayANOVA.pairwise, 39 OneWayANOVA.PairwiseComparison, 40

PBE, 40
Propensity.Score.nostrata, 41
Propensity.Score.strata, 42

QOL, 43 QT.crossover, 44 QT.parallel, 45 QT.PK.crossover, 46 QT.PK.parallel, 47

RelativeRisk.Equality, 48 RelativeRisk.Equivalence, 48 RelativeRisk.NIS, 49 RelativeRiskCrossOver.Equality, 50 RelativeRiskCrossOver.Equivalence, 51 RelativeRiskCrossOver.NIS, 51

Sensitivity.Index, 52
Stuart.Maxwell.Test, 53

TrialSize (TrialSize-package), 3 TrialSize-package, 3 TwoSampleCrossOver.Equality, 53 TwoSampleCrossOver.Equivalence, 54 TwoSampleCrossOver.NIS, 55 TwoSampleMean.Equality, 55

INDEX

76

TwoSampleMean.Equivalence, 56 TwoSampleProportion.Equality, 58 TwoSampleProportion.Equivalence, 59 TwoSampleProportion.NIS, 60 TwoSampleSeqCrossOver.Equality, 61 TwoSampleSeqCrossOver.Equivalence, 61 TwoSampleSeqCrossOver.NIS, 62 TwoSampleSurvival.Conditional, 63 TwoSampleSurvival.Equality, 64 TwoSampleSurvival.Equality, 64 TwoSampleSurvival.NIS, 66 TwoSide.fixEffect, 67 TwoSide.varyEffect, 68

Vaccine.CEM, 69 Vaccine.ELDI, 70 Vaccine.RDI, 71 Vitro.BE, 71

WilliamsDesign.Equality, 72 WilliamsDesign.Equivalence, 73 WilliamsDesign.NIS, 74