Package 'adas.utils'

May 6, 2025

Title Design of Experiments and Factorial Plans Utilities

Version 1.2.0

Description

A number of functions to create and analyze factorial plans according to the Design of Experiments (DoE) approach, with the addition of some utility function to perform some statistical analyses. DoE approach follows the approach in ``Design and Analysis of Experiments" by Douglas C. Montgomery (2019, ISBN:978-1-119-49244-3). The package also provides utilities used in the course ``Analysis of Data and Statistics" at the University of Trento, Italy.

Depends R (>= 4.1.0)

License CC BY 4.0

Encoding UTF-8

RoxygenNote 7.3.2

Imports dplyr, gghalfnorm, ggplot2, glue, grDevices, lubridate, magrittr, purrr, readr, rlang, scales, stats, stringr, tibble, tidyr, utils

LazyData true

Suggests knitr, rmarkdown, testthat (>= 3.0.0), tidyverse

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Paolo Bosetti [aut, cre]

Maintainer Paolo Bosetti <paolo.bosetti@unitn.it>

Repository CRAN

Date/Publication 2025-05-06 10:40:02 UTC

Contents

as_tibble.alias.matrix							•																2
battery		•	•				•											•					3
ccd_experiment_yield		•	•	•			•	•		•	•	•	•		•	•	•	•	 •		•	•	4

chauvenet	4
cotton	5
daniel_plot_hn	5
daniel_plot_qq	6
examples_url	7
expand_formula	7
	8
fp_add_names	8
1	9
•	9
fp_all_drs	0
$fp_augment_axial$	1
fp augment center	1
fp_{design_matrix}	2
fp_effect_names	3
fp fraction	3
fp_gen2alias	4
$fp info \dots \dots$	5
fp_merge_drs	5
fp_read_csv	6
fp treatments	7
fp_write_csv	7
ggTukey	8
ggTukey.data.frame	8
ggTukey.TukeyHSD	9
normplot	
pareto_chart	
pareto_chart.data.frame	
pareto chart.lm	2
plot.alias.matrix	
I	
2	4

Index

as_tibble.alias.matrix

Convert an alias matrix to a tibble

Description

Given an alias matrix, this function returns a tidy tibble of the alias structures, with the added generator column containing the generator (i.e. right-hand side) of the defining relationship that generates each alias.

Usage

S3 method for class 'alias.matrix'
as_tibble(x, ..., compact = TRUE)

battery

Arguments

х	the alias matrix object.
	additional arguments to as_tibble.
compact	a logical: if TRUE, it reports all possible effects combinations, even those with no alias.

Value

a tibble representation of the alias matrix

Examples

```
tibble::as_tibble(fp_alias_matrix(~A*B*C, ~B*C*D))
```

battery

Battery experiment data

Description

Battery life in hour of a factorial experiment with 2 factors and 3 levels each. Factors are:

Usage

battery

Format

A data frame with 36 rows and 6 columns

Details

- Temperature: of the battery during the discharge experiment
- Material: Plate material for the battery

Other columns are:

- StandardOrder: Yate's standard order
- RunOrder: randomized order, in which tests have been executed
- Repeat: repeat number
- Response: battery life in hours

References

Douglas C. Montgomery, "Design and Analysis of Experiments", 8th edition, Wiley, 2019

ccd_experiment_yield Central Composite Design Experiment Yields

Description

Yield data for a two factor CCD experiment

Usage

ccd_experiment_yield

Format

A list with three vectors:

- base: the yield for a 2^2 factorial design, replicated 3 times
- center: the yield for the center points, replicated 4 times
- axial: the yield for the axial points, replicated 2 times

chauvenet

Chauvenet's criterion

Description

Applies the Chauvenet's criterion to a sample, identifying a possible outlier.

Usage

chauvenet(x, threshold = 0.5)

Arguments

Х	the sample vector.
threshold	the threshold for the frequency of the suspect outlier.

Value

an object of class chauvenet with the following components:

sample the name of the sample
s0 the maximum difference
index the index of the suspect outlier
value the value of the suspect outlier
expected the expected frequency of the suspect outlier
reject a logical value indicating whether the suspect outlier should be rejected

cotton

Examples

```
x <- rnorm(100)
chauvenet(x)
chauvenet(x, threshold=0.1)</pre>
```

cotton

Cotton yarn experiment data

Description

Yarn tensile strength in a completely randomized experiment with 5 different levels of cotton fiber.

