Package ‘alakazam’

September 30, 2023

Type Package

Version 1.3.0

Date 2023-09-29

Title Immunoglobulin Clonal Lineage and Diversity Analysis

Description Provides methods for high-throughput adaptive immune
receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In
particular, immunoglobulin (Ig) sequence lineage reconstruction,
lineage topology analysis, diversity profiling, amino acid property
analysis and gene usage.
Citations:
Gupta and Vander Heiden, et al (2017) <doi:10.1093/bioinformatics/btv359>,
Stern, Yaari and Vander Heiden, et al (2014) <doi:10.1126/scitranslmed.3008879>.

License AGPL-3
URL https://alakazam.readthedocs.io/

BugReports https://bitbucket.org/kleinstein/alakazam/issues
LazyData true

BuildVignettes true

VignetteBuilder knitr, rmarkdown

Encoding UTF-8

LinkingTo Rcpp

biocViews Software, AnnotationData

Depends R (>=4.0), ggplot2 (>= 3.4.0)

Imports airr (>= 1.4.1), ape, dplyr (>= 1.0), graphics, grid, igraph
(>=1.5.0), Matrix (>= 1.3-0), methods, progress, Rcpp (>=
0.12.12), readr, rlang, scales, seqinr, stats, stringi, tibble,
tidyr (>= 1.0), utils, Biostrings (>= 2.56.0),
GenomicAlignments (>= 1.24.0), IRanges (>=2.22.2)

Suggests knitr, rmarkdown, testthat

RoxygenNote 7.2.3

https://doi.org/10.1093/bioinformatics/btv359
https://doi.org/10.1126/scitranslmed.3008879
https://alakazam.readthedocs.io/
https://bitbucket.org/kleinstein/alakazam/issues

2 R topics documented:

Collate 'Alakazam.R' 'AminoAcids.R' 'Classes.R' 'Core.R' 'Data.R’
'Diversity.R' 'Deprecated.R' 'Fastq.R' 'Gene.R' 'Lineage.R'
'‘ReppExports.R' 'Sequence.R' "Topology.R'

NeedsCompilation yes

Author Susanna Marquez [cre, aut],
Namita Gupta [aut],
Nima Nouri [aut],
Ruoyi Jiang [aut],
Julian Zhou [aut],
Kenneth Hoehn [aut],
Daniel Gadala-Maria [ctb],
Edel Aron [ctb],
Cole Jensen [ctb],
Jason Vander Heiden [aut],
Steven Kleinstein [aut, cph]

Maintainer Susanna Marquez <susanna.marquez@yale.edu>
Repository CRAN
Date/Publication 2023-09-30 01:12:40 UTC

R topics documented:

ABBREV_AA . . . e 4
AbundanceCurve-class e 4
alakazam L 5
aliphatic e e 7
alphaDiversity L e 8
aminoAcidProperties L L L 10
baseTheme e 12
buildPhylipLineage 13
bulk . . . e 15
calcCoverage e e 16
calcDiversity e e e e e e 17
ChangeoClone-class i e 18
charge L e 19
checkColumns e 20
collapseDuplicates e 21
combinelgphyml 23
countCIones e e 24
COUNtGENGS v v v e e e e e e e e e e e e 26
countPatterns L. e e 27
cpuCount e e e 28
DEFAULT_COLORS e s s e e 29
DiversityCurve-class e 30
EdgeTest-class e 31
estimateAbundance L. 32

ExamplelOX o oo 33

R topics documented: 3

ExampleDb e e e 34
ExampleDbChangeo 35
ExampleTrees e 36
extractVRegion 36
CEtAAMALTIX e e e e e e 37
getDNAMaLtrix o e e 38
getMRCA 39
getPathLengths e 40
getPositionQuality L 41
GELSEZMENt e e e e e e e 42
graphToPhylo 45
STAVY o v e e e e e e e e e e e e e e e 46
gridPlot 47
GrOUPGENES v v v e e e e e e e 48
IMGT_REGIONS 50
isValidAASeq e 50
TUPAC_CODES 51
junctionAlignment L L L e e e 52
makeChangeoClone 53
makeTempDir e 56
maskPositionsByQuality 57
maskSeqEnds 58
maskSeqGaps 59
MRCATest-class e 60
nonsquareDist L. L e e e 61
padSeqEnds L 62
pairwiseDisto 63
pairwiseEqual 64
permutelabels. oL e e 64
phyloToGraph 65
plotAbundanceCurve 66
plotDiversityCurve e e e e e e 68
plotDiversityTest e 69
plotEdgeTest L 70
PIotMRCATest o 72
plotSubtrees e e e e 73
polar L e e 75
progressBar 76
rarefyDiversity L L e e e e 76
readChangeoDb 78
readFastqgDb 79
readlgphyml oL 81
seqDist . . oL L e e e e 83
seqEqualo 84
SingleDb L 85
SOMtGENES 86
stoufferMeta L L e e 87

summarizeSubtrees e e e e e 87

AbundanceCurve-class

tableEdges L e e 88
testDIversity e 89
testEdges L 92
testMRCA e 93
translateDNA o L 94
translateStrings L. e e e e e 95
writeChangeoDb 96

Index 97

ABBREV_AA Amino acid abbreviation translations
Description

Mappings of amino acid abbreviations.

Usage

ABBREV_AA

Format

Named character vector defining single-letter character codes to three-letter abbreviation mappings.

Examples

aa <- c("Ala", "Ile", "Trp")
translateStrings(aa, ABBREV_AA)

AbundanceCurve-class S4 class defining a clonal abundance curve

Description

AbundanceCurve defines clonal abundance values.

Usage

S4 method for signature 'AbundanceCurve'
print(x)

S4 method for signature 'AbundanceCurve,missing'
plot(x, vy, ...)

alakazam 5

Arguments
X AbundanceCurve object
y ignored.
arguments to pass to plotDiversityCurve.
Slots

abundance data.frame with relative clonal abundance data and confidence intervals, containing the
following columns:

e group: group identifier.

e clone_id or CLONE: clone identifier.

¢ p: relative abundance of the clone.

* lower: lower confidence inverval bound.
* upper: upper confidence interval bound.
¢ rank: the rank of the clone abundance.

bootstrap data.frame of bootstrapped clonal distributions.

clone_by string specifying the name of the clone column.

group_by string specifying the name of the grouping column.

groups vector specifying the names of unique groups in group column.

n numeric vector indication the number of sequences sampled in each group.
nboot numeric specifying the number of bootstrap iterations to use.

ci confidence interval defining the upper and lower bounds (a value between 0 and 1).

alakazam The Alakazam package

Description
alakazam in a member of the Immcantation framework of tools and serves five main purposes:

 Providing core functionality for other R packages in Immcantation. This includes common
tasks such as file I/O, basic DNA sequence manipulation, and interacting with V(D)J segment
and gene annotations.

* Providing an R interface for interacting with the output of the pPRESTO and Change-O tool
suites.

* Performing clonal abundance and diversity analysis on lymphocyte repertoires.
* Performing lineage reconstruction on clonal populations of immunoglobulin (Ig) sequences.
* Performing physicochemical property analyses of lymphocyte receptor sequences.

For additional details regarding the use of the alakazam package see the vignettes:
browseVignettes("alakazam")

6 alakazam

File I/0

* readChangeoDb: Input Change-O style files.
* writeChangeoDb: Output Change-O style files.

Sequence cleaning

* maskSeqEnds: Mask ragged ends.
* maskSeqGaps: Mask gap characters.

* collapseDuplicates: Remove duplicate sequences.

Lineage reconstruction

* makeChangeoClone: Clean sequences for lineage reconstruction.

* buildPhylipLineage: Perform lineage reconstruction of Ig sequences.

Lineage topology analysis

* tableEdges: Tabulate annotation relationships over edges.

* testEdges: Significance testing of annotation edges.
 testMRCA: Significance testing of MRCA annotations.

* summarizeSubtrees: Various summary statistics for subtrees.

* plotSubtrees: Plot distributions of summary statistics for a population of trees.

Diversity analysis
* countClones: Calculate clonal abundance.
* estimateAbundance: Bootstrap clonal abundance curves.
* alphaDiversity: Generate clonal alpha diversity curves.
* plotAbundanceCurve: Plot clone size distribution as a rank-abundance
* plotDiversityCurve: Plot clonal diversity curves.

* plotDiversityTest: Plot testing at given diversity hill indicex.

Ig and TCR sequence annotation

* countGenes: Calculate Ig and TCR allele, gene and family usage.
* extractVRegion: Extract CDRs and FWRs sub-sequences.

» getAllele: Get V(D)J allele names.

* getGene: Get V(D)J gene names.

 getFamily: Get V(D)J family names.

* junctionAlignment: Junction alignment properties

aliphatic 7

Sequence distance calculation

* seqDist: Calculate Hamming distance between two sequences.
* seqEqual: Test two sequences for equivalence.
* pairwiseDist: Calculate a matrix of pairwise Hamming distances for a set of sequences.

 pairwiseEqual: Calculate a logical matrix of pairwise equivalence for a set of sequences.

Amino acid propertes

* translateDNA: Translate DNA sequences to amino acid sequences.
» aminoAcidProperties: Calculate various physicochemical properties of amino acid sequences.

* countPatterns: Count patterns in sequences.

References
1. Vander Heiden JA, Yaari G, et al. pRESTO: a toolkit for processing high-throughput sequenc-
ing raw reads of lymphocyte receptor repertoires. Bioinformatics. 2014 30(13):1930-2.

2. Stern JNH, Yaari G, Vander Heiden JA, et al. B cells populating the multiple sclerosis brain
mature in the draining cervical lymph nodes. Sci Transl Med. 2014 6(248):248ral07.

3. Wu Y-CB, et al. Influence of seasonal exposure to grass pollen on local and peripheral blood
IgE repertoires in patients with allergic rhinitis. J Allergy Clin Immunol. 2014 134(3):604-12.

4. Gupta NT, Vander Heiden JA, et al. Change-O: a toolkit for analyzing large-scale B cell
immunoglobulin repertoire sequencing data. Bioinformatics. 2015 Oct 15;31(20):3356-8.

aliphatic Calculates the aliphatic index of amino acid sequences

Description

aliphatic calculates the aliphatic index of amino acid sequences using the method of Ikai. Non-

informative positions are excluded, where non-informative is defined as any character in c("X",
n_n n n H*H)

’ L}

Usage

aliphatic(seq, normalize = TRUE)

Arguments
seq vector of strings containing amino acid sequences.
normalize if TRUE then divide the aliphatic index of each amino acid sequence by the num-
ber of informative positions. Non-informative position are defined by the pres-
ence any character in c("X", "-", ".", "x"). If FALSE then return the raw

aliphatic index.

8 alphaDiversity

Value

A vector of the aliphatic indices for the sequence(s).

References

1. Ikai AJ. Thermostability and aliphatic index of globular proteins. J Biochem. 88, 1895-1898

(1980).
Examples
seq <- c("CARDRSTPWRRGIASTTVRTSW", NA, "XXTQMYVRT")
aliphatic(seq)
alphaDiversity Calculate clonal alpha diversity
Description

alphaDiversity takes in a data.frame or AbundanceCurve and computes diversity scores (D)) over
an interval of diversity orders (g).

Usage
alphaDiversity(data, min_q = @, max_q = 4, step_q = 0.1, ci =0.95, ...)
Arguments
data data.frame with Change-O style columns containing clonal assignments or a
AbundanceCurve generate by estimate Abundance object containing a previously
calculated bootstrap distributions of clonal abundance.
min_g minimum value of q.
max_g maximum value of q.
step_q value by which to increment q.
ci confidence interval to calculate; the value must be between O and 1.
additional arguments to pass to estimateAbundance. Additional arguments are
ignored if a AbundanceCurve is provided as input.
Details

Clonal diversity is calculated using the generalized diversity index (Hill numbers) proposed by Hill
(Hill, 1973). See calcDiversity for further details.

To generate a smooth curve, D is calculated for each value of ¢ from min_q to max_q incremented
by step_q. When uniform=TRUE variability in total sequence counts across unique values in the
group column is corrected by repeated resampling from the estimated complete clonal distribution
to a common number of sequences. The complete clonal abundance distribution that is resampled

alphaDiversity 9

from is inferred by using the Chaol estimator to infer the number of unseen clones, followed by
applying the relative abundance correction and unseen clone frequencies described in Chao et al,
2015.

The diversity index (D) for each group is the mean value of over all resampling realizations. Confi-
dence intervals are derived using the standard deviation of the resampling realizations, as described
in Chao et al, 2015.

Significance of the difference in diversity index (D) between groups is tested by constructing a
bootstrap delta distribution for each pair of unique values in the group column. The bootstrap delta
distribution is built by subtracting the diversity index Da in group a from the corresponding value Db
in group b, for all bootstrap realizations, yielding a distribution of nboot total deltas; where group
a is the group with the greater mean D. The p-value for hypothesis Da != Db is the value of P(®)
from the empirical cumulative distribution function of the bootstrap delta distribution, multiplied
by 2 for the two-tailed correction.

Note, this method may inflate statistical significance when clone sizes are uniformly small, such as
when most clones sizes are 1, sample size is small, and max_n is near the total count of the smallest
data group. Use caution when interpreting the results in such cases.

Value

A DiversityCurve object summarizing the diversity scores.

References

1. Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973
54(2):427-32.

2. Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat.
1984 11, 265270.

3. Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling
and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67.

4. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-
Turing sample coverage theory. Ecology. 2015 96, 11891201.

See Also

See calcDiversity for the basic calculation and DiversityCurve for the return object. See plotDiver-
sityCurve for plotting the return object.

Examples

Group by sample identifier in two steps

abund <- estimateAbundance(ExampleDb, group="sample_id"”, nboot=100)
div <- alphaDiversity(abund, step_g=1, max_g=10)
plotDiversityCurve(div, legend_title="Sample")

Grouping by isotype rather than sample identifier in one step

div <- alphaDiversity(ExampleDb, group="c_call”, min_n=40@, step_qg=1, max_g=10,
nboot=100)

plotDiversityCurve(div, legend_title="Isotype")

10 aminoAcidProperties

aminoAcidProperties Calculates amino acid chemical properties for sequence data

Description

aminoAcidProperties calculates amino acid sequence physicochemical properties, including length,
hydrophobicity, bulkiness, polarity, aliphatic index, net charge, acidic residue content, basic residue
content, and aromatic residue content.

Usage
aminoAcidProperties(
data,
property = c("length”, "gravy"”, "bulk”, "aliphatic”, "polarity”, "charge"”, "basic”,
"acidic"”, "aromatic"),
seq = "junction”,
nt = TRUE,
trim = FALSE,
label = NULL,
)
Arguments
data data. frame containing sequence data.
property vector strings specifying the properties to be calculated. Defaults to calculating
all defined properties.
seq character name of the column containing input sequences.
nt boolean, TRUE if the sequences (or sequence) are DNA and will be translated.
trim if TRUE remove the first and last codon/amino acids from each sequence before
calculating properties. If FALSE do not modify input sequences.
label name of sequence region to add as prefix to output column names.
additional named arguments to pass to the functions gravy, bulk, aliphatic, polar
or charge.
Details

For all properties except for length, non-informative positions are excluded, where non-informative

n_n nono ngn
- * .

is defined as any character in c("X", , ",

The scores for gravy, bulkiness and polarity are calculated as simple averages of the scores for
each informative positions. The basic, acid and aromatic indices are calculated as the fraction of
informative positions falling into the given category.

The aliphatic index is calculated using the Ikai, 1980 method.

aminoAcidProperties 11

The net charge is calculated using the method of Moore, 1985, excluding the N-terminus and C-
terminus charges, and normalizing by the number of informative positions. The default pH for the
calculation is 7.4.

The following data sources were used for the default property scores:

Value

hydropathy: Kyte & Doolittle, 1982.
bulkiness: Zimmerman et al, 1968.
polarity: Grantham, 1974.

pK: EMBOSS.

A modified data data.frame with the following columns:

*_aa_length: number of amino acids.

*_aa_gravy: grand average of hydrophobicity (gravy) index.
*_aa_bulk: average bulkiness of amino acids.

*_aa_aliphatic: aliphatic index.

*_aa_polarity: average polarity of amino acids.

*_aa_charge: net charge.

*_aa_basic: fraction of informative positions that are Arg, His or Lys.
*_aa_acidic: fraction of informative positions that are Asp or Glu.

*_aa_aromatic: fraction of informative positions that are His, Phe, Trp or Tyr.

Where * is the value from label or the name specified for seq if label=NULL.

References

1.

Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins
by statistical methods. J Theor Biol 21, 170-201 (1968).

. Grantham R. Amino acid difference formula to help explain protein evolution. Science 185,

862-864 (1974).

Ikai AJ. Thermostability and aliphatic index of globular proteins. J Biochem 88, 1895-1898
(1980).

Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J
Mol Biol 157, 105-32 (1982).

. Moore DS. Amino acid and peptide net charges: A simple calculational procedure. Biochem

Educ 13, 10-11 (1985).

