
Package ‘beastt’
May 15, 2025

Title Bayesian Evaluation, Analysis, and Simulation Software Tools for
Trials

Version 0.0.3

Description Bayesian dynamic borrowing with covariate adjustment via inverse probability
weighting for simulations and data analyses in clinical trials. This makes it easy to use
propensity score methods to balance covariate distributions between external and internal
data. This methodology based on Psioda et al (2025) <doi:10.1080/10543406.2025.2489285>.

License GPL (>= 3)

URL https://gsk-biostatistics.github.io/beastt/,

https://github.com/GSK-Biostatistics/beastt

BugReports https://github.com/GSK-Biostatistics/beastt/issues

Suggests knitr, mvtnorm, rmarkdown, spelling, testthat (>= 3.0.0),
tibble, vdiffr, survival

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

Imports cli, cobalt, distributional, dplyr, generics, ggdist, ggplot2,
methods, mixtools, purrr, Rcpp (>= 0.12.0), RcppParallel (>=
5.0.1), rlang, rstan (>= 2.18.1), rstantools (>= 2.4.0),
stringr, tidyr

VignetteBuilder knitr

Depends R (>= 4.1.0)

LazyData true

Language en-US

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>=
2.18.0)

SystemRequirements GNU make

NeedsCompilation yes

1

https://doi.org/10.1080/10543406.2025.2489285
https://gsk-biostatistics.github.io/beastt/
https://github.com/GSK-Biostatistics/beastt
https://github.com/GSK-Biostatistics/beastt/issues


2 Contents

Author Christina Fillmore [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0595-2302>),

Nate Bean [aut] (ORCID: <https://orcid.org/0000-0001-9946-0119>),
Abi Terry [aut],
Ben Arancibia [aut],
GlaxoSmithKline Research & Development Limited [cph, fnd],
Trustees of Columbia University [cph] (R/stanmodels.R, configure,

configure.win)

Maintainer Christina Fillmore <christina.e.fillmore@gsk.com>

Repository CRAN

Date/Publication 2025-05-15 11:40:06 UTC

Contents
beastt-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
approx_mvn_at_time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
avg_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
binary_sim_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
bootstrap_cov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
calc_cond_binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
calc_cond_weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
calc_post_beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
calc_post_norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
calc_post_weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
calc_power_prior_beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
calc_power_prior_norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
calc_power_prior_weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
calc_prop_scr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
calc_study_duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ex_binary_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ex_norm_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ex_tte_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
int_binary_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
int_norm_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
int_tte_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
inv_logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
is_prop_scr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
mix_means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
mix_sigmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
plot_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
prop_scr_cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
prop_scr_dens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
prop_scr_hist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
prop_scr_love . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
rescale_ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
robustify_mvnorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
robustify_norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

https://orcid.org/0000-0003-0595-2302
https://orcid.org/0000-0001-9946-0119


beastt-package 3

sim_accrual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
sim_pw_const_haz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
sim_weib_ph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
sweet_spot_plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
tidy.prop_scr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
trim_ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
tte_sim_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Index 46

beastt-package The ’beastt’ package.

Description

Inverse Probability Weighted Bayesian Dynamic Borrowing

References

Stan Development Team (NA). RStan: the R interface to Stan. R package version 2.32.3. https://mc-
stan.org

approx_mvn_at_time Approximate Multivariate Normal Distribution as Beta at a Specific
Time

Description

Converts a multivariate normal distribution for Weibull parameters (or a mixture of these distribu-
tions) into an approximate beta distribution for the survival probability at a specific time point. This
is particularly useful for visualizing survival probabilities in sweet spot plots

Usage

approx_mvn_at_time(x, time)

Arguments

x A vector of distributional objects that must be either multivariate normal distri-
butions or mixtures of multivariate normal distributions. For Weibull models,
these represent distributions of the log(shape) and log(scale) parameters.

time A numeric value specifying survival time at which to calculate the survival prob-
ability.
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Details

The function performs the following steps:

• For each multivariate normal distribution, it generates 10,000 samples of the Weibull parame-
ters

• Calculates the corresponding survival probabilities at the specified time using the Weibull
survival function

• Fits a beta distribution to match the mean and variance of these survival probabilities

• For mixture distributions, it performs this approximation for each component and creates a
new mixture with the same weights

The conversion uses the relationship between Weibull parameters and survival probability: S(t) =
exp(-(t*exp(log_scale))^exp(log_shape)).

