
Package ‘VARcpDetectOnline’
February 13, 2025

Title Sequential Change Point Detection for High-Dimensional VAR
Models

Version 0.2.0

Description Implements the algorithm introduced in Tian, Y., and Safikhani, A. (2024)
<doi:10.5705/ss.202024.0182>, ``Sequential Change Point Detection in High-dimensional
Vector Auto-regressive Models''. This package provides tools for detecting change points
in the transition matrices of VAR models, effectively identifying shifts in temporal
and cross-correlations within high-dimensional time series data.

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports MASS, corpcor, Matrix, glmnet, doParallel, stats

Suggests ggplot2

License GPL-2 | file LICENSE

URL https://github.com/Helloworld9293/VARcpDetectOnline

BugReports https://github.com/Helloworld9293/VARcpDetectOnline/issues

NeedsCompilation no

Author Yuhan Tian [aut, cre],
Abolfazl Safikhani [aut]

Maintainer Yuhan Tian <yuhan.tian@ufl.edu>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2025-02-13 08:40:02 UTC

Contents
fitVAR . 2
generateVAR . 3
get_cps . 4
sp500 . 5
VAR_cpDetect_Online . 6

1

https://doi.org/10.5705/ss.202024.0182
https://github.com/Helloworld9293/VARcpDetectOnline
https://github.com/Helloworld9293/VARcpDetectOnline/issues

2 fitVAR

Index 9

fitVAR Fit VAR Model with Elastic Net via Cross Validation

Description

Estimates a (possibly high-dimensional) VAR model using penalized least squares with an elastic
net penalty and cross validation. This function is adapted from the sparsevar package (https://
github.com/svazzole/sparsevar/tree/master), which is distributed under the GNU General
Public License v2. The code has been modified to specifically implement the elastic net penalty
(penalty = "ENET") and cross validation (method = "cv").

Usage

fitVAR(data, p = 1, ...)

Arguments

data A numeric matrix or data frame with time series data (observations in rows,
variables in columns).

p Integer. The order of the VAR model.

... Additional options for estimation. Global options include:

• threshold: Logical. If TRUE, all entries smaller than the oracle threshold
are set to zero.

• scale: Logical. Whether to scale the data (default is FALSE).
• nfolds: Integer. The number of folds used for cross validation (default is

10).
• parallel: Logical. If TRUE, use multicore backend (default is FALSE).
• ncores: Integer. If parallel = TRUE, specify the number of cores to use.
• alpha: Numeric. The elastic net mixing parameter (default is 1, i.e. LASSO).
• type.measure: Character. The error measure for CV (e.g., "mse" or "mae").
• nlambda: Integer. The number of lambda values to use in cross validation

(default is 100).
• leaveOut: Integer. In time slice validation, leave out the last observations

(default is 15).
• horizon: Integer. The forecast horizon to use for estimating error (default

is 1).
• lambda: Either a numeric vector of lambda values or a string indicating

which lambda to use (default is "lambda.min").
• return_fit: Logical. If TRUE, return the complete fit object.

https://github.com/svazzole/sparsevar/tree/master
https://github.com/svazzole/sparsevar/tree/master

generateVAR 3

Value

A list with the following components:

mu A vector of means for each variable.

A A list (of length p) of the estimated coefficient matrices for the VAR process.

fit (Optional) The complete results of the penalized least squares estimation.

lambda The chosen lambda value (by cross validation).

mse The minimum mean squared error from cross validation.

mse_sd The standard deviation of the mean squared error.

time Elapsed time for the estimation.

series The (possibly transformed) input time series.

residuals The residuals of the VAR model.

sigma The estimated variance/covariance matrix of the residuals.

References

The original source code is adapted from the sparsevar package, which is distributed under the GNU
General Public License v2.

generateVAR Generate VAR Data

Description

This function generates Vector Auto-Regressive (VAR) data based on the provided parameters.

Usage

generateVAR(n, As, Sig, h, isOldProvided = FALSE, oldxs = NULL)

Arguments

n Integer. The length of the VAR data to be generated.