. Wu YC, et al. High-throughput immunoglobulin repertoire analysis distinguishes between

human IgM memory and switched memory B-cell populations. Blood 116, 1070-8 (2010).

. Wu YC, et al. The relationship between CD27 negative and positive B cell populations in

human peripheral blood. Front Immunol 2, 1-12 (2011).

. https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html

https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html

12 baseTheme

See Also

See countPatterns for counting the occurance of specific amino acid subsequences. See gravy, bulk,
aliphatic, polar and charge for functions that calculate the included properties individually.

Examples

Subset example data
db <- ExampleDb[c(1,10,100), c("sequence_id", "junction")]

Calculate default amino acid properties from DNA sequences
aminoAcidProperties(db, seg="junction")

Calculate default amino acid properties from amino acid sequences

Use a custom output column prefix

db$junction_aa <- translateDNA(db$junction)

aminoAcidProperties(db, seq="junction_aa"”, label="junction”, nt=FALSE)

Use the Grantham, 1974 side chain volume scores from the seqinr package

Set pH=7.0 for the charge calculation

Calculate only average volume and charge

Remove the head and tail amino acids from the junction, thus making it the CDR3

library(seqinr)

data(aaindex)

x <- aaindex[["GRAR740103"]1]$I

Rename the score vector to use single-letter codes

names(x) <- translateStrings(names(x), ABBREV_AA)

Calculate properties

aminoAcidProperties(db, property=c("bulk”, "charge"), seg="junction”,
trim=TRUE, label="cdr3", bulkiness=x, pH=7.0)

baseTheme Standard ggplot settings

Description

baseTheme defines common ggplot theme settings for plotting.

Usage
baseTheme(sizing = c("figure”, "window"))
Arguments
sizing defines the style and sizing of the theme. One of c("figure”, "window")
where sizing="figure" is appropriately sized for pdf export at 7 to 7.5 inch
width, and sizing="window" is sized for an interactive session.
Value

A ggplot2 object.

buildPhylipLineage

See Also

theme.

13

buildPhyliplLineage Infer an Ig lineage using PHYLIP

Description

buildPhyliplLineage reconstructs an Ig lineage via maximum parsimony using the dnapars appli-
cation, or maximum liklihood using the dnaml application of the PHYLIP package.

Usage

buildPhyliplLineage(

clone,

phylip_exec,

dist_mat = getDNAMatrix(gap = 0),
rm_temp = FALSE,
verbose = FALSE,
temp_path = NULL,
onetree = FALSE,

branch_length = c("mutations”, "distance”)
)
Arguments
clone ChangeoClone object containing clone data.

phylip_exec

dist_mat

rm_temp

verbose

temp_path
onetree

branch_length

absolute path to the PHYLIP dnapars executable.

character distance matrix to use for reassigning edge weights. Defaults to a
Hamming distance matrix returned by getDNAMatrix with gap=0. If gap char-
acters, c("-", "."), are assigned a value of -1 in dist_mat then contiguous
gaps of any run length, which are not present in both sequences, will be counted
as a distance of 1. Meaning, indels of any length will increase the sequence dis-
tance by 1. Gap values other than -1 will return a distance that does not consider

indels as a special case.

if TRUE delete the temporary directory after running dnapars; if FALSE keep the
temporary directory.

if FALSE suppress the output of dnapars; if TRUE STDOUT and STDERR of
dnapars will be passed to the console.

specific path to temp directory if desired.
if TRUE save only one tree.

specifies how to define branch lengths; one of "mutations” or "distance”.
If set to "mutations” (default), then branch lengths represent the number of
mutations between nodes. If set to "distance”, then branch lengths represent
the expected number of mutations per site, unaltered from PHYLIP output.

14 buildPhylipLineage

Details

buildPhylipLineage builds the lineage tree of a set of unique Ig sequences via maximum parsi-
mony through an external call to the dnapars application of the PHYLIP package. dnapars is called
with default algorithm options, except for the search option, which is set to "Rearrange on one best
tree". The germline sequence of the clone is used for the outgroup.

Following tree construction using dnapars, the dnapars output is modified to allow input sequences
to appear as internal nodes of the tree. Intermediate sequences inferred by dnapars are replaced
by children within the tree having a Hamming distance of zero from their parent node. With the
default dist_mat, the distance calculation allows IUPAC ambiguous character matches, where an
ambiguous character has distance zero to any character in the set of characters it represents. Dis-
tance calculation and movement of child nodes up the tree is repeated until all parent-child pairs
have a distance greater than zero between them. The germline sequence (outgroup) is moved to the
root of the tree and excluded from the node replacement processes, which permits the trunk of the
tree to be the only edge with a distance of zero. Edge weights of the resultant tree are assigned as
the distance between each sequence.

Value

An igraph graph object defining the Ig lineage tree. Each unique input sequence in clone is a
vertex of the tree, with additional vertices being either the germline (root) sequences or inferred
intermediates. The graph object has the following attributes.

Vertex attributes:
* name: value in the sequence_id column of the data slot of the input clone for observed

sequences. The germline (root) vertex is assigned the name "Germline" and inferred interme-
diates are assigned names with the format "Inferred1", "Inferred2",

* sequence: value in the sequence column of the data slot of the input clone for observed
sequences. The germline (root) vertex is assigned the sequence in the germline slot of the
input clone. The sequence of inferred intermediates are extracted from the dnapars output.

* label: same as the name attribute.
Additionally, each other column in the data slot of the input clone is added as a vertex attribute

with the attribute name set to the source column name. For the germline and inferred intermediate
vertices, these additional vertex attributes are all assigned a value of NA.

Edge attributes:

* weight: Hamming distance between the sequence attributes of the two vertices.

e label: same as the weight attribute.
Graph attributes:

* clone: clone identifier from the clone slot of the input ChangeoClone.
* v_gene: V-segment gene call from the v_gene slot of the input ChangeoClone.
e j_gene: J-segment gene call from the j_gene slot of the input ChangeoClone.

* junc_len: junction length (nucleotide count) from the junc_len slot of the input ChangeoClone.

Alternatively, this function will return an phylo object, which is compatible with the ape
package. This object will contain reconstructed ancestral sequences in nodes attribute.

bulk 15

References

1. Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 1989 5:164-
166.

2. Stern JNH, Yaari G, Vander Heiden JA, et al. B cells populating the multiple sclerosis brain
mature in the draining cervical lymph nodes. Sci Transl Med. 2014 6(248):248ral07.

See Also

Takes as input a ChangeoClone. Temporary directories are created with makeTempDir. Distance is
calculated using seqDist. See [igraph](http://www.rdocumentation.org/packages/igraph/topics/aaa-
igraph-package) and [igraph.plotting](http://www.rdocumentation.org/packages/igraph/topics/plot.common)
for working with igraph graph objects.

Examples

Not run:

Preprocess clone

db <- subset(ExampleDb, clone_id == 3138)

clone <- makeChangeoClone(db, text_fields=c("”sample_id", "c_call"),
num_fields="duplicate_count"”)

Run PHYLIP and process output
phylip_exec <- "~/apps/phylip-3.695/bin/dnapars”
graph <- buildPhylipLineage(clone, phylip_exec, rm_temp=TRUE)

Plot graph with a tree layout

library(igraph)

plot(graph, layout=layout_as_tree, vertex.label=V(graph)$c_call,
vertex.size=50, edge.arrow.mode=0, vertex.color="grey80")

To consider each indel event as a mutation, change the masking character
and distance matrix
clone <- makeChangeoClone(db, text_fields=c("sample_id"”, "c_call"),
num_fields="duplicate_count"”, mask_char="-"
graph <- buildPhylipLineage(clone, phylip_exec, dist_mat=getDNAMatrix(gap=-1),
rm_temp=TRUE)

End(Not run)

bulk Calculates the average bulkiness of amino acid sequences

Description

bulk calculates the average bulkiness score of amino acid sequences. Non-informative positions

n_n n.on ngn
- * .

are excluded, where non-informative is defined as any character in c("X", ,

16 calcCoverage

Usage
bulk(seq, bulkiness = NULL)

Arguments
seq vector of strings containing amino acid sequences.
bulkiness named numerical vector defining bulkiness scores for each amino acid, where
names are single-letter amino acid character codes. If NULL, then the Zimmer-
man et al, 1968 scale is used.
Value

A vector of bulkiness scores for the sequence(s).

References

1. Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins
by statistical methods. J Theor Biol 21, 170-201 (1968).

See Also

For additional size related indices see aaindex.

Examples

Default bulkiness scale
seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT")
bulk(seq)

Use the Grantham, 1974 side chain volumn scores from the seqinr package
library(seqinr)

data(aaindex)

X <- aaindex[["GRAR740103"]1]$I

Rename the score vector to use single-letter codes

names(x) <- translateStrings(names(x), ABBREV_AA)

Calculate average volume

bulk(seq, bulkiness=x)

calcCoverage Calculate sample coverage

Description

calcCoverage calculates the sample coverage estimate, a measure of sample completeness, for
varying orders using the method of Chao et al, 2015, falling back to the Chaol method in the first
order case.

calcDiversity 17

Usage

calcCoverage(x, r = 1)

Arguments
X numeric vector of abundance counts.
r coverage order to calculate.

Value

The sample coverage of the given order r.

References

1. Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat.
1984 11, 265270.

2. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-
Turing sample coverage theory. Ecology. 2015 96, 11891201.

See Also
Used by alphaDiversity.

Examples

Calculate clone sizes
clones <- countClones(ExampleDb, groups="sample_id")

Calculate 1first order coverage for a single sample

calcCoverage(clones$seq_count[clones$sample_id == "+7d"])
calcDiversity Calculate the diversity index
Description

calcDiversity calculates the clonal diversity index for a vector of diversity orders.

Usage
calcDiversity(p, q)

Arguments

p numeric vector of clone (species) counts or proportions.

q numeric vector of diversity orders.

18 ChangeoClone-class

Details

This method, proposed by Hill (Hill, 1973), quantifies diversity as a smooth function (D) of a
single parameter ¢q. Special cases of the generalized diversity index correspond to the most popular
diversity measures in ecology: species richness (¢ = 0), the exponential of the Shannon-Weiner
index (q approaches 1), the inverse of the Simpson index (¢ = 2), and the reciprocal abundance
of the largest clone (g approaches 4+-00). At ¢ = 0 different clones weight equally, regardless of
their size. As the parameter ¢ increase from 0 to +-oo the diversity index (D) depends less on rare
clones and more on common (abundant) ones, thus encompassing a range of definitions that can be
visualized as a single curve.

Values of ¢ < 0 are valid, but are generally not meaningful. The value of D at ¢ = 1 is estimated
by D at ¢ = 0.9999.

Value

A vector of diversity scores D for each q.

References

1. Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973
54(2):427-32.

See Also

Used by alphaDiversity.

Examples

May define p as clonal member counts
p <- c(1, 1, 3, 10)

q <- c(o, 1, 2)

calcDiversity(p, q)

Or proportional abundance
p <- c(1/15, 1/15, 1/5, 2/3)
calcDiversity(p, q)

ChangeoClone-class S4 class defining a clone

Description

ChangeoClone defines a common data structure for perform lineage recontruction from Change-O
data.

charge 19

Slots
data data.frame containing sequences and annotations. Contains the columns SEQUENCE_ID and
SEQUENCE, as well as any additional sequence-specific annotation columns.
clone string defining the clone identifier.
germline string containing the germline sequence for the clone.
v_gene string defining the V segment gene call.
j_gene string defining the J segment gene call.

junc_len numeric junction length (nucleotide count).

See Also
See makeChangeoClone and buildPhylipLineage for use.

charge Calculates the net charge of amino acid sequences.

Description
charge calculates the net charge of amino acid sequences using the method of Moore, 1985, with
exclusion of the C-terminus and N-terminus charges.

Usage
charge(seq, pH = 7.4, pK = NULL, normalize = FALSE)

Arguments
seq vector strings defining of amino acid sequences.
pH environmental pH.
pK named vector defining pK values for each charged amino acid, where names are
the single-letter amino acid character codes c("R", "H", "K", "D", "E", "C",
"Y")). If NULL, then the EMBOSS scale is used.
normalize if TRUE then divide the net charge of each amino acid sequence by the number of
informative positions. Non-informative position are defined by the presence any
character in c("X", "=", ".", "x"). If FALSE then return the raw net charge.
Value

A vector of net charges for the sequence(s).

References

1. Moore DS. Amino acid and peptide net charges: A simple calculational procedure. Biochem
Educ. 13, 10-11 (1985).

2. https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html

https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html

20 checkColumns

See Also

For additional pK scales see pK.

Examples

seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT")
Unnormalized charge

charge(seq)

Normalized charge

charge(seq, normalize=TRUE)

Use the Murray et al, 2006 scores from the seqinr package
library(seqinr)

data(pK)

x <- setNames(pK[["Murray”]1], rownames(pK))

Calculate charge

charge(seq, pK=x)

checkColumns Check data.frame for valid columns and issue message if invalid

Description

Check data.frame for valid columns and issue message if invalid

Usage
checkColumns(data, columns, logic = c("all”, "any"))
Arguments
data data.frame to check.
columns vector of column names to check.
logic one of "all” or "any” controlling whether all, or at least one, of the columns
must be valid, respectively.
Value

TRUE if columns are valid and a string message if not.

Examples

df <- data.frame(A=1:3, B=4:6, C=rep(NA, 3))
checkColumns(df, c("A", "B"), logic="all")
checkColumns(df, c("A", "B"), logic="any")
checkColumns(df, c("A", "C"), logic="all")
checkColumns(df, c("A", "C"), logic="any")

collapseDuplicates

21

checkColumns(df, c("A", "D"), logic="all")
checkColumns(df, c("A", "D"), logic="any")
collapseDuplicates Remove duplicate DNA sequences and combine annotations
Description

collapseDuplicates identifies duplicate DNA sequences, allowing for ambiguous characters, re-
moves the duplicate entries, and combines any associated annotations.

Usage
collapseDuplicates(
data,
id = "sequence_id",
seq = "sequence_alignment”,

text_fields =

NULL,

num_fields = NULL,

seq_fields = NULL,
add_count = FALSE,
ignore = C(“N", 1I_Ily H.Il’ Il?ll),
sep = n , n s
dry = FALSE,
verbose = FALSE
)
Arguments
data data.frame containing Change-O columns. The data.frame must contain, at a
minimum, a unique identifier column and a column containg a character vector
of DNA sequences.
id name of the column containing sequence identifiers.
seq name of the column containing DNA sequences.

text_fields

num_fields

seq_fields

add_count

character vector of textual columns to collapse. The textual annotations of du-
plicate sequences will be merged into a single string with each unique value
alphabetized and delimited by sep.

vector of numeric columns to collapse. The numeric annotations of duplicate
sequences will be summed.

vector of nucletoide sequence columns to collapse. The sequence with the
fewest numer of non-informative characters will be retained. Where a non-
informative character is one of c(”"N", "=", ".", "?"). Note, this is distinct
from the seq parameter which is used to determine duplicates.

if TRUE add the column collpase_count that indicates the number of sequences
that were collapsed to build each unique entry.

22 collapseDuplicates
ignore vector of characters to ignore when testing for equality.
sep character to use for delimiting collapsed annotations in the text_fields columns.
Defines both the input and output delimiter.
dry if TRUE perform dry run. Only labels the sequences without collapsing them.
verbose if TRUE report the number input, discarded and output sequences; if FALSE pro-
cess sequences silently.
Details

collapseDuplicates identifies duplicate sequences in the seq column by testing for character
identity, with consideration of [TUPAC ambiguous nucleotide codes. A cluster of sequences are
considered duplicates if they are all equivalent, and no member of the cluster is equivalent to a
sequence in a different cluster.

Textual annotations, specified by text_fields, are collapsed by taking the unique set of values
within in each duplicate cluster and delimiting those values by sep. Numeric annotations, specified
by num_fields, are collapsed by summing all values in the duplicate cluster. Sequence annotations,
specified by seq_fields, are collapsed by retaining the first sequence with the fewest number of N
characters.

Columns that are not specified in either text_fields, num_fields, or seq_fields will be retained,
but the value will be chosen from a random entry amongst all sequences in a cluster of duplicates.

An ambiguous sequence is one that can be assigned to two different clusters, wherein the ambigu-
ous sequence is equivalent to two sequences which are themselves non-equivalent. Ambiguous se-
quences arise due to ambiguous characters at positions that vary across sequences, and are discarded
along with their annotations when dry=FALSE. Thus, ambiguous sequences are removed as dupli-
cates of some sequence, but do not create a potential false-positive annotation merger. Ambiguous
sequences are not included in the collapse_count annotation that is added when add_count=TRUE.

If dry=TRUE sequences will not be removed from the input. Instead, the following columns will be
appended to the input defining the collapse action that would have been performed in the dry=FALSE
case.