Usage

cotton

Format

A data frame with 25 rows and 3 columns. Columns represent:

- Run: run order
- Cotton: cotton content in mass percentage
- Strength: yarn tensile strength in N

References

Douglas C. Montgomery, "Design and Analysis of Experiments", 8th edition, Wiley, 2019

daniel_plot_hn Daniel's plot (half-normal)

Description

Given a non-replicated model of a factorial plan, this function provides a half-normal plot of the effects of the model, labeling the main n effects.

Usage

```
daniel_plot_hn(model, ...)
```

model	a linear model
	<pre>further arguments to gghalfnorm::gghalfnorm()</pre>

6

Value

a half-normal plot (GGPlot2 object) with the effects of the model

See Also

gghalfnorm::gghalfnorm()

Examples

daniel_plot_hn(lm(Y~A*B*C*D, data=filtration))

daniel_plot_qq Daniel's plot (quantile-quantile)

Description

Given a non-replicated model of a factorial plan, this function provides a QQ plot of the effects of the model, labeling all the effects.

Usage

```
daniel_plot_qq(model, alpha = 0.5, xlim = c(-3, 3))
```

Arguments

model	a linear model
alpha	the transparency of the horizontal lines
xlim	the limits of the x-axis

Value

a QQ plot (GGPlot2 object) with the effects of the model

Examples

daniel_plot_qq(lm(Y~A*B*C*D, data=filtration))

examples_url Examples URL

Description

Provides the URL for the desired example data, so that it can be more easily downloaded.

Usage

```
examples_url(example)
```

Arguments

example data file name

Value

the full URL for the desired example

Examples

examples_url("battery.dat") |> read.table(header=TRUE)

expand_formula Expand a formula

Description

Expand a formula

Usage

expand_formula(f)

Arguments

f a formula

Value

a formula after expansion, e.g. $Y \sim A + B$ becomes $Y \sim A + B + A : B$

Examples

expand_formula(Y ~ (A + B)^3)

filtration

Description

Non-replicated factorial plan for a slurry filtration process.

Usage

filtration

Format

Factors are:

- A: Temperature
- B: Pressure
- C: Concentration of solid phase
- D: Agitation speed

The yield is in column Y and represents the filtration speed

fp_add_names

Add factor names to a design matrix

Description

Store factor names in the factorial.plan object, as a list within the factor.names attribute.

Usage

fp_add_names(dm, ...)

Arguments

 dm
 the design matrix.

 ...
 a set of factors to name, with their respective names, e.g. A="Temperature", B="Pressure".

 If the factor is not in the design matrix factors list, a warning is printed and the factor is skipped.

Value

the design matrix with the named factors.

Examples

```
fp_design_matrix(3, rep=2) %>%
fp_add_names(A="Temperature", B="Pressure")
```

fp_add_scale

Description

This function allows to add columns to a design matrix with scaled factor, i.e. factors reported in real units rather in coded units (e.g. -1, 1).

Usage

fp_add_scale(dm, ..., suffix = "_s")

Arguments

dm	the design matrix to scale.
	a set of factors to scale, with their respective ranges, e.g. $A=c(10, 30)$, $B=c(0, 1)$.if the range is not a two-number vector or the factor is not numeric, a warning is printed and the factor is skipped.
suffix	the suffix to add to the scaled factor name in creating new columns. If the suffix is the empty string, factors are replaced.

Value

the design matrix with the scaled factors.

Examples

```
fp_design_matrix(3, rep=2) %>%
    fp_add_scale(A=c(10, 30), B=c(0, 1), suffix=".scaled")
```

fp_alias_matrix Build the alias matrix

Description

Given a list of formulas (defining relationships), this function returns a matrix of all possible aliases.

Usage

fp_alias_matrix(...)

Arguments

. . .

one or more formulas, or a single list of formulas, or a fractional factorial plan.

Details

It is also possible to pass a fractional factorial plan, in which case the defining relationships will be extracted from it.

Value

a square matrix: each cell is 0 if there is no alias, or an integer representing the index of the generator that produced that alias in the list of generators.

