
Alakazam: Reconstruction of Ig lineage trees

Jason Anthony Vander Heiden

2023-09-29

Contents
Example data . 1
Preprocess a clone . 2
Run PHYLIP . 2
Plotting of the lineage tree . 3
Batch processing lineage trees . 4
Converting between graph, phylo, and newick formats . 5

Reconstruction of an Ig lineage requires the following steps:

1. Load an AIRR tab-delimited database file and select a clone
2. Preprocess the clone to remove gap characters and duplicate sequences
3. Run PHYLIP, parse the output, and modify the tree topology

Example data

A small example AIRR database, ExampleDb, is included in the alakazam package. Lineage
reconstruction requires the following fields (columns) to be present in the AIRR file:

• sequence_id
• sequence_alignment
• germline_alignment
• v_call
• j_call
• junction_length
• clone_id

For details about the AIRR format, visit the AIRR Community documentation site.

Load required packages
library(alakazam)
library(igraph)
library(dplyr)

Select a clone from the example database
data(ExampleDb)
sub_db <- subset(ExampleDb, clone_id == 3138)

1

https://docs.airr-community.org/en/stable/datarep/rearrangements.html

Preprocess a clone

Before a lineage can be constructed, the sequences must first be cleaned of gap (-, .) characters
added by IMGT, duplicate sequences must be removed, and annotations must be combined for each
cluster of duplicate sequences. Optionally, “ragged” ends of sequences (such as those that may occur
from primer template switching) may also be cleaned by masking mismatched positions and the
leading and trailing ends of each sequence. The function makeChangeoClone is a wrapper function
which combines these steps and returns a ChangeoClone object which may then be passed into the
lineage reconstruction function.

Two arguments to makeChangeoClone control which annotations are retained following duplicate
removal. Unique values appearing within columns given by the text_fields arguments will be
concatenated into a single string delimited by a “,” character. Values appearing within columns
given by the num_fields arguments will be summed.

This example data set does not have ragged ends
Preprocess clone without ragged end masking (default)
clone <- makeChangeoClone(sub_db, text_fields=c("sample_id", "c_call"),

num_fields="duplicate_count")

Show combined annotations
clone@data[, c("sample_id", "c_call", "duplicate_count")]

sample_id c_call duplicate_count
1 +7d IGHA 1
2 +7d IGHG 1
3 +7d IGHA,IGHG 10
4 +7d IGHG 36
5 +7d IGHA 10
6 +7d IGHG 13

Run PHYLIP

Lineage construction uses the dnapars (maximum parsimony) application of the PHYLIP package.
The function buildPhylipLineage performs a number of steps to execute dnapars, parse its output,
and modify the tree topology to meet the criteria of an Ig lineage. This function takes as input
a ChangeoClone object output by makeChangeoClone and returns an igraph graph object. The
igraph graph object will contain clone annotations as graph attributes, sequence annotations as
vertex attributes, and mutations along edges as edge attributes.

The system call to dnapars requires a temporary folder to store input and output. This is created
in the system temporary location (according to base::tempfile), and is not deleted by default
(only because automatically deleting files is somewhat rude). In most cases, you will want to set
rm_temp=TRUE to delete this folder.

Run PHYLIP and parse output
phylip_exec <- "~/apps/phylip-3.69/dnapars"
graph <- buildPhylipLineage(clone, phylip_exec, rm_temp=TRUE)

The graph has shared annotations for the clone
data.frame(clone_id=graph$clone,

2

junction_length=graph$junc_len,
v_gene=graph$v_gene,
j_gene=graph$j_gene)

clone_id junction_length v_gene j_gene
1 3138 60 IGHV3-49 IGHJ5

The vertices have sequence specific annotations
data.frame(sequence_id=V(graph)$name,

c_call=V(graph)$c_call,
duplicate_count=V(graph)$duplicate_count)

sequence_id c_call duplicate_count
1 GN5SHBT06HH3QD IGHA 10
2 GN5SHBT08F45HV IGHA,IGHG 10
3 Germline <NA> NA
4 GN5SHBT06IFV0R IGHG 13
5 GN5SHBT08I3P11 IGHG 36
6 GN5SHBT01BXJY7 IGHG 1
7 GN5SHBT01EGEU6 IGHA 1

Plotting of the lineage tree

Plotting of a lineage tree may be done using the built-in functions of the igraph package. The
default edge and vertex labels are edge weights and sequence identifiers, respectively.