* collapse_id: an identifer for the group of identical sequences.

e collapse_class: string defining how the sequence matches to the other in the set. one
of "duplicated” (has duplicates), "unique” (no duplicates), "ambiguous_duplicate” (no
duplicates after ambiguous sequences are removed), or "ambiguous” (matches multiple non-
duplicate sequences).

* collapse_pass: TRUE for the sequences that would be retained.

Value

A modified data data.frame with duplicate sequences removed and annotation fields collapsed if
dry=FALSE. If dry=TRUE, sequences will be labeled with the collapse action, but the input will be
otherwise unmodifed (see Details).

See Also

Equality is tested with seqEqual and pairwiseEqual. For [IUPAC ambiguous character codes see
IUPAC_DNA.

combinelgphyml 23

Examples

Example data.frame
db <- data.frame(sequence_id=LETTERS[1:4],
sequence_alignment=c("CCCCTGGG", "CCCCTGGN", "NAACTGGN", "NNNCTGNN"),
c_call=c("IGHM", "IGHG", "IGHG", "IGHA"),
sample_id=c("S1", "S1", "S2", "S2"),
duplicate_count=1:4,
stringsAsFactors=FALSE)

Annotations are not parsed if neither text_fields nor num_fields is specified
The retained sequence annotations will be random
collapseDuplicates(db, verbose=TRUE)

Unique text_fields annotations are combined into a single string with ",”

num_fields annotations are summed

Ambiguous duplicates are discarded

collapseDuplicates(db, text_fields=c("c_call”, "sample_id"), num_fields="duplicate_count”,
verbose=TRUE)

Use alternate delimiter for collapsing textual annotations
collapseDuplicates(db, text_fields=c("c_call”, "sample_id"), num_fields="duplicate_count”,
sep="/", verbose=TRUE)

Add count of duplicates
collapseDuplicates(db, text_fields=c("c_call”, "sample_id"), num_fields="duplicate_count”,
add_count=TRUE, verbose=TRUE)

Masking ragged ends may impact duplicate removal

db$sequence_alignment <- maskSeqEnds(db$sequence_alignment)

collapseDuplicates(db, text_fields=c("c_call”, "sample_id"), num_fields="duplicate_count”,
add_count=TRUE, verbose=TRUE)

combineIgphyml Combine IgPhyML object parameters into a dataframe

Description

combineIgphyml combines IgPhyML object parameters into a data.frame.

Usage

combineIgphyml(iglist, format = c("wide”, "long"))

Arguments

iglist list of igphyml objects returned by readIgphyml. Each must have an id column
in its param attribute, which can be added automatically using the id option of
readIgphyml.

24 countClones

format string specifying whether each column of the resulting data.frame should repre-
sent a parameter (wide) or if there should only be three columns; i.e. id, varable,
and value (long).

Details

combineIgphyml combines repertoire-wide parameter estimates from mutliple igphyml objects
produced by readIgphyml into a dataframe that can be easily used for plotting and other hypothesis
testing analyses.

All igphyml objects used must have an "id" column in their param attribute, which can be added
automatically from the id flag of readIgphyml.

Value

A data.frame containing HLP model parameter estimates for all igphyml objects. Only parameters
shared among all objects will be returned.

References

1. Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody
Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303

2. Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-
wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of
aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825

See Also

readlgphyml

Examples

Not run:
Read in and combine two igphyml runs
s1 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab"”, id="+7d")
s2 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab"”, id="s2")
combineIgphyml(list(s1, s2))

End(Not run)

countClones Tabulates clones sizes

Description

countClones determines the number of sequences and total copy number of clonal groups.

countClones 25

Usage
countClones(
data,
groups = NULL,
copy = NULL,
clone = "clone_id",
remove_na = TRUE
)
Arguments
data data.frame with columns containing clonal assignments.
groups character vector defining data columns containing grouping variables. If groups=NULL,
then do not group data.
copy name of the data column containing copy numbers for each sequence. If this
value is specified, then total copy abundance is determined by the sum of copy
numbers within each clonal group.
clone name of the data column containing clone identifiers.
remove_na removes rows with NA values in the clone column if TRUE and issues a warning.
Otherwise, keeps those rows and considers NA as a clone in the final counts and
relative abundances.
Value

A data.frame summarizing clone counts and frequencies with columns:

* clone_id: clone identifier. This is the default column name, specified with clone="'clone_id".
If the function call uses Change-O formatted data and clone='CLONE', this column will have
name CLONE.

* seg_count: total number of sequences for the clone.

* seq_freq: frequency of the clone as a fraction of the total number of sequences within each
group.

* copy_count: sum of the copy counts in the copy column. Only present if the copy argument
is specified.

* copy_freq: frequency of the clone as a fraction of the total copy number within each group.
Only present if the copy argument is specified.

Also includes additional columns specified in the groups argument.

Examples

Without copy numbers
clones <- countClones(ExampleDb, groups="sample_id")

With copy numbers and multiple groups
clones <- countClones(ExampleDb, groups=c("sample_id", "c_call”), copy="duplicate_count")

26

countGenes

countGenes

Tabulates V(D)J allele, gene or family usage.

Description

Determines the count and relative abundance of V(D)J alleles, genes or families within groups.

Usage

countGene
data,
gene,

s(

groups = NULL,

copy =
clone =
fill
mode =

Arguments

data

gene

groups

copy

clone

fill

mode

remove_na

NULL,
NULL,
FALSE,

c("gene", "allele", "family", "asis"),
remove_na = TRUE

data.frame with AIRR-format or Change-O style columns.

column containing allele assignments. Only the first allele in the column will be
considered when mode is "gene", "family" or "allele". The value will be used as
it is with mode="asis".

columns containing grouping variables. If NULL do not group.

name of the data column containing copy numbers for each sequence. If this
value is specified, then total copy abundance is determined by the sum of copy
numbers within each gene. This argument is ignored if clone is specified.

name of the data column containing clone identifiers for each sequence. If this
value is specified, then one gene will be considered for each clone. Note, this is
accomplished by using the most common gene within each clone identifier. As
such, ambiguous alleles within a clone will not be accurately represented.

logical of c(TRUE, FALSE) specifying when if groups (when specified) lacking
a particular gene should be counted as 0 if TRUE or not (omitted)

oneof c("gene”, "family"”, "allele”, "asis") defining the degree of speci-
ficity regarding allele calls. Determines whether to return counts for genes (call-
ing getGene), families (calling getFamily), alleles (calling getAllele) or us-
ing the value as it is in the column gene, without any processing.

removes rows with NA values in the gene column if TRUE and issues a warning.
Otherwise, keeps those rows and considers NA as a gene in the final counts and
relative abundances.

countPatterns 27

Value

A data.frame summarizing family, gene or allele counts and frequencies with columns:

gene: name of the family, gene or allele.
seq_count: total number of sequences for the gene.

seq_freq: frequency of the gene as a fraction of the total number of sequences within each
grouping.

copy_count: sum of the copy counts in the copy column. for each gene. Only present if the
copy argument is specified.

copy_freq: frequency of the gene as a fraction of the total copy number within each group.
Only present if the copy argument is specified.

clone_count: total number of clones for the gene. Only present if the clone argument is
specified.

clone_freq: frequency of the gene as a fraction of the total number of clones within each
grouping. Only present if the clone argument is specified.

Additional columns defined by the groups argument will also be present.

Examples

Without copy numbers

genes <- countGenes(ExampleDb, gene="v_call”, groups="sample_id", mode="family")
genes <- countGenes(ExampleDb, gene="v_call”, groups="sample_id"”, mode="gene")
genes <- countGenes(ExampleDb, gene="v_call"”, groups="sample_id", mode="allele")

With copy numbers and multiple groups
genes <- countGenes(ExampleDb, gene="v_call”, groups=c("sample_id", "c_call"),

copy="duplicate_count”, mode="family")

Count by clone
genes <- countGenes(ExampleDb, gene="v_call”, groups=c("sample_id", "c_call"),

clone="clone_id", mode="family")

Count absent genes
genes <- countGenes(ExampleDb, gene="v_call”, groups="sample_id",

mode="allele"”, fill=TRUE)

countPatterns Count sequence patterns

Description

countPatterns counts the fraction of times a set of character patterns occur in a set of sequences.

Usage

countPatterns(seq, patterns, nt = TRUE, trim = FALSE, label = "region")

28 cpuCount

Arguments
seq character vector of either DNA or amino acid sequences.
patterns list of sequence patterns to count in each sequence. If the list is named, then
names will be assigned as the column names of output data.frame.
nt if TRUE then seq are DNA sequences and and will be translated before perform-
ing the pattern search.
trim if TRUE remove the first and last codon or amino acid from each sequence before
the pattern search. If FALSE do not modify the input sequences.
label string defining a label to add as a prefix to the output column names.
Value

A data.frame containing the fraction of times each sequence pattern was found.

Examples

seq <- c("TGTCAACAGGCTAACAGTTTCCGGACGTTC",
"TGTCAGCAATATTATATTGCTCCCTTCACTTTC",
"TGTCAAAAGTATAACAGTGCCCCCTGGACGTTC")

patterns <- c("A", "V", "[LI1")

names(patterns) <- c("arg", "val", "iso_leu")

countPatterns(seq, patterns, nt=TRUE, trim=TRUE, label="cdr3")

cpuCount Available CPU cores

Description

cpuCount determines the number of CPU cores available.

Usage

cpuCount ()

Value

Count of available cores. Returns 1 if undeterminable.

Examples

cpuCount ()

DEFAULT_COLORS 29

DEFAULT_COLORS Default colors

Description

Default color palettes for DNA characters, Ig isotypes, and TCR chains.

Usage

DNA_COLORS
IG_COLORS

TR_COLORS

Format

Named character vectors with hexcode colors as values.

¢ DNA_COLORS: DNA character colors c("A", "C", "G", "T").
* IG_COLORS: Igisotype colors c("IGHA", "IGHD", "IGHE", "IGHG", "IGHM", "IGHK", "IGHL").
e TR_COLORS: TCR chain colors c("TRA", "TRB", "TRD", "TRG").

An object of class character of length 4.
An object of class character of length 7.

An object of class character of length 4.

Examples

IG_COLORS as an isotype color set for ggplot

isotype <- c("IGHG", "IGHM", "IGHM", "IGHA")

db <- data.frame(x=1:4, y=1:4, iso=isotype)

gl <- ggplot(db, aes(x=x, y=y, color=iso)) +
scale_color_manual (name="Isotype", values=IG_COLORS) +
geom_point(size=10)

plot(g1)

DNA_COLORS to translate nucleotide values to a vector of colors

for use in base graphics plots

seq <= c("A”, "T", "T", "C™)

colors <- translateStrings(seq, setNames(names(DNA_COLORS), DNA_COLORS))
plot(1:4, 1:4, col=colors, pch=16, cex=6)

30 DiversityCurve-class

DiversityCurve-class S4 class defining a diversity curve

Description

DiversityCurve defines diversity (D) scores over multiple diversity orders (Q).

Usage

S4 method for signature 'DiversityCurve'
print(x)

S4 method for signature 'DiversityCurve,missing'’
plot(x, vy, ...)

S4 method for signature 'DiversityCurve,numeric'

plot(x, vy, ...)
Arguments
X DiversityCurve object
y diversity order to plot (q).

arguments to pass to plotDiversityCurve or plotDiversityTest.

Slots

diversity data.frame defining the diversity curve with the following columns:
* group: group label.
 q: diversity order.
* d: mean diversity index over all bootstrap realizations.
* d_sd: standard deviation of the diversity index over all bootstrap realizations.
» d_lower: diversity lower confidence inverval bound.
* d_upper: diversity upper confidence interval bound.
* e: evenness index calculated as D divided by D at Q=0.
* e_lower: evenness lower confidence inverval bound.
* e_upper: eveness upper confidence interval bound.

tests data.frame describing the significance test results with columns:

* test: string listing the two groups tested.

* delta_mean: mean of the D bootstrap delta distribution for the test.

* delta_sd: standard deviation of the D bootstrap delta distribution for the test.
* pvalue: p-value for the test.

group_by string specifying the name of the grouping column in diversity calculation.

groups vector specifying the names of unique groups in group column in diversity calculation.

EdgeTest-class 31

method string specifying the type of diversity calculated.
g vector of diversity hill diversity indices used for computing diversity.
n numeric vector indication the number of sequences sampled in each group.

ci confidence interval defining the upper and lower bounds (a value between 0 and 1).

EdgeTest-class S4 class defining edge significance

Description

EdgeTest defines the significance of parent-child annotation enrichment.

Usage

S4 method for signature 'EdgeTest'
print(x)

S4 method for signature 'EdgeTest,missing'

plot(x, vy, ...)

Arguments
X EdgeTest object.
y ignored.

arguments to pass to plotEdgeTest.

Slots

tests data.frame describing the significance test results with columns:
e parent: parent node annotation.
e child: child node annotation
e count: count of observed edges with the given parent-child annotation set.
* expected: mean count of expected edges for the given parent-child relationship.

* pvalue: one-sided p-value for the hypothesis that the observed edge abundance is greater
than expected.

permutations data.frame containing the raw permutation test data with columns:
* parent: parent node annotation.
e child: child node annotation
* count: count of edges with the given parent-child annotation set.

e iter: numerical index define which permutation realization each observation corre-
sponds to.

nperm number of permutation realizations.

32

estimateAbundance

estimateAbundance

Estimates the complete clonal relative abundance distribution

Description

estimateAbundance estimates the complete clonal relative abundance distribution and confidence

intervals on clone s

izes using bootstrapping.

Usage
estimateAbundance(
data,
clone = "clone_id",
copy = NULL,
group = NULL,
min_n = 30,
max_n = NULL,
uniform = TRUE,
ci = 0.95,
nboot = 200,
progress = FALSE
)
Arguments
data data.frame with Change-O style columns containing clonal assignments.
clone name of the data column containing clone identifiers.
copy name of the data column containing copy numbers for each sequence. If copy=NULL
(the default), then clone abundance is determined by the number of sequences.
If a copy column is specified, then clone abundances is determined by the sum
of copy numbers within each clonal group.
group name of the data column containing group identifiers. If NULL then no grouping
is performed and the group column of the output will contain the value NA for
each row.
min_n minimum number of observations to sample. A group with less observations
than the minimum is excluded.
max_n maximum number of observations to sample. If NULL then no maximum is set.
uniform if TRUE then uniformly resample each group to the same number of observations.
If FALSE then allow each group to be resampled to its original size or, if specified,
max_size.
ci confidence interval to calculate; the value must be between 0 and 1.
nboot number of bootstrap realizations to generate.
progress if TRUE show a progress bar.

Examplel0x 33

Value

A AbundanceCurve object summarizing the abundances.

References

1. Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat.
1984 11, 265270.

2. Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling
and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67.

3. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-
Turing sample coverage theory. Ecology. 2015 96, 11891201.

See Also

See plotAbundanceCurve for plotting of the abundance distribution. See alphaDiversity for a similar
application to clonal diversity.

Examples

abund <- estimateAbundance(ExampleDb, group="sample_id"”, nboot=100)

Examplel0x Small example 10x Genomics Ig V(D)J sequences from CD19+ B cells
isolated from PBMCs of a healthy human donor. Down-sampled from
data provided by 10x Genomics under a Creative Commons Attribute
license, and processed with their Cell Ranger pipeline.

Description

Small example 10x Genomics Ig V(D)J sequences from CD19+ B cells isolated from PBMCs of
a healthy human donor. Down-sampled from data provided by 10x Genomics under a Creative
Commons Attribute license, and processed with their Cell Ranger pipeline.

Usage
Examplel10x

Format

A data.frame with the following AIRR style columns:

* sequence_id: Sequence identifier
* sequence_alignment: IMGT-gapped observed sequence.
* germline_alignment: IMGT-gapped germline sequence.

e v_call: V region allele assignments.

34 ExampleDb

e d_call: D region allele assignments.

* j_call: J region allele assignments.

* c_call: Isotype (C region) assignment.

* junction: Junction region sequence.

e junction_length: Length of the junction region in nucleotides.

* np1_length: Combined length of the N and P regions proximal to the V region.
* np2_length: Combined length of the N and P regions proximal to the J region.
* umi_count: Number of unique molecular identifies atttributed to sequence.

e cell_id: Cell identifier.

* locus: Genomic locus of sequence.

References

1. Data source: https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_cd19_b

2. License: https://creativecommons.org/licenses/by/4.0/

ExampleDb Example AIRR database

Description

A small example database subset from Laserson and Vigneault et al, 2014.

Usage
ExampleDb

Format
A data.frame with the following AIRR style columns:

* sequence_id: Sequence identifier
* sequence_alignment: IMGT-gapped observed sequence.
* germline_alignment: IMGT-gapped germline sequence.

e germline_alignment_d_mask: IMGT-gapped germline sequence with N, P and D regions
masked.

e v_call: V region allele assignments.

* v_call_genotyped: TIgGER corrected V region allele assignment.
e d_call: D region allele assignments.

* j_call: J region allele assignments.

* c_call: Isotype (C region) assignment.

* junction: Junction region sequence.