See Also

fp_fraction()

Examples

```
# with formulas:
fp_alias_matrix(~A*B*C, ~B*C*D)
```

```
# with a fractional factorial plan:
fp_design_matrix(5) %>%
fp_fraction(~A*B*C*D) %>%
fp_fraction(~B*C*D*E) %>%
fp_alias_matrix() %>%
plot()
```

fp_all_drs

Return a list of all defining relationships

Description

Given two or more independent refining relationships, represented as one side formulas,, this function returns a list of all possible defining relationships, including the dependent ones.

Usage

fp_all_drs(...)

Arguments

... formulas, or a single list of formulas.

Details

Defining relationships are represented as one side formulas, e.g. \$I=ABC\$ becomes ~A*B*C.

Value

a list of formulas.

fp_augment_axial

Examples

fp_all_drs(~A*B*C, ~B*C*D)

fp_augment_axial Augment to a central composite design

Description

Adds the axial points to a \$2^n\$ centered factorial plan.

Usage

fp_augment_axial(dm, rep = 1)

Arguments

dm	A factorial plan table, with central points.
rep	The number of replications.

Value

A central composite design (a factorial.plan object).

Examples

```
fp_design_matrix(3) %>%
  fp_augment_center(rep=4) %>%
  fp_augment_axial()
```

fp_augment_center Augment to a centered design

Description

Add the central points to an existing \$2^n\$ factorial plan.

Usage

fp_augment_center(dm, rep = 5)

dm	A factorial plan table.
rep	The number of replications.

Value

A central composite design (a factorial.plan object).

Examples

```
fp_design_matrix(3) %>%
  fp_augment_center()
```

fp_design_matrix Factorial Plan Design Matrix

Description

Builds a design matrix from a one side formula or a number of factors.

Usage

fp_design_matrix(arg, rep = 1, levels = c(-1, 1))

Arguments

arg	Either a formula or a number of factors. If it is a formula, the factors are ex-
	tracted from it. If it is a number, the factors are the first n capital letters.
rep	Number of replications.
levels	Levels of the factors.

Details

Defining relationships are represented as one side formulas, e.g. \$I=ABC\$ becomes ~A*B*C.

Value

A design matrix: a subclass of a tibble of class factorial.plan. The class has the following attributes:

def.rel The defining relationship (a formula).

generators The list of generators (formulas) if the factorial plan is fractional.

fraction The list of fractions (character vectors) if the factorial plan is fractional.

levels The levels of the factors (all equal), in coded units.

scales A list: for each factor, a vector of two values corresponding to the extreme values in coded units.

Examples

```
fp_design_matrix(3, rep=2, levels=c("-", "+"))
```

12

fp_effect_names Factorial Plan effect names from a formula

Description

Returns the effect names from a formula, according to Yates' convention.

Usage

```
fp_effect_names(arg)
```

Arguments

arg A formula.

Details

Defining relationships are represented as one side formulas, e.g. \$I=ABC\$ becomes ~A*B*C.

Value

An ordered factor with the effect names.

Examples

fp_effect_names(~A*B*C)

fp_fraction

Reduce a Factorial Plan by 1/2 Fraction

Description

Reduce a Factorial Plan by 1/2 Fraction

Usage

```
fp_fraction(dm, formula, remove = TRUE)
```

dm	A factorial plan table.
formula	A formula for the defining relationship.
remove	A logical value indicating if the removed columns should be removed. This setting is sticky: if it is FALSE and you pipe the result of this function to another fp_fraction() call, the columns will be kept by default.

A reduced factorial plan table (a factorial.plan object).

See Also

fp_design_matrix()

Examples

```
# build a 2^5-2 fractional factorial plan with defining relationships
# I=ABCD and I=BCDE
fp_design_matrix(5) %>%
    fp_fraction(~A*B*C*D) %>%
    fp_fraction(~B*C*D*E)
```

fp_gen2alias

Given a generator, find the alias

Description

Given a generator and an effect, this function returns the alias.

Usage

```
fp_gen2alias(generator, effect)
```

Arguments

generator	a generator, in the form of ABCD
effect	an effect, in the form of BD

Details

Generators and aliases are strings of capital letters.

Value

An effect (string).

