Package ‘agtboost’

October 12, 2022
Type Package

Title Adaptive and Automatic Gradient Boosting Computations

Version 0.9.3

Date 2021-11-23

Author Berent Anund Strgmnes Lunde

Maintainer Berent Anund Strgmnes Lunde <lundeberent@gmail.com>

Description Fast and automatic gradient tree boosting designed
to avoid manual tuning and cross-validation by utilizing an information
theoretic approach. This makes the algorithm adaptive to the dataset at
hand; it is completely automatic, and with minimal worries of overfitting.
Consequently, the speed-ups relative to state-of-the-art implementations
can be in the thousands while mathematical and technical knowledge required
on the user are minimized.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>=3.6.0)

Imports methods, Rcpp (>=1.0.1)
LinkingTo Rcpp, ReppEigen
RcppModules aGTBModule
RoxygenNote 7.1.2

Suggests testthat
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-11-23 21:10:02 UTC

R topics documented:

agtboost e e e
caravan.drain e e e e e

2 agtboost
gbtcomplexity e e e e 4
GDL.CONVEIZENCE v v i v e e e e e e e e e e e e e e 5
gbtimportance e e e e e e e e 6
gbtksval L e e e 7
gbtload e 8
gbtSave e e e 8
gbtitrain e e e e 9
predict Repp_ENSEMBLE 11
predict Repp_GBT_COUNT_AUTO e e e e 13

Index 14

agtboost Adaptive and automatic gradient boosting computations.

Description

Adaptive and Automatic Gradient Boosting Computations
Details
agtboost is a lightning fast gradient boosting library designed to avoid manual tuning and cross-
validation by utilizing an information theoretic approach. This makes the algorithm adaptive to the
dataset at hand; it is completely automatic, and with minimal worries of overfitting. Consequently,
the speed-ups relative to state-of-the-art implementations are in the thousands while mathematical
and technical knowledge required on the user are minimized.
Important functions:
* gbt.train: function for training an agtboost ensemble
* predict.Rcpp_ENSEMBLE: function for predicting from an agtboost ensemble
See individual function documentation for usage.
Author(s)

Berent Anund Strgmnes Lunde

caravan.train 3

caravan.train The Insurance Company (TIC) Benchmark

Description

caravan. train and caravan. test both contain a design matrix with 85 columns and a response
vector. The train set consists of 70% of the data, with 4075 rows. The test set consists of the
remaining 30% with 1747 rows. The following references the documentation within the ISLR
package: The original data contains 5822 real customer records. Each record consists of 86 vari-
ables, containing sociodemographic data (variables 1-43) and product ownership (variables 44-86).
The sociodemographic data is derived from zip codes. All customers living in areas with the same
zip code have the same sociodemographic attributes. Variable 86 (Purchase) indicates whether the
customer purchased a caravan insurance policy. Further information on the individual variables can
be obtained at http://www.liacs.nl/~putten/library/cc2000/data.html

Usage

caravan.train; caravan.test

Format

Lists with a design matrix x and response y

Source

The data was originally supplied by Sentient Machine Research and was used in the ColL Challenge
2000.

References

P. van der Putten and M. van Someren (eds) . ColL Challenge 2000: The Insurance Company Case.
Published by Sentient Machine Research, Amsterdam. Also a Leiden Institute of Advanced Com-
puter Science Technical Report 2000-09. June 22, 2000. See http://www.liacs.nl/~putten/library/cc2000/
P. van der Putten and M. van Someren. A Bias-Variance Analysis of a Real World Learning Prob-
lem: The ColL Challenge 2000. Machine Learning, October 2004, vol. 57, iss. 1-2, pp. 177-195,
Kluwer Academic Publishers

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013) An Introduction to Statistical Learning
with applications in R, https://trevorhastie.github.io/ISLR/, Springer-Verlag, New York

Examples

summary(caravan.train)
summary (caravan. test)

https://trevorhastie.github.io/ISLR/

4 gbt.complexity

gbt.complexity Return complexity of model in terms of hyperparameters.