ExampleDbChangeo 35

* junction_length: Length of the junction region in nucleotides.

* np1_length: Combined length of the N and P regions proximal to the V region.
* np2_length: Combined length of the N and P regions proximal to the J region.
* duplicate_count: Copy count (number of duplicates) of the sequence.

* clone_id: Change-O assignment clonal group identifier.

* sample_id: Sample identifier. Time in relation to vaccination.

References

1. Laserson U and Vigneault F, et al. High-resolution antibody dynamics of vaccine-induced
immune responses. Proc Natl Acad Sci USA. 2014 111:4928-33.

See Also
ExampleDbChangeo ExampleTrees

ExampleDbChangeo Example Change-O database

Description

A small example database subset from Laserson and Vigneault et al, 2014.

Usage

ExampleDbChangeo

Format
A data.frame with the following Change-O style columns:

* SEQUENCE_ID: Sequence identifier

* SEQUENCE_IMGT: IMGT-gapped observed sequence.

* GERMLINE_IMGT_D_MASK: IMGT-gapped germline sequence with N, P and D regions masked.
e V_CALL: V region allele assignments.

e V_CALL_GENOTYPED: TIgGER corrected V region allele assignment.

e D_CALL: D region allele assignments.

e J_CALL: J region allele assignments.

* JUNCTION: Junction region sequence.

e JUNCTION_LENGTH: Length of the junction region in nucleotides.

* NPT1_LENGTH: Combined length of the N and P regions proximal to the V region.
* NP2_LENGTH: Combined length of the N and P regions proximal to the J region.
* SAMPLE: Sample identifier. Time in relation to vaccination.

» ISOTYPE: Isotype assignment.

* DUPCOUNT: Copy count (number of duplicates) of the sequence.

* CLONE: Change-O assignment clonal group identifier.

36 extractVRegion

References

1. Laserson U and Vigneault F, et al. High-resolution antibody dynamics of vaccine-induced
immune responses. Proc Natl Acad Sci USA. 2014 111:4928-33.

See Also

ExampleDb ExampleTrees

ExampleTrees Example Ig lineage trees

Description
A set of Ig lineage trees generated from the ExampleDb file, subset to only those trees with at least
four nodes.

Usage

ExampleTrees

Format

A list of igraph objects output by buildPhylipLineage. Each node of each tree has the following
annotations (vertex attributes):

* sample_id: Sample identifier(s). Time in relation to vaccination.
* c_call: Isotype assignment(s).

e duplication_count: Copy count (number of duplicates) of the sequence.

See Also

ExampleTrees

extractVRegion Extracts FWRs and CDRs from IMGT-gapped sequences

Description

extractVRegion extracts the framework and complementarity determining regions of the V seg-
ment for IMGT-gapped immunoglobulin (Ig) nucleotide sequences according to the IMGT number-
ing scheme.

Usage

extractVRegion(sequences, region = c("fwrl”, "cdr1”, "fwr2", "cdr2", "fwr3"))

getAAMatrix 37

Arguments
sequences character vector of IMGT-gapped nucleotide sequences.
region string defining the region(s) of the V segment to extract. May be a single region
or multiple regions (as a vector) from c("fwr1"”, "cdr1”, "fwr2", "cdr2"” ,"fwr3").
By default, all regions will be returned.
Value

If only one region is specified in the region argument, a character vector of the extracted sub-
sequences will be returned. If multiple regions are specified, then a character matrix will be returned
with columns corresponding to the specified regions and a row for each entry in sequences.
References
1. Lefranc M-P, et al. IMGT unique numbering for immunoglobulin and T cell receptor variable
domains and Ig superfamily V-like domains. Dev Comp Immunol. 2003 27(1):55-77.
See Also
IMGT-gapped region boundaries are defined in IMGT_REGIONS.

Examples

Assign example clone
clone <- subset(ExampleDb, clone_id == 3138)

Get all regions
extractVRegion(clone$sequence_alignment)

Get single region
extractVRegion(clone$sequence_alignment, "fwrl")

Get all CDRs
extractVRegion(clone$sequence_alignment, c("cdr1”, "cdr2"))

Get all FWRs

extractVRegion(clone$sequence_alignment, c("fwr1l”, "fwr2", "fwr3"))
getAAMatrix Build an AA distance matrix
Description

getAAMatrix returns a Hamming distance matrix for [IUPAC ambiguous amino acid characters.

Usage

getAAMatrix(gap = 0)

38 getDNAMatrix

Arguments

gap value to assign to characters in the set c("-", ".").

Value
A matrix of amino acid character distances with row and column names indicating the character
pair.

See Also

Creates an amino acid distance matrix for seqDist. See getDNAMatrix for nucleotide distances.

Examples

getAAMatrix ()

getDNAMatrix Build a DNA distance matrix

Description

getDNAMatrix returns a Hamming distance matrix for [IUPAC ambiguous DNA characters with

non

modifications for gap, c("-", "."), and missing, c("?"), character values.

Usage

getDNAMatrix(gap = -1)

Arguments

gap value to assign to characters in the set c("-", ".").

Value
A matrix of DNA character distances with row and column names indicating the character pair. By
default, distances will be either O (equivalent), 1 (non-equivalent or missing), or -1 (gap).

See Also

Creates DNA distance matrix for seqDist. See getAAMatrix for amino acid distances.

getMRCA 39

Examples

Set gap characters to Inf distance
Distinguishes gaps from Ns
getDNAMatrix ()

Set gap characters to @ distance
Makes gap characters equivalent to Ns
getDNAMatrix (gap=0)

getMRCA Retrieve the first non-root node of a lineage tree

Description

getMRCA returns the set of lineage tree nodes with the minimum weighted or unweighted path length
from the root (germline) of the lineage tree, allowing for exclusion of specific groups of nodes.

Usage
getMRCA(
graph,
path = c("distance”, "steps"),
root = "Germline”,
field = NULL,
exclude = NULL
)
Arguments
graph igraph object containing an annotated lineage tree.
path string defining whether to use unweighted (steps) or weighted (distance) mea-
sures for determining the founder node set..
root name of the root (germline) node.
field annotation field to use for both unweighted path length exclusion and consider-
ation as an MRCA node. If NULL do not exclude any nodes.
exclude vector of annotation values in field to exclude from the potential MRCA set.
If NULL do not exclude any nodes. Has no effect if field=NULL.
Value

A data.frame of the MRCA node(s) containing the columns:

* name: node name
* steps: path length as the number of nodes traversed
* distance: path length as the sum of edge weights

Along with additional columns corresponding to the annotations of the input graph.

40 getPathLengths

See Also

Path lengths are determined with getPathLengths.

Examples

Define example graph
graph <- ExampleTrees[[23]]

Use unweighted path length and do not exclude any nodes
getMRCA(graph, path="steps"”, root="Germline")

Exclude nodes without an isotype annotation and use weighted path length
getMRCA(graph, path="distance”, root="Germline”, field="c_call”, exclude=NA)

getPathLengths Calculate path lengths from the tree root

Description
getPathLengths calculates the unweighted (number of steps) and weighted (distance) path lengths
from the root of a lineage tree.

Usage

getPathLengths(graph, root = "Germline", field = NULL, exclude = NULL)

Arguments
graph igraph object containing an annotated lineage tree.
root name of the root (germline) node.
field annotation field to use for exclusion of nodes from step count.
exclude annotation values specifying which nodes to exclude from step count. If NULL
consider all nodes. This does not affect the weighted (distance) path length
calculation.
Value

A data.frame with columns:

* name: node name
* steps: path length as the number of nodes traversed

* distance: path length as the sum of edge weights

See Also

See buildPhylipLineage for generating input trees.

getPositionQuality 41

Examples

Define example graph
graph <- ExampleTrees[[24]]

Consider all nodes
getPathLengths(graph, root="Germline")

Exclude nodes without an isotype annotation from step count
getPathLengths(graph, root="Germline"”, field="c_call”, exclude=NA)

getPositionQuality Get a data.frame with sequencing qualities per position

Description

getPositionQuality takes a data.frame with sequence quality scores in the form of a strings of
comma separated numeric values, split the quality scores values by ", ", and returns a data.frame
with the values for each position.

Usage
getPositionQuality(
data,
sequence_id = "sequence_id",
sequence = "sequence_alignment”,
quality_num = "quality_alignment_num”
)
Arguments
data data. frame containing sequence data.
sequence_id column in data with sequence identifiers.
sequence column in data with sequence data.
quality_num column in data with quality scores (as strings of numeric values, comma sepa-
rated) for sequence.
Value

data with one additional field with masked sequences. The name of this field is created concate-
nating sequence and ’_masked’.

See Also

readFastqDb and maskPositionsByQuality

42 getSegment

Examples

db <- airr::read_rearrangement(system.file("extdata"”, "example_quality.tsv", package="alakazam"))
fastg_file <- system.file("extdata”, "example_quality.fastq”, package="alakazam")

db <- readFastqDb(db, fastq_file, quality_offset=-33)

head(getPositionQuality(db))

getSegment Get Ig segment allele, gene and family names

Description

getSegment performs generic matching of delimited segment calls with a custom regular expres-
sion. getAllele, getGene and getFamily extract the allele, gene and family names, respectively, from
a character vector of immunoglobulin (Ig) or TCR segment allele calls in IMGT format.

Usage

getSegment(
segment_call,
segment_regex,

first = TRUE,
collapse = TRUE,
strip_d = TRUE,
omit_nl = FALSE,
sep = ","

)

getAllele(
segment_call,
first = TRUE,
collapse = TRUE,
strip_d = TRUE,
omit_nl = FALSE,
sep = ","

)

getGene(
segment_call,
first = TRUE,
collapse = TRUE,
strip_d = TRUE,
omit_nl = FALSE,
sep = ","

)

getFamily(

segment_call,

getSegment 43
first = TRUE,
collapse = TRUE,
strip_d = TRUE,

)

omit_nl = FALSE,
Sep = ll,ll

getLocus(

)

segment_call,
first = TRUE,
collapse = TRUE,
strip_d = TRUE,
omit_nl = FALSE,

non

sep = 7,

getChain(

segment_call,
first = TRUE,
collapse = TRUE,
strip_d = TRUE,
omit_nl = FALSE,

n o n

sep = -,

Arguments

segment_call
segment_regex

first

collapse

strip_d

omit_nl

sep

Value

character vector containing segment calls delimited by commas.
string defining the segment match regular expression.

if TRUE return only the first call in segment_call; if FALSE return all calls de-
limited by commas.

if TRUE check for duplicates and return only unique segment assignments; if
FALSE return all assignments (faster). Has no effect if first=TRUE.

if TRUE remove the "D" from the end of gene annotations (denoting a duplicate
gene in the locus); if FALSE do not alter gene names.

if TRUE remove non-localized (NL) genes from the result. Only applies at the
gene or allele level.

character defining both the input and output segment call delimiter.

A character vector containing allele, gene or family names.

References

https://www.imgt.org/

https://www.imgt.org/

44 getSegment

See Also

countGenes

Examples

Light chain examples
kappa_call <- c("Homsap IGKV1D-39*@1 F,Homsap IGKV1-39%02 F,Homsap IGKV1-39%01",
"Homsap IGKJ5%@1 F")

getAllele(kappa_call)
getAllele(kappa_call, first=FALSE)
getAllele(kappa_call, first=FALSE, strip_d=FALSE)

getGene(kappa_call)
getGene(kappa_call, first=FALSE)
getGene(kappa_call, first=FALSE, strip_d=FALSE)

getFamily(kappa_call)

getFamily(kappa_call, first=FALSE)
getFamily(kappa_call, first=FALSE, collapse=FALSE)
getFamily(kappa_call, first=FALSE, strip_d=FALSE)

getLocus(kappa_call)
getChain(kappa_call)

Heavy chain examples

heavy_call <- c("Homsap IGHV1-69%0@1 F,Homsap IGHV1-69D*0@1 F",
"Homsap IGHD1-1x0@1 F",
"Homsap IGHJ1%@1 F")

getAllele(heavy_call, first=FALSE)
getAllele(heavy_call, first=FALSE, strip_d=FALSE)

getGene(heavy_call, first=FALSE)
getGene(heavy_call, first=FALSE, strip_d=FALSE)

getFamily(heavy_call)
getlocus(heavy_call)
getChain(heavy_call)

Filtering non-localized genes

nl_call <- c("IGHV3-NL1x@1,IGHV3-30-3%01,IGHV3-30%01",
"Homosap IGHV3-30%01 F,Homsap IGHV3-NL1x@1 F",
"IGHV1-NL1%*01")

getAllele(nl_call, first=FALSE, omit_nl=TRUE)
getGene(nl_call, first=FALSE, omit_nl=TRUE)
getFamily(nl_call, first=FALSE, omit_nl=TRUE)

Temporary designation examples
tmp_call <- c(”IGHV9S3*01", "IGKV10S12%01")

graphToPhylo 45

getAllele(tmp_call)
getGene(tmp_call)
getFamily(tmp_call)

graphToPhylo Convert a tree in igraph graph format to ape phylo format.

Description

graphToPhylo a tree in igraph graph format to ape phylo format.

Usage

graphToPhylo(graph)
Arguments

graph An igraph graph object.
Details

Convert from igraph graph object to ape phylo object. If graph object was previously rooted with
the germline as the direct ancestor, this will re-attach the germline as a descendant node with a zero
branch length to a new universal common ancestor (UCA) node and store the germline node ID in
the germid attribute and UCA node number in the uca attribute. Otherwise these attributes will not
be specified in the phylo object. Using phyloToGraph(phylo, germline=phylo$germid) creates
a graph object with the germline back as the direct ancestor. Tip and internal node names are stored
in the tip.label and node.label vectors, respectively.

Value

A phylo object representing the input tree. Tip and internal node names are stored in the tip.label
and node. label vectors, respectively.

References

1. Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody
Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303

2. Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-
wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of
aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825

46 gravy

Examples

Not run:
library(igraph)
library(ape)

#convert to phylo
phylo = graphToPhylo(graph)

#plot tree using ape
plot(phylo, show.node.label=TRUE)

#store as newick tree
write.tree(phylo,file="tree.newick")

#read in tree from newick file
phylo_r = read.tree("tree.newick"”)

#convert to igraph
graph_r = phyloToGraph(phylo_r,germline="Germline")

#plot graph - same as before, possibly rotated
plot(graph_r,layout=layout_as_tree)

End(Not run)

gravy Calculates the hydrophobicity of amino acid sequences

Description

gravy calculates the Grand Average of Hydrophobicity (gravy) index of amino acid sequences using
the method of Kyte & Doolittle. Non-informative positions are excluded, where non-informative is
defined as any character in c("X", "=", ".", "x").

Usage
gravy(seq, hydropathy = NULL)

Arguments
seq vector of strings containing amino acid sequences.
hydropathy named numerical vector defining hydropathy index values for each amino acid,
where names are single-letter amino acid character codes. If NULL, then the Kyte
& Doolittle scale is used.
Value

A vector of gravy scores for the sequence(s).

gridPlot 47

References

1. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J
Mol Biol. 157, 105-32 (1982).

See Also

For additional hydrophobicity indices see aaindex.

Examples

Default scale
seq <- c("CARDRSTPWRRGIASTTVRTSW"”, "XXTQMYVRT")
gravy(seq)

Use the Kidera et al, 1985 scores from the seqinr package
library(seqinr)

data(aaindex)

x <- aaindex[["KIDA850101"]1]1$I

Rename the score vector to use single-letter codes
names(x) <- translateStrings(names(x), ABBREV_AA)

Calculate hydrophobicity

gravy(seq, hydropathy=x)

gridPlot Plot multiple ggplot objects

Description

Plots multiple ggplot objects in an equally sized grid.

Usage
gridPlot(..., ncol = 1)
Arguments
ggplot objects to plot.
ncol number of columns in the plot.
References

Modified from: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)

See Also

ggplot.

48

groupGenes

groupGenes

Group sequences by gene assignment

Description

groupGenes will group rows by shared V and J gene assignments, and optionally also by junction
lengths. IGH:IGK/IGL, TRB:TRA, and TRD:TRG paired single-cell BCR/TCR sequencing and
unpaired bulk sequencing (IGH, TRB, TRD chain only) are supported. In the case of ambiguous
(multiple) gene assignments, the grouping may be specified to be a union across all ambiguous V
and J gene pairs, analogous to single-linkage clustering (i.e., allowing for chaining).