Value

A vector of beta distributional (or mixture of beta distributional) objects approximating the survival
probabilities at the specified time point. If the input is a mixture distribution, the output will be a
mixture of beta distributions with the same weights.

See Also

sweet_spot_plot()

Examples

library(distributional)

# Create a multivariate normal distribution for Weibull parameters
# (log(shape), log(scale))
mvn_dist <- dist_multivariate_normal(

mu = list(c(0, -1)), # log(shape) = 0, log(scale) = -1
sigma = list(matrix(c(0.1, 0, 0, 0.1), nrow = 2))

)

# Approximate as beta distribution for survival at time t=12
beta_approx <- approx_mvn_at_time(mvn_dist, time = 12)

avg_dist Calculate Average Distribution from Multiple Distributional Objects

Description

Compute a single "average" distribution from a vector of distributional objects. This function calcu-
lates the mean of each hyperparameter across all input distributions and returns a new distributional
object of the same family with these averaged hyperparameters.
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Usage

avg_dist(x)

Arguments

x A vector of distributional objects of the same family (beta, normal, multivariate
normal, or mixture).

Details

The function supports four distribution families:

• Beta distributions: Averages the shape1 and shape2 hyperparameters

• Normal distributions: Averages the mean and standard deviation hyperparameters

• Multivariate normal distributions: Averages the location vectors and covariance matrices

• Mixture distributions: Same as above for each distribution type, where averaging is done by
component. Also averages the mixture weight.

For multivariate normal distributions, both the location vector and covariance matrix are averaged
element-wise.

Value

A single distributional object of the same family as the input, with hyperparameters set equal to the
average of all input distribution hyperparameters.

Examples

library(distributional)

# Beta distributions
beta_dists <- c(

dist_beta(shape1 = 2, shape2 = 5),
dist_beta(shape1 = 3, shape2 = 3),
dist_beta(shape1 = 4, shape2 = 2)

)
avg_dist(beta_dists) |> parameters()

# Normal distributions
norm_dists <- c(

dist_normal(mu = 0, sigma = 1),
dist_normal(mu = 2, sigma = 2),
dist_normal(mu = 4, sigma = 3)

)
avg_dist(norm_dists) |> parameters()

# Multivariate normal distributions
mvn_dists <- c(
dist_multivariate_normal(mu = list(c(0, 0)), sigma = list(matrix(c(1, 0, 0, 1), nrow = 2))),
dist_multivariate_normal(mu = list(c(1, 1)), sigma = list(matrix(c(2, 0, 0, 2), nrow = 2)))

)
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avg_dist(mvn_dists) |> parameters()

binary_sim_df Binary Simulation Data

Description

This is an example of output from a simulation study that investigates the operating characteristics
of inverse probability weighted Bayesian dynamic borrowing for the case with a binary outcome.
This output was generated based on the binary simulation template. For this simulation study, only
the degree of covariate imbalance (as indicated by population) and the marginal treatment effect
were varied.

Usage

binary_sim_df

Format

binary_sim_df A data frame with 255 rows and 6 columns::

population Populations defined by different covariate imbalances
marg_trt_eff Marginal treatment effect
true_control_RR True control response rate on the marginal scale
reject_H0_yes Probability of rejecting the null hypothesis in the case with borrowing
no_borrowing_reject_H0_yes Probability of rejecting the null hypothesis without borrowing
pwr_prior Vector of power priors (or some other informative prior distribution for the control

marginal parameter of interest based on the external data) as distributional objects

bootstrap_cov Bootstrap Covariate Data

Description

Bootstrap Covariate Data

Usage

bootstrap_cov(
external_dat,
n,
imbal_var = NULL,
imbal_prop = NULL,
ref_val = 0

)
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Arguments

external_dat Data frame of the external data from which to bootstrap covariate vectors

n Number of rows in the output dataset

imbal_var Optional variable indicating which covariate’s distribution should be altered to
incorporate imbalance compared to the external data. If left NULL, the distribu-
tions of all covariates in the output dataset will match the distributions in the
external dataset. The imbalance variable must be binary.