Description

gbt.complexity creates a list of hyperparameters from a model

Usage

ght.complexity(model, type)

Arguments
model object or pointer to object of class ENSEMBLE
type currently supports "xgboost" or "lightgbm"
Details

Returns the complexity of model in terms of hyperparameters associated to model type.

Value

list with type hyperparameters.

Examples

set.seed(123)

library(agtboost)

n <- 10000

xtr <- as.matrix(runif(n, 0, 4))

ytr <- rnorm(n, xtr, 1)

xte <- as.matrix(runif(n, 0, 4))

yte <- rnorm(n, xte, 1)

model <- gbt.train(ytr, xtr, learning_rate = 0.1)
ght.complexity(model, type="xgboost")
gbt.complexity(model, type="lightgbm")

See demo(topic="gbt-complexity"”, package="agtboost")

gbt.convergence 5

gbt.convergence Convergence of agtboost model.

Description

gbt.convergence calculates loss of data over iterations in the model

Usage

gbt.convergence(object, y, x)

Arguments

object Object or pointer to object of class ENSEMBLE

y response vector

X design matrix for training. Must be of type matrix.
Details

Computes the loss on supplied data at each boosting iterations of the model passed as object. This
may be used to visually test for overfitting on test data, or the converce, to check for underfitting or
non-convergence.

Value

vector with $K+18$ elements with loss at each boosting iteration and at the first constant prediction

Examples

Gaussian regression:

x_tr <- as.matrix(runif(500, 0, 4))

y_tr <- rnorm(500, x_tr, 1)

x_te <- as.matrix(runif(500, 0, 4))

y_te <- rnorm(500, x_te, 1)

mod <- gbt.train(y_tr, x_tr)

convergence <- gbt.convergence(mod, y_te, x_te)

which.min(convergence) # Should be fairly similar to boosting iterations + 1
mod$get_num_trees() +1 # num_trees does not include initial prediction

6 gbt.importance

gbt.importance Importance of features in a model.

Description

gbt.importance creates a data. frame of feature importance in a model

Usage

gbt.importance(feature_names, object)

Arguments

feature_names character vector of feature names

object object or pointer to object of class ENSEMBLE

Details

Sums up "expected reduction” in generalization loss (scaled using learning_rate) at each node
for each tree in the model, and attributes it to the feature the node is split on. Returns result in terms
of percents.

Value

data. frame with percentwise reduction in loss of total attributed to each feature.

Examples

Load data

data(caravan.train, package = "agtboost"”)
train <- caravan.train
mod <- gbt.train(train$y, train$x, loss_function = "logloss"”, verbose=10)

feature_names <- colnames(train$x)
imp <- gbt.importance(feature_names, mod)
imp

gbt.ksval 7

gbt.ksval Kolmogorov-Smirnov validation of model

Description
gbt.ksval transforms observations to U(0,1) if the model is correct and performs a Kolmogorov-
Smirnov test for uniformity.

Usage
gbt.ksval(object, y, x)

Arguments

object Object or pointer to object of class ENSEMBLE

y Observations to be tested

X design matrix for training. Must be of type matrix.
Details

Model validation of model passed as object using observations y. Assuming the loss is a negative
log-likelihood and thus a probabilistic model, the transformation

u=Fy(y;z,0) ~U(0,1),

is usually valid. One parameter, 1 = g~ '(f(x)), is given by the model. Remaining parameters are
estimated globally over feature space, assuming they are constant. This then allow the above trans-
formation to be exploited, so that the Kolmogorov-Smirnov test for uniformity can be performed.

If the response is a count model (poisson or negbinom), the transformation
Uy = FY(yz - 1;3:’ 0) + UfY(yia I,G), U~ U(07 1)

is used to obtain a continuous transformation to the unit interval, which, if the model is correct, will
give standard uniform random variables.

Value

Kolmogorov-Smirnov test of model

Examples

Gaussian regression:

x_tr <- as.matrix(runif(500, 0, 4))
y_tr <- rnorm(500, x_tr, 1)

x_te <- as.matrix(runif(500, 0, 4))
y_te <- rnorm(500, x_te, 1)

mod <- gbt.train(y_tr, x_tr)
gbt.ksval(mod, y_te, x_te)

gbt.save

gbht.load Load an aGTBoost Model

Description

gbt.load is an interface for loading a agtboost model.