Usage

groupGenes (

data,

v_call = "v_call”,
j_call = "j_call",
junc_len = NULL,
cell_id = NULL,

locus = "locus”,
only_heavy = TRUE,
first =
)
Arguments
data data.frame containing sequence data.
v_call name of the column containing the heavy/long chain V-segment allele calls.
j_call name of the column containing the heavy/long chain J-segment allele calls.
junc_len name of column containing the junction length. If NULL then 1-stage partitioning
is perform considering only the V and J genes is performed. See Details for
further clarification.
cell_id name of the column containing cell identifiers or barcodes. If specified, group-
ing will be performed in single-cell mode with the behavior governed by the
locus and only_heavy arguments. If set to NULL then the bulk sequencing data
is assumed.
locus name of the column containing locus information. Only applicable to single-cell
data. Ignored if cell_id=NULL.
only_heavy use only the IGH (BCR) or TRB/TRD (TCR) sequences for grouping. Only
applicable to single-cell data. Ignored if cell_id=NULL.
first if TRUE only the first call of the gene assignments is used. if FALSE the union of

ambiguous gene assignments is used to group all sequences with any overlap-
ping gene calls.

groupGenes 49

Details

To invoke single-cell mode the cell_id argument must be specified and the locus column must
be correct. Otherwise, groupGenes will be run with bulk sequencing assumptions, using all input
sequences regardless of the values in the locus column.

Values in the 1ocus column must be one of c("IGH"”, "IGI", "IGK", "IGL") for BCR or c("TRA",
"TRB", "TRD", "TRG") for TCR sequences. Otherwise, the function returns an error message and
stops.

Under single-cell mode with paired chained sequences, there is a choice of whether grouping
should be done by (a) using IGH (BCR) or TRB/TRD (TCR) sequences only or (b) using IGH
plus IGK/IGL (BCR) or TRB/TRD plus TRA/TRG (TCR). This is governed by the only_heavy
argument.

Specifying junc_len will force groupGenes to perform a 1-stage partitioning of the sequences/cells
based on V gene, J gene, and junction length simultaneously. If junc_len=NULL (no column
specified), then groupGenes performs only the first stage of a 2-stage partitioning in which se-
quences/cells are partitioned in the first stage based on V gene and J gene, and then in the second
stage further splits the groups based on junction length (the second stage must be performed inde-
pendently, as this only returns the first stage results).

In the input data, the v_call, j_call, cell_id, and locus columns, if present, must be of type
character (as opposed to factor).

It is assumed that ambiguous gene assignments are separated by commas.

All rows containing NA values in any of the v_call, j_call, and junc_len (if junc_len !=NULL)
columns will be removed. A warning will be issued when a row containing an NA is removed.

Value

Returns a modified data.frame with disjoint union indices in a new vj_group column.

If junc_len is supplied, the grouping this vj_group will have been based on V, J, and junction
length simultaneously. However, the output column name will remain vj_group.

The output v_call, j_call, cell_id, and locus columns will be converted to type character if
they were of type factor in the input data.

Expectations for single-cell data

Single-cell paired chain data assumptions:

* every row represents a sequence (chain).

* heavy/long and light/short chains of the same cell are linked by cell_id.

* the value in locus column indicates whether the chain is the heavy/long or light/short chain.

* each cell possibly contains multiple heavy/long and/or light/short chains.

* every chain has its own V(D)J annotation, in which ambiguous V(D)J annotations, if any, are
separated by a comma.

Single-cell example:

* A cell has 1 heavy chain and 2 light chains.

50 isValidAASeq

* There should be 3 rows corresponding to this cell.

* One of the light chains may have an ambiguous V annotation which looks like "Homsap
IGKV1-39%01 F,Homsap IGKV1D-39%01 F".

Examples

Group by genes
db <- groupGenes(ExampleDb)
head(db$vj_group)

IMGT_REGIONS IMGT V-segment regions

Description

A list defining the boundaries of V-segment framework regions (FWRs) and complementarity de-
termining regions (CDRs) for IMGT-gapped immunoglobulin (Ig) nucleotide sequences according
to the IMGT numbering scheme.

Usage
IMGT_REGIONS

Format
A list with regions named one of c("fwr1”, "cdr1”, "fwr2", "cdr2"”, "fwr3") with values con-
taining a numeric vector of length two defining the c(start, end) positions of the named region.
References

https://www.imgt.org/

isValidAASeq Validate amino acid sequences

Description

isValidAASeq checks that a set of sequences are valid non-ambiguous amino acid sequences. A se-
quence is considered valid if it contains only characters in the the non-ambiguous [UPAC character
set or any characters in c("X", ".", "=", "x").

Usage
isValidAASeq(seq)

https://www.imgt.org/

IUPAC_CODES 51

Arguments

seq character vector of sequences to check.

Value

A logical vector with TRUE for each valid amino acid sequences and FALSE for each invalid sequence.

See Also

See ABBREV_AA for the set of non-ambiguous amino acid characters. See IUPAC_AA for the
full set of ambiguous amino acid characters.

Examples
seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVR--XX", "CARJ", "10")
isValidAASeq(seq)
TUPAC_CODES IUPAC ambiguous characters
Description

A translation list mapping IUPAC ambiguous characters code to corresponding nucleotide amino
acid characters.

Usage
TUPAC_DNA

TUPAC_AA

DNA_IUPAC

Format

A list with single character codes as names and values containing character vectors that define the
set of standard characters that match to each each ambiguous character.

* TUPAC_DNA: DNA ambiguous character translations.

e IUPAC_AA: Amino acid ambiguous character translations.

* DNA_IUPAC: Ordered DNA to ambiguous characters

An object of class 1ist of length 15.
An object of class 1ist of length 25.
An object of class 1ist of length 15.

52 JjunctionAlignment
junctionAlignment Calculate junction region alignment properties
Description
junctionAlignment determines the number of deleted germline nucleotides in the junction region
and the number of V gene and J gene nucleotides in the CDR3.
Usage
junctionAlignment(
data,
germline_db,
v_call = "v_call”,
d_call = "d_call”,
j_call = "j_call”
v_germline_start = "v_germline_start”,
v_germline_end = "v_germline_end",
d_germline_start = "d_germline_start”,
d_germline_end = "d_germline_end”,
j_germline_start = "j_germline_start”,
j_germline_end = "j_germline_end",
npl_length = "npl1_length",
np2_length = "np2_length",
junction = "junction”,
junction_length = "junction_length”,
sequence_alignment = "sequence_alignment”
)
Arguments
data data. frame containing sequence data.

germline_db
v_call
d_call

j_call
v_germline_start

V gene assignment column.
D gene assignment column.

J gene assignment column.

reference germline database for the V, D and J genes. in data

column containing the start position of the alignment in the V reference germline.

v_germline_end column containing the end position of the alignment in the V reference germline.

d_germline_start

column containing the start position of the alignment in the D reference germline.

d_germline_end column containing the start position of the alignment in the D reference germline.

j_germline_start

column containing the start position of the alignment in the J reference germline.

makeChangeoClone 53

j_germline_end column containing the start position of the alignment in the J reference germline.

np1_length combined length of the N and P regions between the V and D regions (heavy
chain) or V and J regions (light chain).

np2_length combined length of the N and P regions between the D and J regions (heavy
chain).

junction column containing the junction sequence.

junction_length

column containing the length of the junction region in nucleotides.
sequence_alignment

column containing the aligned sequence.

Value

A modified input data.frame with the following additional columns storing junction alignment
information:

e3v_length: number of 3° V germline nucleotides deleted.

e5d_length: number of 5° D germline nucleotides deleted.

e3d_length: number of 3’ D germline nucleotides deleted.

e5j_length: number of 5’ J germline nucleotides deleted.

v_cdr3_length: number of sequence_alignment V nucleotides in the CDR3.

A i

j_cdr3_length: number of sequence_alignment J nucleotides in the CDR3.

Examples

germline_db <- list(
"IGHV3-11%05"="CAGGTGCAGCTGGTGGAGTCTGGGGGA. . . GGCTTGGTCAAGCCTGGAGGGTCCCTGAGACT
CTCCTGTGCAGCCTCTGGATTCACCTTC. ..o vovnn. AGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAG
GGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGTAGT. AGTAGTTACACAAACTACGCAGACTCTGTGAAG
.. .GGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGA
CACGGCCGTGTATTACTGTGCGAGAGA" ,
"IGHD3-10*01"="GTATTACTATGGTTCGGGGAGTTATTATAAC",
"IGHJ5%02"="ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG"

)

db <- junctionAlignment(SingleDb, germline_db)

makeChangeoClone Generate a ChangeoClone object for lineage construction

Description

makeChangeoClone takes a data.frame with AIRR or Change-O style columns as input and masks
gap positions, masks ragged ends, removes duplicates sequences, and merges annotations associ-
ated with duplicate sequences. It returns a ChangeoClone object which serves as input for lineage
reconstruction.

54

Usage

makeChangeoClone

makeChangeoClone(

data,

id = "sequence_id",

seq = "sequence_alignment”,
germ = "germline_alignment”,
v_call = "v_call”,

j_call = "j_call”,

junc_len = "junction_length",
clone = "clone_id",
mask_char = "N",

locus = "locus”,

max_mask = 0,

pad_end = FALSE,

text_fields = NULL,
num_fields = NULL,
seq_fields = NULL,

add_count = TRUE,

verbose = FALSE

Arguments

data

id

seq

germ

v_call

j_call

junc_len

clone

mask_char

locus

max_mask

data.frame containing the AIRR or Change-O data for a clone. See Details for
the list of required columns and their default values.

name of the column containing sequence identifiers.

name of the column containing observed DNA sequences. All sequences in this
column must be multiple aligned.

name of the column containing germline DNA sequences. All entries in this col-
umn should be identical for any given clone, and they must be multiple aligned
with the data in the seq column.

name of the column containing V-segment allele assignments. All entries in this
column should be identical to the gene level.

name of the column containing J-segment allele assignments. All entries in this
column should be identical to the gene level.

name of the column containing the length of the junction as a numeric value.
All entries in this column should be identical for any given clone.

name of the column containing the identifier for the clone. All entries in this
column should be identical.

character to use for masking and padding.

name of the column containing locus specification. Must be present and only
contain the value "IGH", representing heavy chains.

maximum number of characters to mask at the leading and trailing sequence
ends. If NULL then the upper masking bound will be automatically determined
from the maximum number of observed leading or trailing Ns amongst all se-
quences. If set to @ (default) then masking will not be performed.

makeChangeoClone

pad_end

text_fields
num_fields

seq_fields

add_count

verbose

Details

55

if TRUE pad the end of each sequence with mask_char to make every sequence
the same length.

text annotation columns to retain and merge during duplicate removal.
numeric annotation columns to retain and sum during duplicate removal.

sequence annotation columns to retain and collapse during duplicate removal.
Note, this is distinct from the seq and germ arguments, which contain the pri-
mary sequence data for the clone and should not be repeated in this argument.

if TRUE add an additional annotation column called collapse_count during
duplicate removal that indicates the number of sequences that were collapsed.

passed on to collapseDuplicates. If TRUE, report the numbers of input, dis-
carded and output sequences; otherwise, process sequences silently.

The input data.frame (data) must columns for each of the required column name arguments: id,
seq, germ, v_call, j_call, junc_len, and clone. The default values are as follows:

* id = "sequence_id": unique sequence identifier.

* seq = "sequence_alignment"”: IMGT-gapped sample sequence.

e germ="germline_alignment": IMGT-gapped germline sequence.

e v_call = "v_call”: V segment allele call.

e j_call ="j_call": J segment allele call.

e junc_len ="junction_length": junction sequence length.

e clone = "clone_id": clone identifier.

Additional annotation columns specified in the text_fields, num_fields or seq_fields argu-
ments will be retained in the data slot of the return object, but are not required. If the input
data.frame data already contains a column named sequence, which is not used as the seq argu-
ment, then that column will not be retained.

The default columns are IMGT-gapped sequence columns, but this is not a requirement. However,
all sequences (both observed and germline) must be multiple aligned using some scheme for both
proper duplicate removal and lineage reconstruction.

The value for the germline sequence, V-segment gene call, J-segment gene call, junction length,
and clone identifier are determined from the first entry in the germ, v_call, j_call, junc_len and
clone columns, respectively. For any given clone, each value in these columns should be identical.

Value

A ChangeoClone object containing the modified clone.

See Also

Executes in order maskSeqGaps, maskSeqEnds, padSeqEnds, and collapseDuplicates. Returns a
ChangeoClone object which serves as input to buildPhylipLineage.

56 makeTempDir

Examples

Example data

db <- data.frame(sequence_id=LETTERS[1:4],
sequence_alignment=c("CCCCTGGG", "CCCCTGGN", "NAACTGGN", "NNNCTGNN"),
germline_alignment="CCCCAGGG",
v_call="Homsap IGKV1-39%01 F",
j_call="Homsap IGKJ5%@1 F",
junction_length=2,
clone_id=1,
locus=rep("IGH", length=4),
c_call=c("IGHM", "IGHG", "IGHG", "IGHA"),
duplicate_count=1:4,
stringsAsFactors=FALSE)

Without end masking
makeChangeoClone(db, text_fields="c_call”, num_fields="duplicate_count”)

With end masking
makeChangeoClone(db, max_mask=3, text_fields="c_call”, num_fields="duplicate_count”)

makeTempDir Create a temporary folder

Description

makeTempDir creates a randomly named temporary folder in the system temp location.

Usage

makeTempDir (prefix)
Arguments

prefix prefix name for the folder.
Value

The path to the temporary folder.

See Also

This is just a wrapper for tempfile and dir.create.

Examples

makeTempDir("Clone50")

maskPositionsByQuality 57

maskPositionsByQuality
Mask sequence positions with low quality

Description

maskPositionsByQuality will replace positions that have a sequencing quality score lower that
min_quality with an "N” character.

Usage
maskPositionsByQuality(
data,
min_quality = 70,
sequence = "sequence_alignment”,
quality_num = "quality_alignment_num”
)
Arguments
data data. frame containing sequence data.
min_quality minimum quality score. Positions with sequencing quality less than min_qual
will be masked.
sequence column in data with sequence data to be masked.
quality_num column in data with quality scores (a string of numeric values, comma sepa-
rated) that can be used to mask sequence.
Value

Modified data data.frame with an additional field containing quality masked sequences. The name
of this field is created concatenating the sequence name and "_masked”.

See Also

readFastqDb and getPositionQuality

Examples

db <- airr::read_rearrangement(system.file("extdata"”, "example_quality.tsv", package="alakazam"))
fastq_file <- system.file("extdata”, "example_quality.fastq"”, package="alakazam")

db <- readFastqDb(db, fastq_file, quality_offset=-33)

maskPositionsByQuality(db, min_quality=90, quality_num="quality_alignment_num")

58 maskSeqEnds

maskSegEnds Masks ragged leading and trailing edges of aligned DNA sequences

Description

maskSeqEnds takes a vector of DNA sequences, as character strings, and replaces the leading and
trailing characters with "N" characters to create a sequence vector with uniformly masked outer
sequence segments.

Usage
maskSegEnds(seq, mask_char = "N", max_mask = NULL, trim = FALSE)

Arguments
seq character vector of DNA sequence strings.
mask_char character to use for masking.
max_mask the maximum number of characters to mask. If set to 0 then no masking will
be performed. If set to NULL then the upper masking bound will be automati-
cally determined from the maximum number of observed leading or trailing "N"
characters amongst all strings in seq.
trim if TRUE leading and trailing characters will be cut rather than masked with "N"
characters.
Value

A modified seq vector with masked (or optionally trimmed) sequences.

See Also

See maskSeqGaps for masking internal gaps. See padSeqEnds for padding sequence of unequal
length.

Examples

Default behavior uniformly masks ragged ends
seq <- c("CCCCTGGG", "NAACTGGN", "NNNCTGNN")
maskSegEnds(seq)

Does nothing
maskSegEnds(seq, max_mask=0)

Cut ragged sequence ends
maskSegEnds(seq, trim=TRUE)

Set max_mask to limit extent of masking and trimming
maskSegEnds(seq, max_mask=1)
maskSeqEnds(seq, max_mask=1, trim=TRUE)

maskSeqGaps 59

Mask dashes instead of Ns
seq <- c("CCCCTGGG", "-AACTGG-", "---CTG--")
maskSeqEnds(seq, mask_char="-"

maskSeqGaps Masks gap characters in DNA sequences
Description
maskSeqGaps substitutes gap characters, c("-", "."), with "N" in a vector of DNA sequences.
Usage

maskSeqGaps(seq, mask_char = "“N", outer_only = FALSE)

Arguments
seq character vector of DNA sequence strings.
mask_char character to use for masking.
outer_only if TRUE replace only contiguous leading and trailing gaps; if FALSE replace all
gap characters.
Value
A modified seq vector with "N" in place of c("-", ".") characters.
See Also

See maskSeqEnds for masking ragged edges.

Examples

Mask with Ns

maskSeqGaps(c("ATG-C", "CC..C"))
maskSeqGaps ("--ATG-C-")

maskSeqGaps ("--ATG-C-", outer_only=TRUE)

Mask with dashes
maskSeqGaps (c("ATG-C", "CC..C"), mask_char="-")

60 MRCATest-class

MRCATest-class S4 class defining edge significance

Description

MRCATest defines the significance of enrichment for annotations appearing at the MRCA of the tree.

Usage

S4 method for signature 'MRCATest'
print(x)

S4 method for signature 'MRCATest,missing'
plot(x, vy, ...)