imbal_prop Optional imbalance proportion, required if an imbalance variable is specified.
This defines the proportion of individuals with the reference value of the imbal-
ance variable in the returned dataset. This can either be a single proportion or a
vector of proportions, in which case a list of datasets is returned.

ref_val Optional value corresponding to the reference level of the binary imbalance vari-
able, if specified

Details

Covariate data can be generated for n individuals enrolled in the internal trial by bootstrap sampling
entire covariate vectors from the external data, thus preserving the correlation between the covari-
ates. If both imbal_var = NULL and imbal_prop = NULL, the function returns a single data frame in
which the distributions of each covariate align with the covariate distributions from the external data
(i.e., balanced covariate distributions across the two trials). Alternatively, covariate imbalance can
be incorporated into the generated sample with respect to a binary covariate (imbal_var) such that
a specified proportion (imbal_prop) of individuals in the resulting sample will have the reference
level (ref_val) of this imbalance covariate. In this case, stratified bootstrap sampling is employed
with the imbalance covariate as the stratification factor.

Multiple samples with varying degrees of imbalance can be generated simultaneously by defining
imbal_prop to be a vector of values. The function then returns a list of data frames with a length
equal to the number of specified imbalance proportions.

Value

Data frame with the same number of columns as the external data frame and n number of rows (if
the length of imbal_prop is 0 or 1); otherwise, a list of data frames with a length equal to that of
imbal_prop

Examples

# Return one data frame with covariate distributions similar to external data
samp_balance <- bootstrap_cov(ex_binary_df, n = 1000)

# Return a list of two data frames that incorporate imbalance w.r.t. covariate 2
samp_imbalance <- bootstrap_cov(ex_binary_df, n = 1000, imbal_var = cov2,

imbal_prop = c(0.25, 0.5), ref_val = 0)
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calc_cond_binary Calculate Conditional Drift and Treatment Effect for Binary Outcome
Models

Description

In order to properly generate binary response data for the internal trial as part of a simulation study
that investigates inverse probability weighting, we need to translate the desired marginal drift and
treatment effect to the corresponding conditional drift and treatment effect that can then be added
into a binary outcome model (e.g., logistic regression model) used to simulate response data.

Usage

calc_cond_binary(population, glm, marg_drift, marg_trt_eff)

Arguments

population A very large data frame (e.g., number of rows ≥ 100,000) where the columns
correspond to the covariates defined in the logistic regression model object. This
data frame should be constructed to represent the population of the internal trial
according to the assumed covariate distributions (possibly imbalanced from the
external data).

glm Logistic regression model object fit using the external data

marg_drift Vector of marginal drift values

marg_trt_eff Vector of marginal treatment effect values

Details

In simulation studies that investigate the properties of inverse probability weighted Bayesian dy-
namic borrowing, scenarios should be considered in which the underlying response rates for the
internal and external control populations differ by varying amounts due to unmeasured confound-
ing (i.e., drift, where positive values indicate a higher response rate for the internal population).
While values of drift and treatment effect (i.e., risk difference) can be defined on the marginal scale
for simulation studies, we must first convert these values to the conditional scale and then include
these terms, along with covariates, in a logistic regression outcome model when generating response
data for the internal arms. Doing so allows us to assume a relationship between the covariates and
the response variable while properly accounting for drift and treatment effect.

To identify the conditional drift and treatment effect that correspond to specified values of marginal
drift and treatment effect, we first bootstrap covariate vectors from the external data (e.g., N ≥
100, 000) to construct a "population" that represents both the internal trial (possibly incorporating
intentional covariate imbalance) and the external trial after standardizing it to match the covariate
distributions of the internal trial (allowing us to control for measured confounding from potential
imbalance in the covariate distributions). Measured confounding can be incorporated into the data
generation by bootstrapping a very large data frame (population) in which the distribution of at
least one covariate is intentionally varied from that of the external data; additional unmeasured drift
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can be incorporated through the translation of specified marginal values (marg_drift) to condi-
tional values.