Examples

fp_gen2alias("ABCD", "BD")

fp_info

Description

Print information about the factorial plan.

Usage

fp_info(x, file = "", comment = "")

Arguments

Х	the factorial plan.
file	the file to write the information to. Use console if empty.
comment	a comment mark to add before each line of the information.

Value

No return value, just prints the fp information.

Examples

fp_design_matrix(3, rep=2) %>%
 fp_info()

fp_merge_drs Ret	urn a merged defining relationship
------------------	------------------------------------

Description

This function, given one or more independent refining relationships, returns the most complete relationship, i.e. that which includes all the factors.

Usage

fp_merge_drs(f1, ...)

Arguments

f1	a formula.
	other formulas.

Details

Defining relationships are represented as one side formulas, e.g. \$I=ABC\$ becomes ~A*B*C.

Value

a formula.

Examples

fp_merge_drs(~A*B*C, ~B*C*D)

fp_read_csv

Load a design matrix from a CSV file

Description

Load from a CSV file the design matrix that has previously been saved with fp_write_csv(). It is an error if the loaded data frame has different dimensions or column names than the original design matrix.

Usage

```
fp_read_csv(dm, file, type = c(1, 2), yield = "Y", comment = "#")
```

Arguments

dm	the design matrix.
file	the file to read the design matrix from.
type	the CSV version (1 or 2).
yield	the yield column name.
comment	the comment mark.

Details

Note that the design matrix is sorted by the StdOrder column after loading.

Value

the design matrix with the new values.

See Also

fp_write_csv()

fp_treatments

Description

Builds a list of treatments from a formula, or from a number of factors.

Usage

fp_treatments(arg)

Arguments

arg

Either a formula or a number of factors. If it is a formula, the factors are extracted from it. If it is a number, the factors are the first n capital letters.

Details

Defining relationships are represented as one side formulas, e.g. \$I=ABC\$ becomes ~A*B*C.

Value

A list of treatments (character vector).

Examples

fp_treatments(3)

fp_write_csv Save a design matrix to a CSV file

Description

Writes the design matrix to a CSV file, with a timestamp and comment lines.

Usage

```
fp_write_csv(dm, file, comment = "# ", timestamp = TRUE, type = c(1, 2), ...)
```

dm	the design matrix.
file	the file to write the design matrix to.
comment	a comment mark to add before each line of the information.
timestamp	whether to add a timestamp to the file.
type	the CSV version (1 or 2).
	other parameters passed to write_csv().

Details

Note that the design matrix is saved in the same order of the RunOrder column, i.e. random.

Value

Invisibly return the design matrix, unchanged, for further piping.

ggTukey

Description

This is a generic function for plotting Tukey's HSD test via GGplot2.

Usage

ggTukey(obj, ...)

Arguments

obj	an object to plot: either a TukeyHSD object or a data frame
	Other parameters passed to the specialized functions

Value

a GGPlot2 object

ggTukey.data.frame ggTukey for data.frame

Description

ggTukey for data.frame

Usage

```
## S3 method for class 'data.frame'
ggTukey(obj, formula, which = 1, splt = NULL, ...)
```

obj	a data frame
formula	a formula to be used in the aov call
which	the index of the comparison. Used when the formula in the undelying aov call has more than one term.
splt	a formula to split the data frame
	further parameters passed to TukeyHSD (e.g. conf.level)

ggTukey.TukeyHSD

Value

a GGPlot2 object

Examples

```
library(tidyverse)
battery %>%
ggTukey(Response~Material, splt=~Temperature, conf.level=0.99)
```

ggTukey.TukeyHSD ggTukey for TukeyHSD

Description

Plot Tukey's HSD test via GGplot2.

Usage

S3 method for class 'TukeyHSD'
ggTukey(obj, which = 1, ...)