Arguments
X MRCATest object.
y ignored.
arguments to pass to plotMRCATest.
Slots

tests data.frame describing the significance test results with columns:
* annotation: annotation value.
* count: observed count of MRCA positions with the given annotation.
* expected: expected mean count of MRCA occurance for the annotation.

* pvalue: one-sided p-value for the hypothesis that the observed annotation abundance is
greater than expected.

permutations data.frame containing the raw permutation test data with columns:
* annotation: annotation value.
* count: count of MRCA positions with the given annotation.

e iter: numerical index define which permutation realization each observation corre-
sponds to.

nperm number of permutation realizations.

nonsquareDist 61

nonsquareDist Calculate pairwise distances between sequences

Description

nonsquareDist calculates all pairwise distance between a set of sequences and a subset of it.

Usage

nonsquareDist(seq, indx, dist_mat = getDNAMatrix())

Arguments
seq character vector containing a DNA sequences. The sequence vector needs to be
named.
indx numeric vector contating the indices (a subset of indices of seq).
dist_mat Character distance matrix. Defaults to a Hamming distance matrix returned by
getDNAMatrix. If gap characters, c("-", "."), are assigned a value of -1 in
dist_mat then contiguous gaps of any run length, which are not present in both
sequences, will be counted as a distance of 1. Meaning, indels of any length
will increase the sequence distance by 1. Gap values other than -1 will return a
distance that does not consider indels as a special case.
Value

A matrix of numerical distance between each entry in seq and sequences specified by indx indices.

Note that the input subsampled indices will be ordered ascendingly. Therefore, it is necassary to
assign unique names to the input sequences, seq, to recover the input order later. Row and columns
names will be added accordingly.

Amino acid distance matrix may be built with getAAMatrix. Uses seqDist for calculating distances
between pairs. See pairwiseEqual for generating an equivalence matrix.

Examples

Gaps will be treated as Ns with a gap=0 distance matrix
seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C")
pairwiseDist(seq,

dist_mat=getDNAMatrix(gap=0))

nonsquareDist(seq, indx=c(1,3),
dist_mat=getDNAMatrix(gap=0))

62 padSeqEnds

padSeqEnds Pads ragged ends of aligned DNA sequences

Description

padSeqEnds takes a vector of DNA sequences, as character strings, and appends the ends of each
sequence with an appropriate number of "N"” characters to create a sequence vector with uniform
lengths.

Usage

padSeqEnds(seq, len = NULL, start = FALSE, pad_char = "N", mod3 = TRUE)

Arguments
seq character vector of DNA sequence strings.
len length to pad to. Only applies if longer than the maximum length of the data in
seq.
start if TRUE pad the beginning of each sequence instead of the end.
pad_char character to use for padding.
mod3 if TRUE pad sequences to be of length multiple three.
Value

A modified seq vector with padded sequences.

See Also

See maskSeqEnds for creating uniform masking from existing masking.

Examples

Default behavior uniformly pads ragged ends
seq <- c("CCCCTGGG", "ACCCTG", "CCCC")
padSeqgEnds(seq)

Pad to fixed length
padSegEnds(seq, len=15)

Add padding to the beginning of the sequences instead of the ends
padSeqEnds(seq, start=TRUE)
padSegEnds(seq, len=15, start=TRUE)

pairwiseDist 63

pairwiseDist Calculate pairwise distances between sequences

Description

pairwiseDist calculates all pairwise distance between a set of sequences.

Usage

pairwiseDist(seq, dist_mat = getDNAMatrix())

Arguments
seq character vector containing a DNA sequences.
dist_mat Character distance matrix. Defaults to a Hamming distance matrix returned by
getDNAMatrix. If gap characters, c("-", "."), are assigned a value of -1 in
dist_mat then contiguous gaps of any run length, which are not present in both
sequences, will be counted as a distance of 1. Meaning, indels of any length
will increase the sequence distance by 1. Gap values other than -1 will return a
distance that does not consider indels as a special case.
Value

A matrix of numerical distance between each entry in seq. If seq is a named vector, row and
columns names will be added accordingly.

Amino acid distance matrix may be built with getAAMatrix. Uses seqDist for calculating distances
between pairs. See pairwiseEqual for generating an equivalence matrix.

Examples

Gaps will be treated as Ns with a gap=0 distance matrix
pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"),
dist_mat=getDNAMatrix(gap=0))

Gaps will be treated as universally non-matching characters with gap=1
pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"),
dist_mat=getDNAMatrix(gap=1))

Gaps of any length will be treated as single mismatches with a gap=-1 distance matrix
pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"),
dist_mat=getDNAMatrix(gap=-1))

64 permuteLabels

pairwiseEqual Calculate pairwise equivalence between sequences

Description

pairwiseEqual determined pairwise equivalence between a pairs in a set of sequences, excluding
ambiguous positions (Ns and gaps).

Usage

pairwiseEqual(seq)
Arguments

seq character vector containing a DNA sequences.
Value

A logical matrix of equivalence between each entry in seq. Values are TRUE when sequences are
equivalent and FALSE when they are not.

See Also

Uses seqEqual for testing equivalence between pairs. See pairwiseDist for generating a sequence
distance matrix.

Examples

Gaps and Ns will match any character

seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C", E="NTGGG")
d <- pairwiseEqual(seq)

rownames(d) <- colnames(d) <- seq

d

permutelLabels Permute the node labels of a tree

Description

permuteLabels permutes the node annotations of a lineage tree.

Usage

permuteLabels(graph, field, exclude = c("Germline”, NA))

phyloToGraph 65

Arguments

graph igraph object containing an annotated lineage tree.

field string defining the annotation field to permute.

exclude vector of strings defining field values to exclude from permutation.
Value

A modified igraph object with vertex annotations permuted.

See Also
testEdges.

Examples

Define and plot example graph

library(igraph)

graph <- ExampleTrees[[23]]

plot(graph, layout=layout_as_tree, vertex.label=V(graph)$c_call,
vertex.size=50, edge.arrow.mode=0, vertex.color="grey80")

Permute annotations and plot new tree

g <- permuteLabels(graph, "c_call”)

plot(g, layout=layout_as_tree, vertex.label=V(g)$c_call,
vertex.size=50, edge.arrow.mode=0, vertex.color="grey80")

phyloToGraph Convert a tree in ape phylo format to igraph graph format.

Description

phyloToGraph converts a tree in phylo format to and graph format.

Usage

phyloToGraph(phylo, germline = "Germline")

Arguments

phylo An ape phylo object.

germline If specified, places specified tip sequence as the direct ancestor of the tree
Details

Convert from phylo to graph object. Uses the node.label vector to label internal nodes. Nodes may
rotate but overall topology will remain constant.

66 plotAbundanceCurve

Value

A graph object representing the input tree.

References

1. Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody
Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303

2. Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-
wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of
aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825

Examples

Not run:
library(igraph)
library(ape)

#convert to phylo
phylo = graphToPhylo(graph)

#plot tree using ape
plot(phylo, show.node.label=TRUE)

#store as newick tree
write.tree(phylo,file="tree.newick")

#read in tree from newick file
phylo_r = read.tree("tree.newick”)

#convert to igraph
graph_r = phyloToGraph(phylo_r,germline="Germline")

#plot graph - same as before, possibly rotated
plot(graph_r,layout=layout_as_tree)

End(Not run)

plotAbundanceCurve Plot a clonal abundance distribution

Description

plotAbundanceCurve plots the results from estimating the complete clonal relative abundance dis-
tribution. The distribution is plotted as a log rank abundance distribution.

plotAbundanceCurve

Usage

67

plotAbundanceCurve(

data,

colors = NULL,

main_title = "Rank Abundance”,
legend_title = NULL,

xlim = NULL,

ylim = NULL,

annotate = c("none”, "depth"),

silent = FALSE,

Arguments

data

colors

main_title
legend_title
xlim

ylim

annotate

silent

Value

AbundanceCurve object returned by estimateAbundance.

named character vector whose names are values in the group column of data
and whose values are colors to assign to those group names.

string specifying the plot title.

string specifying the legend title.

numeric vector of two values specifying the c(lower, upper) x-axis limits. The
lower x-axis value must be >=1.

numeric vector of two values specifying the c(lower, upper) y-axis limits. The
limits on the abundance values are expressed as fractions of 1: use c(0,1) to set
the lower and upper limits to 0% and 100%.

string defining whether to added values to the group labels of the legend. When
"none” (default) is specified no annotations are added. Specifying ("depth”)
adds sequence counts to the labels.

if TRUE do not draw the plot and just return the ggplot2 object; if FALSE draw
the plot.

additional arguments to pass to ggplot2::theme.

A ggplot object defining the plot.

See Also

See AbundanceCurve for the input object and estimateAbundance for generating the input abun-
dance distribution. Plotting is performed with ggplot.

Examples

Estimate abundance by sample and plot
abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100)
plotAbundanceCurve(abund, legend_title="Sample")

68

plotDiversityCurve

plotDiversityCurve Plot the results of alphaDiversity

Description

plotDiversityCurve plots a DiversityCurve object.

Usage
plotDiversityCurve(
data,
colors = NULL,
main_title = "Diversity”,
legend_title = "Group",
log_x = FALSE,
log_y = FALSE,
xlim = NULL,
ylim = NULL,
annotate = c("none”, "depth"),
score = c("diversity"”, "evenness"),

silent = FALSE,

Arguments

data

colors

main_title
legend_title
log_x

log_y

x1lim
ylim

annotate

score

silent

DiversityCurve object returned by alphaDiversity.

named character vector whose names are values in the group column of the
data slot of data, and whose values are colors to assign to those group names.

string specifying the plot title.
string specifying the legend title.
if TRUE then plot g on a log scale; if FALSE plot on a linear scale.

if TRUE then plot the diversity/evenness scores on a log scale; if FALSE plot on a
linear scale.

numeric vector of two values specifying the c(lower, upper) x-axis limits.
numeric vector of two values specifying the c(lower, upper) y-axis limits.

string defining whether to added values to the group labels of the legend. When
"none” (default) is specified no annotations are added. Specifying ("depth”)
adds sequence counts to the labels.

one of "diversity” or "evenness” specifying which score to plot on the y-asis.

if TRUE do not draw the plot and just return the ggplot2 object; if FALSE draw
the plot.

additional arguments to pass to ggplot2::theme.

plotDiversityTest 69

Value

A ggplot object defining the plot.

See Also
See alphaDiversity and alphaDiversity for generating DiversityCurve objects for input. Plotting is
performed with ggplot.

Examples

Calculate diversity
div <- alphaDiversity(ExampleDb, group="sample_id", nboot=100)

Plot diversity
plotDiversityCurve(div, legend_title="Sample")

Plot diversity
plotDiversityCurve(div, legend_title="Sample"”, score="evenness")

plotDiversityTest Plot the results of diversity testing

Description

plotDiversityTest plots summary data for a DiversityCurve object with mean and a line range
indicating plus/minus one standard deviation.

Usage

plotDiversityTest(
data,

q,

colors = NULL,

main_title = "Diversity”,
legend_title = "Group",

log_d = FALSE,

annotate = c("none”, "depth"),
silent = FALSE,

Arguments

data DiversityCurve object returned by alphaDiversity.
q diversity order to plot the test for.

70 plotEdgeTest

colors named character vector whose names are values in the group column of the
data slot of data, and whose values are colors to assign to those group names.

main_title string specifying the plot title.

legend_title string specifying the legend title.

log_d if TRUE then plot the diversity scores D on a log scale; if FALSE plot on a linear
scale.
annotate string defining whether to added values to the group labels of the legend. When

"none” (default) is specified no annotations are added. Specifying ("depth”)
adds sequence counts to the labels.

silent if TRUE do not draw the plot and just return the ggplot2 object; if FALSE draw
the plot.

additional arguments to pass to ggplot2::theme.

Value

A ggplot object defining the plot.

See Also

See alphaDiversity for generating input. Plotting is performed with ggplot.

Examples

Calculate diversity
div <- alphaDiversity(ExampleDb, group="sample_id", min_qg=0, max_qg=2, step_qg=1, nboot=100)

Plot results at g=0 (equivalent to species richness)
plotDiversityTest(div, @, legend_title="Sample")

Plot results at g=2 (equivalent to Simpson's index)
plotDiversityTest(div, g=2, legend_title="Sample")

plotEdgeTest Plot the results of an edge permutation test

Description

plotEdgeTest plots the results of an edge permutation test performed with testEdges as either a
histogram or cumulative distribution function.

plotEdgeTest 71
Usage
plotEdgeTest(
data,
color = "black”,

main_title = "Edge Test",
style = c¢("histogram”, "cdf"),
silent = FALSE,

Arguments

data
color
main_title

style

silent

Value

EdgeTest object returned by testEdges.
color of the histogram or lines.

string specifying the plot title.

type of plot to draw. One of:

* "histogram”: histogram of the edge count distribution with a red dotted
line denoting the observed value.

e "cdf": cumulative distribution function of edge counts with a red dotted
line denoting the observed value and a blue dotted line indicating the p-
value.

if TRUE do not draw the plot and just return the ggplot2 object; if FALSE draw
the plot.

additional arguments to pass to ggplot2::theme.

A ggplot object defining the plot.

See Also

See testEdges for performing the test.

Examples

Define example tree set
graphs <- ExampleTrees[6:10]

Perform edge test on isotypes
x <- testEdges(graphs, "c_call”, nperm=6)

Plot

plotEdgeTest(x, color="steelblue”, style="hist")
plotEdgeTest(x, style="cdf")

72

plotMRCATest

plotMRCATest

Plot the results of a founder permutation test

Description

plotMRCATest plots the results of a founder permutation test performed with testMRCA.

Usage
plotMRCATest (
data,
color = "black”,

main_title = "MRCA Test”,
style = c("histogram”, "cdf"),
silent = FALSE,

Arguments

data
color
main_title

style

silent

Value

MRCATest object returned by testMRCA.
color of the histogram or lines.

string specifying the plot title.

type of plot to draw. One of:

* "histogram”: histogram of the annotation count distribution with a red
dotted line denoting the observed value.

e "cdf": cumulative distribution function of annotation counts with a red
dotted line denoting the observed value and a blue dotted line indicating
the p-value.

if TRUE do not draw the plot and just return the ggplot2 object; if FALSE draw
the plot.

additional arguments to pass to ggplot2::theme.

A ggplot object defining the plot.

See Also

See testEdges for performing the test.

plotSubtrees

Examples

Define example tree set
graphs <- ExampleTrees[1:10]

Perform MRCA test on isotypes
x <- testMRCA(graphs, "c_call”, nperm=10)

Plot

plotMRCATest(x, color="steelblue”, style="hist")
plotMRCATest(x, style="cdf")

73

plotSubtrees

Plots subtree statistics for multiple trees

Description

plotSubtree plots distributions of normalized subtree statistics for a set of lineage trees, broken
down by annotation value.

Usage
plotSubtrees(
graphs,
field,
stat,
root = "Germline”,
exclude = c("Germline”, NA),
colors = NULL,
main_title = "Subtrees”,
legend_title = "Annotation”,
style = c("box", "violin"),

silent = FALSE,

Arguments

graphs
field
stat

list of igraph objects containing annotated lineage trees.

string defining the annotation field.

string defining the subtree statistic to plot. One of:
* outdegree: distribution of normalized node outdegrees.
* size: distribution of normalized subtree sizes.
* depth: distribution of subtree depths.

74

root
exclude

colors

main_title
legend_title

style

silent

Value

plotSubtrees

* pathlength: distribution of maximum pathlength beneath nodes.
name of the root (germline) node.
vector of strings defining field values to exclude from plotting.

named vector of colors for values in field, with names defining annotation
names field column and values being colors. Also controls the order in which
values appear on the plot. If NULL alphabetical ordering and a default color
palette will be used.

string specifying the plot title.
string specifying the legend title.
string specifying the style of plot to draw. One of:

* "histogram”: histogram of the annotation count distribution with a red
dotted line denoting the observed value.

e "cdf": cumulative distribution function of annotation counts with a red
dotted line denoting the observed value and a blue dotted line indicating
the p-value.

if TRUE do not draw the plot and just return the ggplot2 object; if FALSE draw
the plot.

additional arguments to pass to ggplot2::theme.

A ggplot object defining the plot.

See Also

Subtree statistics are calculated with summarizeSubtrees.

Examples

Define example tree set
graphs <- ExampleTrees[1:10]

Violin plots of node outdegree by sample

plotSubtrees(graphs, "sample_id",

n n

out”, style="v")

Violin plots of subtree size by sample
plotSubtrees(graphs, "sample_id"”, "size", style="v")

Boxplot of node depth by isotype
plotSubtrees(graphs, "c_call”, "depth"”, style="b")

polar 75

polar Calculates the average polarity of amino acid sequences

Description

polar calculates the average polarity score of amino acid sequences. Non-informative positions are

excluded, where non-informative is defined as any character in c("X", "=", ".", "x").
Usage
polar(seq, polarity = NULL)
Arguments
seq vector of strings containing amino acid sequences.
polarity named numerical vector defining polarity scores for each amino acid, where
names are single-letter amino acid character codes. If NULL, then the Grantham,
1974 scale is used.
Value

A vector of bulkiness scores for the sequence(s).