Let ∆ and δ denote the marginal and conditional drift, respectively. For a specified value of ∆,
we can identify the corresponding δ as the value that, when added as an additional term in the
logistic regression model (i.e., change in the intercept) for each individual in the population, in-
creases/decreases the population-averaged conditional probabilities of response by an amount ap-
proximately equal to ∆. That is, the optimal δ minimizes∣∣∣∣∣

(
1

N

N∑
i=1

exp (x′
iβEC + δ)

1 + exp (x′
iβEC + δ)

− 1

N

N∑
i=1

exp (x′
iβEC)

1 + exp (x′
iβEC)

)
−∆

∣∣∣∣∣ ,
where βEC is the vector of regression coefficients from the logistic regression model (glm) fit to
the external control data (assumed here to be the "true" covariate effects when generating response
data) and xi is a vector of covariates (including an intercept term) from the bootstrapped population
of size N . In the formula above, the first and second terms correspond to the population-averaged
conditional probabilities (i.e., the marginal response rates) of the internal control population with
drift and the external control population (with covariate distributions standardized to match the
internal trial), respectively.

If we now denote the marginal and conditional treatment effect by Γ and γ, respectively, we can use
a similar process to identify the optimal γ that approximately corresponds to the specified value of
Γ, which is done by minimizing the following:∣∣∣∣∣

(
1

N

N∑
i=1

exp (x′
iβEC + δ + γ)

1 + exp (x′
iβEC + δ + γ)

− 1

N

N∑
i=1

exp (x′
iβEC + δ)

1 + exp (x′
iβEC + δ)

)
− Γ

∣∣∣∣∣ ,
where the first term is the average of the conditional probabilities of response (i.e., the marginal
response rate) of the internal treated population.

See here for a simulation example with a binary outcome.

Value

tibble of all combinations of the marginal drift and treatment effect. For each row the conditional
drift and treatment effect has been calculated as well as the true response rates for the control and
treated populations.

Examples

library(dplyr)
# Model "true" regression coefficients using the external data
logit_mod <- glm(y ~ cov1 + cov2 + cov3 + cov4, data = ex_binary_df, family = binomial)

# Bootstrap internal control "population" with imbalance w.r.t. covariate 2
pop_int_ctrl <- bootstrap_cov(ex_binary_df, n = 100000, imbal_var = cov2,

imbal_prop = 0.25, ref_val = 0) |>
select(-subjid, -y) # keep only covariate columns

# Convert the marginal drift and treatment effects to conditional
calc_cond_binary(population = pop_int_ctrl, glm = logit_mod,

https://github.com/GSK-Biostatistics/beastt/blob/e2b41fe90f639924d10c0d94ceff04a74d0ce617/inst/templates/binary_template.R
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marg_drift = c(-.1, 0, .1), marg_trt_eff = c(0, .15))

calc_cond_weibull Calculate Conditional Drift and Treatment Effect for Time-to-Event
Outcome Models

Description

In order to properly generate time-to-event (TTE) outcome data for the internal trial as part of a
simulation study that investigates inverse probability weighting, we need to translate the desired
marginal drift and treatment effect to the corresponding conditional drift and treatment effect that
can then be added into a TTE outcome model (e.g., Weibull proportional hazards regression model)
used to simulate response data.

Usage

calc_cond_weibull(
population,
weibull_ph_mod,
marg_drift,
marg_trt_eff,
analysis_time

)

Arguments

population A very large data frame (e.g., number of rows ≥ 100,000) where the columns
correspond to the covariates defined in the survreg object for the Weibull pro-
portional hazards model. This data frame should be constructed to represent the
population of the internal trial according to the assumed covariate distributions
(possibly imbalanced from the external data).

weibull_ph_mod survreg object corresponding to a Weibull proportional hazards model fit using
the external data

marg_drift Vector of marginal drift values

marg_trt_eff Vector of marginal treatment effect values

analysis_time A single time point when survival probabilities will be calculated

Details

In simulation studies that investigate the properties of inverse probability weighted Bayesian dy-
namic borrowing, scenarios should be considered in which the underlying survival probabilities at
some prespecified time t (analysis_time) for the internal and external control populations differ
by varying amounts due to unmeasured confounding (i.e., drift, where positive values indicate a
higher survival probability for the internal population). While values of drift and treatment effect
(i.e., difference between the survival probabilities at time t for the treated and control populations)
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can be defined on the marginal scale for simulation studies, we must first convert these values to
the conditional scale and then include these terms, along with covariates, in a Weibull proportional
hazards (PH) regression outcome model when generating time-to-event (TTE) data for the internal
arms. Doing so allows us to assume a relationship between the covariates and the response variable
while properly accounting for drift and treatment effect.