Plot graph with defaults
plot(graph)

3

2

7

1

1

20
GN5SHBT06HH3QD

GN5SHBT08F45HV

Germline

GN5SHBT06IFV0R

GN5SHBT08I3P11

GN5SHBT01BXJY7

GN5SHBT01EGEU6

The default layout and attributes are not very pretty. We can modify the graphical parameter in the
usual igraph ways. A tree layout can be built using the layout_as_tree layout with assignment of

3

the root position to the germline sequence, which is named “Germline” in the object returned by
buildPhylipLineage.

Modify graph and plot attributes
V(graph)$color <- "steelblue"
V(graph)$color[V(graph)$name == "Germline"] <- "black"
V(graph)$color[grepl("Inferred", V(graph)$name)] <- "white"
V(graph)$label <- V(graph)$c_call
E(graph)$label <- ""

Remove large default margins
par(mar=c(0, 0, 0, 0) + 0.1)
Plot graph
plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.frame.color="black",

vertex.label.color="black", vertex.size=40)
Add legend
legend("topleft", c("Germline", "Inferred", "Sample"),

fill=c("black", "white", "steelblue"), cex=0.75)

IGHA

IGHA,IGHG

IGHG IGHG IGHG IGHA

Germline
Inferred
Sample

Which is much better.

Batch processing lineage trees

Multiple lineage trees may be generated at once, by splitting the Change-O data.frame on the clone
column.

Preprocess clones
clones <- ExampleDb %>%

group_by(clone_id) %>%
do(CHANGEO=makeChangeoClone(., text_fields=c("sample_id", "c_call"),

4

num_fields="duplicate_count"))

Build lineages
phylip_exec <- "~/apps/phylip-3.69/dnapars"
graphs <- lapply(clones$CHANGEO, buildPhylipLineage,

phylip_exec=phylip_exec, rm_temp=TRUE)

Note, clones with only a single sequence will not be processed.
A warning will be generated and NULL will be returned by buildPhylipLineage
These entries may be removed for clarity
graphs[sapply(graphs, is.null)] <- NULL

The set of tree may then be subset by node count for further
analysis, if desired.
graphs <- graphs[sapply(graphs, vcount) >= 5]

Converting between graph, phylo, and newick formats

While much of analysis in alakazam focuses on using igraph graph objects, R phylo objects
are capable of being used by a rich set of phylogenetic analysis tools in R. Further, stand-alone
phylogenetics programs typically import and export trees in Newick format.

To convert to trees in graph format to phylo format, use graphToPhylo. These objects can now be
used by functions detailed in other R phylogenetics packages such as ape.

Modify graph and plot attributes
V(graph)$color <- categorical_pal(8)[1]
V(graph)$label <- V(graph)$name
E(graph)$label <- E(graph)$weight

Convert to phylo
phylo <- graphToPhylo(graph)

Plot using ape
plot(phylo, show.node.label=TRUE)

5

GN5SHBT01BXJY7

GN5SHBT01EGEU6

GN5SHBT06IFV0R

GN5SHBT08I3P11

Germline

Germline_UCA

GN5SHBT06HH3QDGN5SHBT08F45HV

To import lineage trees as phylo objects from Newick files, use the read.tree function provided in
the ape package. To export lineage trees as a Newick file, use the write.tree function provided in
ape.

Read in Newick tree as phylo object
phylo <- ape::read.tree("example.tree")

Write tree file in Newick format
ape::write.tree(phylo, file="example.tree")

To convert this phylo object to a graph object, use the phyloToGraph function with the germline
sequence ID specified using the germline option. Note that while some of the nodes in more
complex trees may rotate during this process, their topological relationships will remain the same.

Convert to graph object
graph <- phyloToGraph(phylo, germline="Germline")

6

	Example data
	Preprocess a clone
	Run PHYLIP
	Plotting of the lineage tree
	Batch processing lineage trees
	Converting between graph, phylo, and newick formats