References

1. Grantham R. Amino acid difference formula to help explain protein evolution. Science 185,
862-864 (1974).

See Also

For additional size related indices see aaindex.

Examples

Default scale
seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT")
polar(seq)

Use the Zimmerman et al, 1968 polarity scale from the seqinr package
library(seqinr)

data(aaindex)

X <- aaindex[["ZIMJ680103"]1]$I

Rename the score vector to use single-letter codes

names(x) <- translateStrings(names(x), ABBREV_AA)

Calculate polarity

polar(seq, polarity=x)

76

rarefyDiversity

progressBar

Standard progress bar

Description

progressBar defines a common progress bar format.

Usage

progressBar(n)

Arguments

n

Value

A progress_bar object.

maximum number of ticks

rarefyDiversity

Generate a clonal diversity index curve

Description

rarefyDiversity divides a set of clones by a group annotation, resamples the sequences from each

group, and calculates diversity scores (D) over an interval of diversity orders (q).

Usage

rarefyDiversity(
data,
group,
clone = "CLONE",
copy = NULL,
min_q = 0,
max_q = 4,
step_q = 0.05,
min_n = 30,
max_n = NULL,
ci = 0.95,
nboot = 2000,

uniform = TRUE,
progress = FALSE

rarefyDiversity 77

Arguments

data data.frame with Change-O style columns containing clonal assignments.

group name of the data column containing group identifiers.

clone name of the data column containing clone identifiers.

copy name of the data column containing copy numbers for each sequence. If copy=NULL
(the default), then clone abundance is determined by the number of sequences.
If a copy column is specified, then clone abundances is determined by the sum
of copy numbers within each clonal group.

min_q minimum value of q.

max_g maximum value of q.

step_q value by which to increment q.

min_n minimum number of observations to sample. A group with less observations
than the minimum is excluded.

max_n maximum number of observations to sample. If NULL then no maximum is set.

ci confidence interval to calculate; the value must be between O and 1.

nboot number of bootstrap realizations to generate.

uniform if TRUE then uniformly resample each group to the same number of observations.
If FALSE then allow each group to be resampled to its original size or, if specified,
max_size.

progress if TRUE show a progress bar.

Details

Clonal diversity is calculated using the generalized diversity index (Hill numbers) proposed by Hill
(Hill, 1973). See calcDiversity for further details.

Diversity is calculated on the estimated complete clonal abundance distribution. This distribution
is inferred by using the Chaol estimator to estimate the number of seen clones, and applying the
relative abundance correction and unseen clone frequency described in Chao et al, 2015.

To generate a smooth curve, D is calculated for each value of ¢ from min_q to max_q incremented
by step_q. When uniform=TRUE variability in total sequence counts across unique values in the
group column is corrected by repeated resampling from the estimated complete clonal distribution
to a common number of sequences.

The diversity index (D) for each group is the mean value of over all resampling realizations. Confi-
dence intervals are derived using the standard deviation of the resampling realizations, as described
in Chao et al, 2015.

Value

A DiversityCurve object summarizing the diversity scores.

78 readChangeoDb

References

1. Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973
54(2):427-32.

2. Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat.
1984 11, 265270.

3. Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling
and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67.

4. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-
Turing sample coverage theory. Ecology. 2015 96, 11891201.

See Also

alphaDiversity

Examples

Not run:

Group by sample identifier

div <- rarefyDiversity(ExampleDb, "sample_id"”, step_g=1, max_g=10, nboot=100)
plotDiversityCurve(div, legend_title="Sample")

Grouping by isotype rather than sample identifier

div <- rarefyDiversity(ExampleDb, "c_call”, min_n=40, step_q=1, max_g=10,
nboot=100)

plotDiversityCurve(div, legend_title="Isotype")

End(Not run)

readChangeoDb Read a Change-O tab-delimited database file

Description

readChangeoDb reads a tab-delimited database file created by a Change-O tool into a data.frame.

Usage

readChangeoDb(file, select = NULL, drop = NULL, seq_upper = TRUE)

Arguments
file tab-delimited database file output by a Change-O tool.
select columns to select from database file.
drop columns to drop from database file.
seqg_upper if TRUE convert sequence columns to upper case; if FALSE do not alter sequence

columns. See Value for a list of which columns are effected.

readFastqDb 79

Value

A data.frame of the database file. Columns will be imported as is, except for the following columns
which will be explicitly converted into character values:
* SEQUENCE_ID
* CLONE
* SAMPLE
And the following sequence columns which will converted to upper case if seq_upper=TRUE (de-
fault).
* SEQUENCE_INPUT
SEQUENCE_VDJ
SEQUENCE_IMGT
JUNCTION
GERMLINE_IMGT
* GERMLINE_IMGT_D_MASK

See Also

Wraps read_delim. See writeChangeoDb for writing to Change-O files. See read_rearrangement
and write_rearrangement to read and write AIRR-C Standard formatted repertoires.

Examples

Not run:
Read all columns in and convert sequence fields to upper case
db <- readChangeoDb("changeo.tsv")

Subset columns and convert sequence fields to upper case
db <- readChangeoDb("changeo.tsv", select=c(”"SEQUENCE_ID", "SEQUENCE_IMGT"))

Drop columns and do not alter sequence field case
db <- readChangeoDb("changeo.tsv"”, drop=c(”"D_CALL", "DUPCOUNT"),
seq_upper=FALSE)

End(Not run)

readFastqDb Load sequencing quality scores from a FASTQ file

Description

readFastqgDb adds the sequencing quality scores to a data.frame from a FASTQ file. Matching is
done by ‘sequence_id*.

80

Usage

readFastqDb(
data,
fastqg_file,

readFastqDb

quality_offset = -33,
header = c("presto”, "asis"),

sequence_id =

"sequence_id",

sequence = "sequence”,
sequence_alignment = "sequence_alignment”,

v_cigar = "v_cigar”,
d_cigar = "d_cigar”,
j_cigar = "j_cigar”,

npl_length =
np2_length =

"np1_length",
"np2_length",

v_sequence_end = "v_sequence_end”,
d_sequence_end = "d_sequence_end”,
style = ¢("num”, "ascii”, "both"),
quality_sequence = FALSE

Arguments

data
fastq_file
quality_offset

header

sequence_id

sequence

data. frame containing sequence data.
path to the fastq file

offset value to be used by ape::read.fastq. It is the value to be added to the
quality scores (the default -33 applies to the Sanger format and should work for
most recent FASTQ files).

FASTQ file header format; one of "presto” or "asis”. Use "presto” to spec-
ify that the fastq file headers are using the pRESTO format and can be parsed
to extract the sequence_id. Use "asis” to skip any processing and use the
sequence names as they are.

column in data that contains sequence identifiers to be matched to sequence
identifiers in fastq_file

column in data that contains sequence data.

sequence_alignment

v_cigar
d_cigar
j_cigar

npl1_length

np2_length

v_sequence_end

column in data that contains IMGT aligned sequence data.

column in data that contains CIGAR strings for the V gene alignments.
column in data that contains CIGAR strings for the D gene alignments.
column in data that contains CIGAR strings for the J gene alignments.

column in data that contains the number of nucleotides between the V gene and
first D gene alignments or between the V gene and J gene alignments.

column in data that contains the number of nucleotides between either the first
D gene and J gene alignments or the first D gene and second D gene alignments.

column in data that contains the end position of the V gene in sequence.

readlgphyml 81

d_sequence_end column in data that contains the end position of the D gene in sequence.

style how the sequencing quality should be returned; one of "num”, "phred”, or
"both". Specify "num” to store the quality scores as strings of comma sepa-
rated numeric values. Use "phred” to have the function return the scores as
Phred (ASCII) scores. Use "both” to retrieve both.

quality_sequence
specify TRUE to keep the quality scores for sequence. If false, only the quality
score for sequence_alignment will be added to data.

Value
Modified data with additional fields:

1. quality_alignment: A character vector with ASCII Phred scores for sequence_alignment.

2. quality_alignment_num: A character vector, with comma separated numerical quality val-
ues for each position in sequence_alignment.

3. quality: A character vector with ASCII Phred scores for sequence.

4. quality_num: A character vector, with comma separated numerical quality values for each
position in sequence.
See Also

maskPositionsByQuality and getPositionQuality

Examples

db <- airr::read_rearrangement(system.file("extdata”, "example_quality.tsv”, package="alakazam"))
fastq_file <- system.file("extdata”, "example_quality.fastq”, package="alakazam")
db <- readFastqDb(db, fastq_file, quality_offset=-33)

readIgphyml Read in output from IgPhyML

Description

readIgphyml reads output from the IgPhyML phylogenetics inference package for B cell reper-
toires

Usage

readIgphyml(
file,
id = NULL,
format = c("graph”, "phylo"),
collapse = FALSE,
branches = c("mutations”, "distance")

82

Arguments
file
id

format

collapse

branches

Details

readlgphyml

IgPhyML output file (.tab).
ID to assign to output object.

if "graph" return trees as igraph graph objects. if "phylo"” return trees as ape
phylo objects.

if TRUE transform branch lengths to units of substitutions, rather than substitu-
tions per site, and collapse internal nodes separated by branches < 0.1 substitu-
tions. Will also remove all internal node labels, as it makes them inconsistent.

n

if "distance” branch lengths are in expected mutations per site. If "mutations
branches are in expected mutations.

readIgphyml reads output from the IgPhyML repertoire phylogenetics inference package. The
resulting object is divded between parameter estimates (usually under the HLP19 model), which
provide information about mutation and selection pressure operating on the sequences.

Trees returned from this function are either igraph objects or phylo objects, and each may be vi-
sualized accordingly. Futher, branch lengths in tree may represent either the expected number of
substitutions per site (codon, if estimated under HLP or GY94 models), or the total number of ex-
pected substitutions per site. If the latter, internal nodes - but not tips - separated by branch lengths
less than 0.1 are collapsed to simplify viewing.

Value

A list containing I[gPhyML model parameters and estimated lineage trees.

Object attributes:

* param: Data.frame of parameter estimates for each clonal lineage. Columns include: CLONE,

which is the clone id; NSEQ, the total number of sequences in the lineage; NSITE, the num-
ber of codon sites; TREE_LENGTH, the sum of all branch lengths in the estimated lineage tree;
and LHOOD, the log likelihood of the clone’s sequences given the tree and parameters. Subse-
quent columns are parameter estimates from IgPhyML, which will depend on the model used.
Parameter columns ending with _MLE are maximum likelihood estimates; those ending with
_LCI are the lower 95 with _UCI are the upper 95 estimate. The first line of param is for clone
REPERTOIRE, which is a summary of all lineages within the repertoire. For this row, NSEQ is
the total number of sequences, NSITE is the average number of sites, and TREE_LENGTH is the
mean tree length. For most applications, parameter values will be the same for all lineages
within the repertoire, so access them simply by: <object>$param$OMEGA_CDR_MLE[1] to, for
instance, get the estimate of dN/dS on the CDRs at the repertoire level.

trees: List of tree objects estimated by [gPhyML. If format="graph” these are igraph graph
objects. If format="phylo", these are ape phylo objects.

* command: Command used to run IgPhyML.

References

1. Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody
Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303

seqDist 83

2. Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-
wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of
aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825

Examples

Not run:
Read in and plot a tree from an igphyml run
library(igraph)
s1 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab"”, id="+7d")
print(s1$param$OMEGA_CDR_MLE[1])
plot(s1$trees[[1]], layout=layout_as_tree, edge.label=E(s1$trees[[1]])$weight)

End(Not run)

seqDist Calculate distance between two sequences

Description

seqDist calculates the distance between two DNA sequences.

Usage

seqDist(seql, seq2, dist_mat = getDNAMatrix())

Arguments
seql character string containing a DNA sequence.
seq2 character string containing a DNA sequence.
dist_mat Character distance matrix. Defaults to a Hamming distance matrix returned by
getDNAMatrix. If gap characters, c("-", "."), are assigned a value of -1 in
dist_mat then contiguous gaps of any run length, which are not present in both
sequences, will be counted as a distance of 1. Meaning, indels of any length
will increase the sequence distance by 1. Gap values other than -1 will return a
distance that does not consider indels as a special case.
Value

Numerical distance between seql and seq?2.

See Also

Nucleotide distance matrix may be built with getDNAMatrix. Amino acid distance matrix may be
built with getAAMatrix. Used by pairwiseDist for generating distance matrices. See seqEqual for
testing sequence equivalence.

84 seqEqual

Examples

Ungapped examples
seqDist ("ATGGC", "ATGGG")
seqDist ("ATGGC", "ATG??")

Gaps will be treated as Ns with a gap=0 distance matrix
seqDist ("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=0))

Gaps will be treated as universally non-matching characters with gap=1
seqDist ("ATGGC"”, "AT--C", dist_mat=getDNAMatrix(gap=1))

Gaps of any length will be treated as single mismatches with a gap=-1 distance matrix
seqDist ("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=-1))

Gaps of equivalent run lengths are not counted as gaps
seqDist ("ATG-C", "ATG-C", dist_mat=getDNAMatrix(gap=-1))

Overlapping runs of gap characters are counted as a single gap
seqDist ("ATG-C", "AT--C", dist_mat=getDNAMatrix(gap=-1))
seqDist("A-GGC", "AT--C", dist_mat=getDNAMatrix(gap=-1))
seqDist("AT--C", "AT--C", dist_mat=getDNAMatrix(gap=-1))

Discontiguous runs of gap characters each count as separate gaps
seqDist("-TGGC", "AT--C", dist_mat=getDNAMatrix(gap=-1))

seqEqual Test DNA sequences for equality.

Description

seqEqual checks if two DNA sequences are identical.

Usage
seqEqual(seql, seq2, ignore = as.character(c("N", "=", "." "2")))
Arguments
seql character string containing a DNA sequence.
seq2 character string containing a DNA sequence.
ignore vector of characters to ignore when testing for equality. Default is to ignore
("N, o gy
Value

Returns TRUE if sequences are equal and FALSE if they are not. Sequences of unequal length will
always return FALSE regardless of their character values.

SingleDb 85

See Also

Used by pairwiseEqual within collapseDuplicates. See seqDist for calculation Hamming distances
between sequences.

Examples

Ignore gaps

seqEqual ("ATG-C", "AT--C")
seqEqual ("ATGGC", "ATGGN")
seqEqual ("AT--T", "ATGGC")

Ignore only Ns

seqEqual ("ATG-C", "AT--C", ignore="N")
seqEqual ("ATGGC", "ATGGN", ignore="N")
seqEqual ("AT--T", "ATGGC", ignore="N")

SingleDb Single sequence AIRR database

Description

A database with just one sequence from ExampleDb and additional AIRR Rearrangement fields
containing alignment information. The sequence was reanalyzed with a recent versions of alignment
software (IgBLAST 1.16.0) and reference germlines (IMGT 2020-08-12).

Usage

SingleDb

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 1 rows and 32
columns.

See Also

ExampleDb

86 sortGenes

sortGenes Sort V(D)J genes

Description

sortGenes sorts a vector of V(D)J gene names by either lexicographic ordering or locus position.

Usage
sortGenes(genes, method = c("name”, "position"))
Arguments
genes vector of strings respresenting V(D)J gene names.
method string defining the method to use for sorting genes. One of:

* "name”: sort in lexicographic order. Order is by family first, then gene, and
then allele.

* "position”: sort by position in the locus, as determined by the final two
numbers in the gene name. Non-localized genes are assigned to the highest
positions.

Value

A sorted character vector of gene names.

See Also

See getAllele, getGene and getFamily for parsing gene names.

Examples

Create a list of allele names

genes <- c("IGHV1-69D*@1","IGHV1-69%01","IGHV4-38-2%01","IGHV1-69-2%01",
"IGHV2-5%@1","IGHV1-NL1*@1", "IGHV1-2%01,IGHV1-2%05",
"IGHV1-2", "IGHV1-2x02", "IGHV1-69%02")

Sort genes by name
sortGenes(genes)

Sort genes by position in the locus
sortGenes(genes, method="pos")

stoufferMeta 87

stoufferMeta Weighted meta-analysis of p-values via Stouffer’s method

Description
stoufferMeta combines multiple weighted p-values into a meta-analysis p-value using Stouffer’s
Z-score method.

Usage

stoufferMeta(p, w = NULL)

Arguments
numeric vector of p-values.
w numeric vector of weights.
Value

A named numeric vector with the combined Z-score and p-value in the form c(Z, pvalue).

Examples

Define p-value and weight vectors
p <- c(0.1, 0.05, 0.3)
w <- c(5, 10, 1)

Unweighted
stoufferMeta(p)

Weighted
stoufferMeta(p, w)

summarizeSubtrees Generate subtree summary statistics for a tree

Description
summarizeSubtrees calculates summary statistics for each node of a tree. Includes both node
properties and subtree properties.