As List. A list containing the transition matrices for the VAR process.

Sig Matrix. The covariance matrix of errors.

h Integer. The order of the VAR process.

isOldProvided Logical. If TRUE, the VAR data will be generated based on the last observations
from the previous segment of data. Defaults to FALSE.

oldxs Matrix. A p by h matrix containing the last observations from the previous
segment of data. Required if isOldProvided = TRUE.

Value

A data matrix of dimensions p by n.

https://github.com/svazzole/sparsevar/tree/master

4 get_cps

Examples

Example usage
As <- list(matrix(c(0.5, 0.2, 0.1, 0.4), 2, 2))
Sig <- diag(2)
data <- generateVAR(n = 100, As = As, Sig = Sig, h = 1)

get_cps Identify the Beginning of the Alarm Clusters

Description

This function clusters alarms into groups and identifies the starting points of the alarm clusters. If
the next alarm occurs within a specified window size (w) from the current alarm, it will be considered
part of the current cluster. Otherwise, a new cluster will be formed.

Usage

get_cps(alarms, w)

Arguments

alarms A numeric vector. The alarms raised during the monitoring process.

w An integer. The window size used to group alarms into clusters.

Value

A numeric vector containing the starting points of the alarm clusters. If the next alarm is within w
observations of the current alarm, the next alarm will be considered part of the current alarm cluster.
Otherwise, a new cluster is formed and the next alarm is considered the beginning of a new alarm
cluster.

Examples

Example usage:
alarms <- c(10, 15, 30, 35, 60)
change_points <- get_cps(alarms, w = 10)

sp500 5

sp500 S&P 500 Daily Log Returns and Corresponding Dates

Description

This dataset contains daily log returns for 186 stocks in the S&P 500 index from February 6, 2004,
to March 2, 2016. The daily log returns are calculated using the adjusted daily closing prices. The
dataset also contains the corresponding dates for each log return.

Usage

data(sp500)

Format

A list with two elements:

sp500$log_daily_return A matrix with dimensions 3037 (rows, trading days) by 186 (columns,
stocks).

sp500$date A vector of length 3037, containing the dates for each trading day.

Details

The dataset is provided as an .RData file containing:

• sp500$log_daily_return: A matrix of daily log returns with 3037 rows (trading days) and
186 columns (stocks).

• sp500$date: A vector of length 3037 containing the dates for each daily log return.

Source

Data from the S&P 500 stock index (2004-2016).

See Also

VAR_cpDetect_Online, get_cps

Examples

Example Usage: Applying Change Point Detection to S&P 500 Data
This is an example of how to apply the change point detection method
(using the VAR_cpDetect_Online function) on the daily log return
dataset from the S&P 500 (stored in the sp500 dataset). The code
below calculates the average return volatility for all stocks, applies
the change point detection algorithm, and plots the results with detected
change points shown as vertical red and black lines.

Load the dataset
data(sp500)

6 VAR_cpDetect_Online

Set parameters
library(ggplot2)
set.seed(2024)
n_sp <- nrow(sp500$log_daily_return)
p_sp <- ncol(sp500$log_daily_return)

Calculate average return volatility for all data points
volatility_sum <- rep(0, (n_sp - 21))
for(col in 1:p_sp){

temp <- as.numeric(sp500$log_daily_return[, col])
temp1 <- rep(0, (n_sp - 21))
for(row in 1:(n_sp - 21)){
temp1[row] <- sd(temp[(row):(row + 21)])

}
volatility_sum <- volatility_sum + temp1

}
volatility_ave <- volatility_sum / p_sp

Apply change point detection method
n0 <- 200
w <- 22
alpha <- 1 / 5000

res <- VAR_cpDetect_Online(t(sp500$log_daily_return), n0, w, alpha, 1, FALSE, TRUE, 5 / w, TRUE)
res_sp <- res$alarm_locations + n0
res_sp_cps <- res$cp_locations + n0
Get the estimated starting points of each alarm cluster
cps_est_sp <- unique(res_sp_cps[which(res_sp %in% get_cps(res_sp, w))])