Arguments

obj	a TukeyHSD object
which	the index of the comparison. Used when the formula in the undelying aov call has more than one term.
	further parameters (currently unused)

Value

a GGPlot2 object

See Also

TukeyHSD() ggTukey.data.frame() ggTukey.TukeyHSD()]]

Examples

```
library(tidyverse)
cotton %>%
    aov(Strength~Cotton, data=.) %>%
    TukeyHSD() %>%
    ggTukey()
```

normplot

Description

Normal probability plot

Usage

```
normplot(data, var, breaks = seq(0.1, 0.9, 0.1), linecolor = "red")
```

Arguments

data	a data frame
var	the variable to plot (data column)
breaks	the breaks for the y-axis
linecolor	the color of the normal probability line

Value

a normal probability plot (GGPlot2 object)

Examples

```
library(tibble)
df <- tibble(
    xn = rnorm(100, mean=20, sd=5),
    xu = runif(100, min=0, max=40)
)
df %>% normplot(xn)
df %>% normplot(xu)
```

pareto_chart Pareto's chart

Description

This is a generic function for Pareto's chart.

Usage

pareto_chart(obj, ...)

Arguments

obj	an object
	further parameters to specialized functions

Value

a Pareto chart of the effects of the model

See Also

pareto_chart.data.frame() pareto_chart.lm()

Examples

```
# For a data frame:
library(tibble)
set.seed(1)
tibble(
  val=rnorm(10, sd=5),
  cat=LETTERS[1:length(val)]
) %>%
pareto_chart(labels=cat, values=val)
```

```
# For a linear model:
pareto_chart(lm(Y~A*B*C*D, data=filtration))
```

Description

Create a Pareto chart for a data frame.

Usage

```
## S3 method for class 'data.frame'
pareto_chart(obj, labels, values, ...)
```

obj	a data frame
labels	the column with the labels of the data frame
values	the column with the values of the data frame
	further parameters (currently unused)

Value

a Pareto chart (GGPlot2 object) of the data frame

Invisibly returns a data frame with the absolute values of the data frame, their sign, and the cumulative value.

Examples

```
library(tibble)
set.seed(1)
tibble(
  val=rnorm(10, sd=5),
  cat=LETTERS[1:length(val)]
  ) %>%
  pareto_chart(labels=cat, values=val)
```

pareto_chart.lm Pareto's chart

Description

Creates a Pareto chart for the effects of a linear model.

Usage

S3 method for class 'lm'
pareto_chart(obj, ...)

Arguments

obj	a linear model
	further parameters (currently unused)

Value

a Pareto chart (GGPlot2 object) of the effects of the model

Invisibly returns a data frame with the absolute effects of the model, their sign, and the cumulative effect.

Examples

pareto_chart(lm(Y~A*B*C*D, data=filtration))

plot.alias.matrix *Plot the alias matrix*

Description

Produces a tile plot of the alias matrix.

Usage

```
## S3 method for class 'alias.matrix'
plot(x, ..., compact = TRUE)
```

Arguments

х	an alias matrix.
	additional arguments to ggplot2::geom_tile().
compact	logical, if TRUE only positive aliases are shown, omitting empty rows and columns.

Value

a ggplot object.

Examples

```
fp_alias_matrix(~A*B*C, ~B*C*D) %>%
    plot()
```

Index

* datasets battery, 3 ccd_experiment_yield, 4 cotton, 5 filtration, 8 as_tibble.alias.matrix, 2 battery, 3 ccd_experiment_yield, 4 chauvenet. 4 cotton, 5 daniel_plot_hn, 5 daniel_plot_qq, 6 examples_url, 7 expand_formula, 7 filtration, 8 fp_add_names, 8 fp_add_scale, 9 fp_alias_matrix, 9 fp_all_drs, 10 fp_augment_axial, 11 fp_augment_center, 11 fp_design_matrix, 12 fp_design_matrix(), 14 fp_effect_names, 13 fp_fraction, 13 fp_fraction(), 10 fp_gen2alias, 14 fp_info, 15 fp_merge_drs, 15 fp_read_csv, 16 fp_treatments, 17 fp_write_csv, 17 fp_write_csv(), 16

ggplot2::geom_tile(), 23
ggTukey.18
ggTukey.data.frame,18
ggTukey.data.frame(),19
ggTukey.TukeyHSD,19
ggTukey.TukeyHSD(),19

normplot, 20

pareto_chart, 20
pareto_chart.data.frame, 21
pareto_chart.data.frame(), 21
pareto_chart.lm, 22
pareto_chart.lm(), 21
plot.alias.matrix, 23

TukeyHSD(), 19

gghalfnorm::gghalfnorm(), 5, 6