Usage

summarizeSubtrees(graph, fields = NULL, root = "Germline")

88 tableEdges

Arguments
graph igraph object containing an annotated lineage tree.
fields annotation fields to add to the output.
root name of the root (germline) node.

Value

A data.frame with columns:

* name: node name.

* parent: name of the parent node.

* outdegree: number of edges leading from the node.

* size: total number of nodes within the subtree rooted at the node.

* depth: the depth of the subtree that is rooted at the node.

* pathlength: the maximum pathlength beneath the node.

* outdegree_norm: outdegree normalized by the total number of edges.

e size_norm: size normalized by the largest subtree size (the germline).

* depth_norm: depth normalized by the largest subtree depth (the germline).

* pathlength_norm: pathlength normalized by the largest subtree pathlength (the germline).

An additional column corresponding to the value of field is added when specified.

See Also

See buildPhylipLineage for generating input trees. See getPathLengths for calculating path length
to nodes.

Examples

Summarize a tree
graph <- ExampleTrees[[23]]
summarizeSubtrees(graph, fields="c_call”, root="Germline")

tableEdges Tabulate the number of edges between annotations within a lineage
tree

Description
tableEdges creates a table of the total number of connections (edges) for each unique pair of
annotations within a tree over all nodes.

Usage
tableEdges(graph, field, indirect = FALSE, exclude = NULL)

testDiversity 89

Arguments
graph igraph object containing an annotated lineage tree.
field string defining the annotation field to count.
indirect if FALSE count direct connections (edges) only. If TRUE walk through any nodes
with annotations specified in the argument to count indirect connections. Spec-
ifying indirect=TRUE with exclude=NULL will have no effect.
exclude vector of strings defining field values to exclude from counts. Edges that either
start or end with the specified annotations will not be counted. If NULL count all
edges.
Value

A data.frame defining total annotation connections in the tree with columns:

* parent: parent annotation
¢ child: child annotation

* count: count of edges for the parent-child relationship

See Also

See testEdges for performed a permutation test on edge relationships.

Examples

Define example graph
graph <- ExampleTrees[[23]]

Count direct edges between isotypes including inferred nodes
tableEdges(graph, "c_call")

Count direct edges excluding edges to and from germline and inferred nodes
tableEdges(graph, "c_call”, exclude=c("Germline"”, NA))

Count indirect edges walking through germline and inferred nodes
tableEdges(graph, "c_call”, indirect=TRUE, exclude=c("Germline"”, NA))

testDiversity Pairwise test of the diversity index

Description

testDiversity performs pairwise significance tests of the diversity index (D) at a given diversity
order (q) for a set of annotation groups via rarefaction and bootstrapping.

90 testDiversity

Usage
testDiversity(
data,
q,
group,
clone = "CLONE",
copy = NULL,
min_n = 30,
max_n = NULL,
nboot = 2000,
progress = FALSE,
ci =0.95
)
Arguments
data data.frame with Change-O style columns containing clonal assignments.
q diversity order to test.
group name of the data column containing group identifiers.
clone name of the data column containing clone identifiers.
copy name of the data column containing copy numbers for each sequence. If copy=NULL
(the default), then clone abundance is determined by the number of sequences.
If a copy column is specified, then clone abundances is determined by the sum
of copy numbers within each clonal group.
min_n minimum number of observations to sample. A group with less observations
than the minimum is excluded.
max_n maximum number of observations to sample. If NULL the maximum if automat-
ically determined from the size of the largest group.
nboot number of bootstrap realizations to perform.
progress if TRUE show a progress bar.
ci confidence interval to calculate; the value must be between O and 1.
Details

Clonal diversity is calculated using the generalized diversity index proposed by Hill (Hill, 1973).
See calcDiversity for further details.

Diversity is calculated on the estimated complete clonal abundance distribution. This distribution
is inferred by using the Chaol estimator to estimate the number of seen clones, and applying the
relative abundance correction and unseen clone frequency described in Chao et al, 2014.

Variability in total sequence counts across unique values in the group column is corrected by re-
peated resampling from the estimated complete clonal distribution to a common number of se-
quences. The diversity index estimate (D) for each group is the mean value of over all bootstrap
realizations.

Significance of the difference in diversity index (D) between groups is tested by constructing a
bootstrap delta distribution for each pair of unique values in the group column. The bootstrap delta

testDiversity 91

distribution is built by subtracting the diversity index Da in group — a from the corresponding
value Db in group — b, for all bootstrap realizations, yeilding a distribution of nboot total deltas;
where group — a is the group with the greater mean D. The p-value for hypothesis Da! = Db is the
value of P(0) from the empirical cumulative distribution function of the bootstrap delta distribution,
multiplied by 2 for the two-tailed correction.

Value

A DiversityCurve object containing slot test with p-values and summary statistics.

Note

This method may inflate statistical significance when clone sizes are uniformly small, such as when
most clones sizes are 1, sample size is small, and max_n is near the total count of the smallest data
group. Use caution when interpreting the results in such cases. We are currently investigating this
potential problem.

References

1. Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973
54(2):427-32.

2. Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat.
1984 11, 265270.

3. Wu Y-CB, et al. Influence of seasonal exposure to grass pollen on local and peripheral blood
IgE repertoires in patients with allergic rhinitis. J Allergy Clin Immunol. 2014 134(3):604-12.

4. Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling
and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67.

5. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-
Turing sample coverage theory. Ecology. 2015 96, 11891201.

See Also

alphaDiversity

Examples

Not run:
Groups under the size threshold are excluded and a warning message is issued.
testDiversity(ExampleDb, "sample_id"”, g=0, min_n=30, nboot=100)

End(Not run)

92 testEdges

testEdges Tests for parent-child annotation enrichment in lineage trees

Description

testEdges performs a permutation test on a set of lineage trees to determine the significance of an
annotation’s association with parent-child relationships.

Usage

testEdges(
graphs,
field,
indirect = FALSE,
exclude = c("Germline”, NA),

nperm = 200,
progress = FALSE
)
Arguments
graphs list of igraph objects with vertex annotations.
field string defining the annotation field to permute.
indirect if FALSE count direct connections (edges) only. If TRUE walk through any nodes
with annotations specified in the argument to count indirect connections. Spec-
ifying indirect=TRUE with exclude=NULL will have no effect.
exclude vector of strings defining field values to exclude from permutation.
nperm number of permutations to perform.
progress if TRUE show a progress bar.
Value

An EdgeTest object containing the test results and permutation realizations.

See Also

Uses tableEdges and permuteLabels. See plotEdgeTest for plotting the permutation distributions.

Examples

Define example tree set
graphs <- ExampleTrees[1:10]

Perform edge test on isotypes
x <- testEdges(graphs, "c_call”, nperm=10)
print(x)

testMRCA 93

testMRCA Tests for MRCA annotation enrichment in lineage trees

Description

testMRCA performs a permutation test on a set of lineage trees to determine the significance of an
annotation’s association with the MRCA position of the lineage trees.

Usage
testMRCA(
graphs,
field,
root = "Germline”,
exclude = c("Germline”, NA),
nperm = 200,
progress = FALSE
)
Arguments
graphs list of igraph object containing annotated lineage trees.
field string defining the annotation field to test.
root name of the root (germline) node.
exclude vector of strings defining field values to exclude from the set of potential
founder annotations.
nperm number of permutations to perform.
progress if TRUE show a progress bar.
Value

An MRCATest object containing the test results and permutation realizations.

See Also

Uses getMRCA and getPathLengths. See plotMRCATest for plotting the permutation distributions.

94 translateDNA

Examples

Define example tree set
graphs <- ExampleTrees[1:10]

Perform MRCA test on isotypes
x <- testMRCA(graphs, "c_call”, nperm=10)
print(x)

translateDNA Translate nucleotide sequences to amino acids

Description

translateDNA translates nucleotide sequences to amino acid sequences.

Usage
translateDNA(seq, trim = FALSE)

Arguments
seq vector of strings defining DNA sequence(s) to be converted to translated.
trim boolean flag to remove 3 nts from both ends of seq (converts IMGT junction to
CDR3 region).
Value

A vector of translated sequence strings.

See Also

translate.

Examples

Translate a single sequence
translateDNA("ACTGACTCGA")

Translate a vector of sequences
translateDNA(ExampleDb$junction[1:3])

Remove the first and last codon from the translation
translateDNA(ExampleDb$junction[1:3], trim=TRUE)

translateStrings 95

translateStrings Translate a vector of strings

Description
translateStrings modifies a character vector by substituting one or more strings with a replace-
ment string.

Usage

translateStrings(strings, translation)

Arguments
strings vector of character strings to modify.
translation named character vector or a list of character vectors specifying the strings to
replace (values) and their replacements (names).
Details

Does not perform partial replacements. Each translation value must match a complete strings
value or it will not be replaced. Values that do not have a replacement named in the translation
parameter will not be modified.

Replacement is accomplished using gsub.

Value

A modified strings vector.

See Also

See gsub for single value replacement in the base package.

Examples

Using a vector translation

strings <- LETTERS[1:5]

translation <- c("POSITION1"="A", "POSITION5"="E")
translateStrings(strings, translation)

Using a list translation

strings <- LETTERS[1:5]

translation <_ list()71_3lI:C(VIAII’IIBII,IICII)’ "4_5,I:C(“D"’”E”))
translateStrings(strings, translation)

96 writeChangeoDb

writeChangeoDb Write a Change-O tab-delimited database file

Description
writeChangeoDb is a simple wrapper around write_delim with defaults appropriate for writing a
Change-O tab-delimited database file from a data.frame.

Usage

writeChangeoDb(data, file)

Arguments
data data.frame of Change-O data.
file output file name.

See Also

Wraps write_delim. See readChangeoDb for reading to Change-O files. See read_rearrangement
and write_rearrangement to read and write AIRR-C Standard formatted repertoires.

Examples

Not run:
Write a database
writeChangeoDb(data, "changeo.tsv")

End(Not run)

Index

+ datasets
ABBREV_AA, 4
DEFAULT_COLORS, 29
Example10x, 33
ExampleDb, 34
ExampleDbChangeo, 35
ExampleTrees, 36
IMGT_REGIONS, 50
TUPAC_CODES, 51
SingleDb, 85

aaindex, 16,47,75
ABBREV_AA, 4, 51
AbundanceCurve, 8, 33, 67

AbundanceCurve (AbundanceCurve-class), 4

AbundanceCurve-class, 4

AbundanceCurve-method
(AbundanceCurve-class), 4

alakazam, 5

aliphatic, 7, 10, 12

alphaDiversity, 6,8, 17, 18, 33, 68-70, 78,
91

aminoAcidProperties, 7, 10

baseTheme, 12

buildPhyliplLineage, 6, 13, 19, 36, 40, 55, 88

bulk, 10, 12, 15

calcCoverage, 16
calcDiversity, 8, 9,17, 77, 90
ChangeoClone, 13, 15, 55
ChangeoClone (ChangeoClone-class), 18
ChangeoClone-class, 18
charge, 10, 12, 19
checkColumns, 20
collapseDuplicates, 6, 21, 55, 85
combineIgphyml, 23
countClones, 6, 24
countGenes, 6, 26, 44
countPatterns, 7, 12,27

97

cpuCount, 28

DEFAULT_COLORS, 29

dir.create, 56

DiversityCurve, 9, 68, 69, 77, 91

DiversityCurve (DiversityCurve-class),
30

DiversityCurve-class, 30

DiversityCurve-method
(DiversityCurve-class), 30

DNA_COLORS (DEFAULT_COLORS), 29

DNA_IUPAC (IUPAC_CODES), 51

EdgeTest, 71, 92

EdgeTest (EdgeTest-class), 31
EdgeTest-class, 31

EdgeTest-method (EdgeTest-class), 31
estimateAbundance, 6, 8, 32, 67
Example10x, 33

ExampleDb, 34, 36, 85
ExampleDbChangeo, 35, 35
ExampleTrees, 35, 36, 36
extractVRegion, 6, 36

getAAMatrix, 37, 38, 61, 63, 83
getAllele, 6, 42

getAllele (getSegment), 42
getChain (getSegment), 42
getDNAMatrix, 13, 38, 38, 61, 63, 83
getFamily, 6, 42

getFamily (getSegment), 42
getGene, 6, 42

getGene (getSegment), 42
getlLocus (getSegment), 42
getMRCA, 39, 93
getPathLengths, 40, 40, 88, 93
getPositionQuality, 41, 57, 81
getSegment, 42

ggplot, 47,67, 69, 70
graphToPhylo, 45

98 INDEX

gravy, 10, 12, 46 plotSubtrees, 6, 73

gridPlot, 47 polar, 10, 12,75
groupGenes, 48 print,AbundanceCurve-method
gsub, 95 (AbundanceCurve-class), 4

print,DiversityCurve-method
IG_COLORS (DEFAULT_COLORS), 29 (DiversityCurve-class), 30
IMGT_REGIONS, 37, 50 print,EdgeTest-method (EdgeTest-class),
isValidAASeq, 50 31
TUPAC_AA, 51 print,MRCATest-method (MRCATest-class),

TUPAC_AA (IUPAC_CODES), 51
IUPAC_CODES, 51
TUPAC_DNA, 22

TUPAC_DNA (IUPAC_CODES), 51

junctionAlignment, 6, 52

makeChangeoClone, 6, 19, 53
makeTempDir, 15, 56
maskPositionsByQuality, 41, 57, 81
maskSeqEnds, 6, 55, 58, 59, 62
maskSeqGaps, 6, 55, 58, 59
MRCATest, 72, 93

MRCATest (MRCATest-class), 60
MRCATest-class, 60

MRCATest-method (MRCATest-class), 60

nonsquareDist, 61

padSegEnds, 55, 58, 62
pairwiseDist, 7, 63, 64, 83
pairwiseEqual, 7, 22,61, 63, 64, 85
permutelLabels, 64, 92
phyloToGraph, 65
pK, 20
plot,AbundanceCurve,missing-method
(AbundanceCurve-class), 4
plot,DiversityCurve,missing-method
(DiversityCurve-class), 30
plot,DiversityCurve,numeric-method
(DiversityCurve-class), 30
plot,EdgeTest,missing-method
(EdgeTest-class), 31
plot,MRCATest,missing-method
(MRCATest-class), 60
plotAbundanceCurve, 6, 33, 66
plotDiversityCurve, 5, 6, 9, 30, 68
plotDiversityTest, 6, 30, 69
plotEdgeTest, 31, 70, 92
plotMRCATest, 60, 72, 93

60
progress_bar, 76
progressBar, 76

rarefyDiversity, 76
read_delim, 79
read_rearrangement, 79, 96
readChangeoDb, 6, 78, 96
readFastqDb, 41, 57,79
readIgphyml, 23, 24, 81

seqDist, 7, 15, 38, 61, 63, 83, 85
seqEqual, 7, 22, 64, 83, 84
SingleDb, 85

sortGenes, 86
stoufferMeta, 87
summarizeSubtrees, 6, 74, 87

tableEdges, 6, 88, 92
tempfile, 56
testDiversity, 89
testEdges, 6, 65, 71, 72, 89, 92
testMRCA, 6, 72, 93

theme, /3

TR_COLORS (DEFAULT_COLORS), 29
translate, 94
translateDNA, 7, 94
translateStrings, 95

write_delim, 96
write_rearrangement, 79, 96
writeChangeoDb, 6, 79, 96

	ABBREV_AA
	AbundanceCurve-class
	alakazam
	aliphatic
	alphaDiversity
	aminoAcidProperties
	baseTheme
	buildPhylipLineage
	bulk
	calcCoverage
	calcDiversity
	ChangeoClone-class
	charge
	checkColumns
	collapseDuplicates
	combineIgphyml
	countClones
	countGenes
	countPatterns
	cpuCount
	DEFAULT_COLORS
	DiversityCurve-class
	EdgeTest-class
	estimateAbundance
	Example10x
	ExampleDb
	ExampleDbChangeo
	ExampleTrees
	extractVRegion
	getAAMatrix
	getDNAMatrix
	getMRCA
	getPathLengths
	getPositionQuality
	getSegment
	graphToPhylo
	gravy
	gridPlot
	groupGenes
	IMGT_REGIONS
	isValidAASeq
	IUPAC_CODES
	junctionAlignment
	makeChangeoClone
	makeTempDir
	maskPositionsByQuality
	maskSeqEnds
	maskSeqGaps
	MRCATest-class
	nonsquareDist
	padSeqEnds
	pairwiseDist
	pairwiseEqual
	permuteLabels
	phyloToGraph
	plotAbundanceCurve
	plotDiversityCurve
	plotDiversityTest
	plotEdgeTest
	plotMRCATest
	plotSubtrees
	polar
	progressBar
	rarefyDiversity
	readChangeoDb
	readFastqDb
	readIgphyml
	seqDist
	seqEqual
	SingleDb
	sortGenes
	stoufferMeta
	summarizeSubtrees
	tableEdges
	testDiversity
	testEdges
	testMRCA
	translateDNA
	translateStrings
	writeChangeoDb
	Index