Usage
gbht.load(file)

Arguments

file Valid file-path to a stored aGTBoost model

Details

The load function for agtboost. Loades a GTB model from a txt file.

Value

Trained aGTBoost model.

See Also

ght.save

gbht.save Save an aGTBoost Model

Description

gbt.save is an interface for storing a agtboost model.

Usage
gbht.save(gbt_model, file)

Arguments

gbt_model Model object or pointer to object of class ENSEMBLE
file Valid file-path

Details

The model-storage function for agtboost. Saves a GTB model as a txt file. Might be retrieved using

gbht.load

gbt.train 9

Value

Txt file that can be loaded using gbt.load.

See Also
gbht.load

gbt.train aGTBoost Training.

Description

gbt.train is an interface for training an agtboost model.

Usage
ght.train(
y’
X,
learning_rate = 0.01,
loss_function = "mse”,

nrounds = 50000,

verbose = 0,

gsub_compare,

algorithm = "global_subset”,
previous_pred = NULL,

weights = NULL,
force_continued_learning = FALSE,
offset = NULL,

)

Arguments
y response vector for training. Must correspond to the design matrix x.
X design matrix for training. Must be of type matrix.

learning_rate control the learning rate: scale the contribution of each tree by a factor of @ <
learning_rate < 1 when it is added to the current approximation. Lower value
for learning_rate implies an increase in the number of boosting iterations:
low learning_rate value means model more robust to overfitting but slower to
compute. Default: 0.01

loss_function specify the learning objective (loss function). Only pre-specified loss functions
are currently supported.
* mse regression with squared error loss (Default).

* logloss logistic regression for binary classification, output score before
logistic transformation.

10

nrounds
verbose

gsub_compare

algorithm

previous_pred

weights

gbt.train

* poisson Poisson regression for count data using a log-link, output score
before natural transformation.

* gamma: :neginv gamma regression using the canonical negative inverse
link. Scaling independent of y.

e gamma: :log gamma regression using the log-link. Constant information
parametrisation.

* negbinom Negative binomial regression for count data with overdispersion.
Log-link.
* count: :auto Chooses automatically between Poisson or negative binomial
regression.
a just-in-case max number of boosting iterations. Default: 50000
Enable boosting tracing information at i-th iteration? Default: 0.

Deprecated. Boolean: Global-subset comparisons. FALSE means standard GTB,
TRUE compare subset-splits with global splits (next root split). Default: TRUE.

specify the algorithm used for gradient tree boosting.

e vanilla ordinary gradient tree boosting. Trees are optimized as if they
were the last tree.

* global_subset function-change to target maximized reduction in general-
ization loss for individual datapoints

prediction vector for training. Boosted training given predictions from another
model.

weights vector for scaling contributions of individual observations. Default NULL
(the unit vector).

force_continued_learning

offset

Details

Boolean: FALSE (default) stops at information stopping criterion, TRUE stops at
nround iterations.

add offset to the model g(mu) = offset + F(x).
additional parameters passed.

« if loss_function is 'negbinom’, dispersion must be provided in . . .

These are the training functions for an agtboost.

Explain the philosophy and the algorithm and a little math

gbt.train learn trees with adaptive complexity given by an information criterion, until the same
(but scaled) information criterion tells the algorithm to stop. The data used for training at each
boosting iteration stems from a second order Taylor expansion to the loss function, evaluated at
predictions given by ensemble at the previous boosting iteration.

Value

An object of class ENSEMBLE with some or all of the following elements:

* handle a handle (pointer) to the agtboost model in memory.

predict.Repp_ ENSEMBLE 11

* initialPred a field containing the initial prediction of the ensemble.
* set_param function for changing the parameters of the ensemble.

* train function for re-training (or from scratch) the ensemble directly on vector y and design
matrix Xx.

* predict function for predicting observations given a design matrix

* predict?2 function as above, but takes a parameter max number of boosting ensemble itera-
tions.