Prepare data for plotting
y_values <- c(volatility_ave)
x_values <- sp500$date[1:(n_sp - 21)]
df <- data.frame(y_values, x_values)
plot_sp <- ggplot(df, aes(y = y_values, x = x_values)) +

geom_line() +
theme(legend.position = "none") +
labs(title = "", x = "", y = "") +
scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
geom_vline(xintercept = sp500$date[res_sp], linetype = "solid", color = "red", alpha = .1) +
geom_vline(xintercept = sp500$date[cps_est_sp], linetype = "solid", color = "black")

Print the detected change points
sp500$date[cps_est_sp] # The dates for the starting of the alarm clusters
plot_sp

VAR_cpDetect_Online VAR_cpDetect_Online: Sequential change point Detection for Vector
Auto-Regressive Models

VAR_cpDetect_Online 7

Description

This function performs sequential change point detection in high-dimensional time series data mod-
eled as a Vector Auto-Regressive (VAR) process, targeting changes in the transition matrices that
encode temporal and cross-correlations.

Usage

VAR_cpDetect_Online(
data,
n0,
w,
alpha,
h,
RLmode = TRUE,
needRefine = TRUE,
refineSize = 1/5,
needRefineCorrection = TRUE

)

Arguments

data A matrix where rows represent different dimensions (features) and columns rep-
resent observations. The first n0 columns are treated as historical data.

n0 Integer. The size of the historical data (number of columns in data treated as
historical).

w Integer. The size of the sliding window used for calculating test statistics; re-
ferred to as the pre-specified detection delay.

alpha Numeric. The desired false alarm rate, where 1/alpha represents the targeted
average run length (ARL), which should exceed the length of the data to be
monitored.

h Integer. The order of the VAR process.

RLmode Logical. If TRUE, the algorithm terminates when the first alarm is issued.

needRefine Logical. If TRUE, a refinement process is conducted to pinpoint the change point
location.

refineSize Numeric. The proportion of the new window size to the original window size,
used during refinement.

needRefineCorrection

Logical. If TRUE, a confirmation step is performed during the refinement process
to verify the detected change point.

Details

This function fits a VAR model to the historical data using the l1 penalty and calculates test statistics
for the sliding window to detect change points. If refinement is enabled, a second step narrows down
the change point location. Optionally, a correction step can verify the detected change points.

8 VAR_cpDetect_Online

Value

A list containing:

RL The index (ignoring historical data) of the last observation read by the algorithm when the first
alarm is issued. This is returned only if RLmode = TRUE.

cp_refined The refined estimate for the location (ignoring historical data) of the change point.
This is returned only if RLmode = TRUE and needRefine = TRUE.

alarm_locations A vector of indices (ignoring historical data) where alarms were raised. This is
returned only if RLmode = FALSE.

cp_locations A vector of refined change point locations (ignoring historical data), corresponding
1-to-1 with the alarm_locations. This is returned only if RLmode = FALSE and needRefine
= TRUE.

Examples

library(MASS)
set.seed(2024)
As <- list(matrix(c(0.5, 0.2, 0.1, 0.4), 2, 2))
As_new <- list(matrix(c(-0.5, 0.2, 0.1, -0.4), 2, 2))
Sig <- diag(2)
data_IC <- generateVAR(n = 400, As = As, Sig = Sig, h = 1)
data_OC <- generateVAR(n = 100, As = As_new, Sig = Sig, h = 1,

isOldProvided = TRUE, oldxs = data_IC[, ncol(data_IC)])
data <- cbind(data_IC, data_OC)
result <- VAR_cpDetect_Online(data, n0 = 300, w = 20, alpha = 1/200, h = 1,

RLmode = TRUE, needRefine = TRUE, refineSize = 1/5,
needRefineCorrection = TRUE)

print(result)

Index

fitVAR, 2

generateVAR, 3
get_cps, 4, 5

sp500, 5

VAR_cpDetect_Online, 5, 6

9

	fitVAR
	generateVAR
	get_cps
	sp500
	VAR_cpDetect_Online
	Index