* estimate_generalization_loss function for calculating the (approximate) optimism of the
ensemble.

* get_num_trees function returning the number of trees in the ensemble.

References

Berent Anund Strgmnes Lunde, Tore Selland Kleppe and Hans Julius Skaug, "An Information
Criterion for Automatic Gradient Tree Boosting", 2020, https://arxiv.org/abs/2008.05926

See Also

predict.Rcpp_ENSEMBLE

Examples

A simple gtb.train example with linear regression:
X <- runif(500, 0, 4)

y <- rnorm(500, x, 1)

x.test <- runif(500, 0, 4)

y.test <- rnorm(500, x.test, 1)

mod <- gbt.train(y, as.matrix(x))
y.pred <- predict(mod, as.matrix(x.test))

plot(x.test, y.test)
points(x.test, y.pred, col="red")

predict.Rcpp_ENSEMBLE aGTBoost Prediction

Description

predict is an interface for predicting from a agtboost model.

Usage

S3 method for class 'Rcpp_ENSEMBLE'
predict(object, newdata, ...)

https://arxiv.org/abs/2008.05926

12 predict.Repp_ ENSEMBLE

Arguments
object Object or pointer to object of class ENSEMBLE
newdata Design matrix of data to be predicted. Type matrix
additional parameters passed. Currently not in use.
Details

The prediction function for agtboost. Using the generic predict function in R is also possible,
using the same arguments.

Value

For regression or binary classification, it returns a vector of length nrows (newdata).

References

Berent Anund Strgmnes Lunde, Tore Selland Kleppe and Hans Julius Skaug, "An Information
Criterion for Automatic Gradient Tree Boosting", 2020, https://arxiv.org/abs/2008.05926

See Also

gbht.train

Examples

A simple gtb.train example with linear regression:
X <- runif(500, 0, 4)

y <- rnorm(500, x, 1)

x.test <- runif(500, 0, 4)

y.test <- rnorm(500, x.test, 1)

mod <- gbt.train(y, as.matrix(x))

predict is overloaded
y.pred <- predict(mod, as.matrix(x.test))

plot(x.test, y.test)
points(x.test, y.pred, col="red")

https://arxiv.org/abs/2008.05926

predict.Repp_GBT_COUNT_AUTO 13

predict.Rcpp_GBT_COUNT_AUTO
aGTBoost Count-Regression Auto Prediction

Description

predict is an interface for predicting from a agtboost model.

Usage
S3 method for class 'Rcpp_GBT_COUNT_AUTO'
predict(object, newdata, ...)

Arguments
object Object or pointer to object of class GBT_ZI_MIX
newdata Design matrix of data to be predicted. Type matrix

additional parameters passed. Currently not in use.

Details
The prediction function for agtboost. Using the generic predict function in R is also possible,
using the same arguments.

Value

For regression or binary classification, it returns a vector of length nrows (newdata).

References
Berent Anund Strgmnes Lunde, Tore Selland Kleppe and Hans Julius Skaug, "An Information
Criterion for Automatic Gradient Tree Boosting", 2020, https://arxiv.org/abs/2008.05926
See Also

gbt.train

Examples

A simple gtb.train example with linear regression:
Random generation of zero-inflated poisson
2+2

https://arxiv.org/abs/2008.05926

Index

x datasets
caravan.train, 3

agtboost, 2

caravan.test (caravan.train), 3
caravan.train, 3

gbt.complexity, 4
gbt.convergence, 5
gbt.importance, 6
ght.ksval, 7
ght.load, 8, 9
ght.save, 8, 8
gbt.train, 2,9, 12, 13

predict.Rcpp_ENSEMBLE, 2, 17, 11
predict.Rcpp_GBT_COUNT_AUTO, 13

14

	agtboost
	caravan.train
	gbt.complexity
	gbt.convergence
	gbt.importance
	gbt.ksval
	gbt.load
	gbt.save
	gbt.train
	predict.Rcpp_ENSEMBLE
	predict.Rcpp_GBT_COUNT_AUTO
	Index