To identify the conditional drift and treatment effect that correspond to specified values of marginal
drift and treatment effect, we first bootstrap covariate vectors from the external data (e.g., N ≥
100, 000) to construct a "population" that represents both the internal trial (possibly incorporating
intentional covariate imbalance) and the external trial after standardizing it to match the covariate
distributions of the internal trial (allowing us to control for measured confounding from potential
imbalance in the covariate distributions). Measured confounding can be incorporated into the data
generation by bootstrapping a very large data frame (population) in which the distribution of at
least one covariate is intentionally varied from that of the external data; additional unmeasured drift
can be incorporated through the translation of specified marginal values (marg_drift) to condi-
tional values.

Let ∆ and δ denote the marginal and conditional drift, respectively. For a specified value of ∆,
we can identify the corresponding δ as the value that, when added as an additional term in the
Weibull PH model survival function (i.e., additive change in the intercept) for each individual in
the population, increases/decreases the population-averaged conditional probabilities of survival at
time t by an amount approximately equal to ∆. That is, the optimal δ minimizes

∣∣∣∣∣
(

1

N

N∑
i=1

exp
(
−{exp (x′

iβEC + δ)× t}αEC
)
− 1

N

N∑
i=1

exp
(
−{exp (x′

iβEC)× t}αEC
))

−∆

∣∣∣∣∣ ,
where αEC is the Weibull shape parameter, βEC is a vector of regression coefficients, and xi is a
vector of covariates (including an intercept term) from the bootstrapped population of size N . We
note that αEC = 1/σEC and βEC = −ξEC are calculated as functions of the scale parameter
(σEC) and coefficients (ξEC) estimated by the survreg object that was fit to the external data, and
we assume here that these estimates are the "true" shape and covariate effects when generating re-
sponse data. In the formula above, the first and second terms correspond to the population-averaged
conditional survival functions (i.e., the marginal survival probabilities) at time t for the internal
control population with drift and the external control population (with covariate distributions stan-
dardized to match the internal trial), respectively.

If we now denote the marginal and conditional treatment effect by Γ and γ, respectively, we can use
a similar process to identify the optimal γ that approximately corresponds to the specified value of
Γ, which is done by minimizing the following:

∣∣∣∣∣
(

1

N

N∑
i=1

exp
(
−{exp (x′

iβEC + δ + γ)× t}αEC
)
− 1

N

N∑
i=1

exp
(
−{exp (x′

iβEC + δ)× t}αEC
))

− Γ

∣∣∣∣∣ ,
where the first term is the average of the conditional survival functions (i.e., the marginal survival
probabilities) at time t for the internal treated population.

See here for a simulation example with a time-to-event outcome.

https://github.com/GSK-Biostatistics/beastt/blob/e2b41fe90f639924d10c0d94ceff04a74d0ce617/inst/templates/tte-template.R
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Value

tibble of all combinations of the marginal drift and treatment effect. For each row the conditional
drift and treatment effect has been calculated as well as the true marginal survival probabilities at
time t for the control and treatment populations.

Examples

library(dplyr)
library(survival)
# Model "true" regression coefficients using the external data
weibull_ph_mod <- survreg(Surv(y, event) ~ cov1 + cov2 + cov3 + cov4, data = ex_tte_df,

dist = "weibull")

# Bootstrap internal control "population" with imbalance w.r.t. covariate 2
pop_int_ctrl <- bootstrap_cov(ex_tte_df, n = 100000, imbal_var = cov2,

imbal_prop = 0.25, ref_val = 0) |>
select(c(cov1, cov2, cov3, cov4)) # keep only covariate columns

# Convert the marginal drift and treatment effects to conditional
calc_cond_weibull(population = pop_int_ctrl, weibull_ph_mod,

marg_drift = c(-.1, 0, .1), marg_trt_eff = c(0, .10),
analysis_time = 12)

calc_post_beta Calculate Posterior Beta

Description

Calculate a posterior distribution that is beta (or a mixture of beta components). Only the relevant
treatment arms from the internal dataset should be read in (e.g., only the control arm if constructing
a posterior distribution for the control response rate).

Usage

calc_post_beta(internal_data, response, prior)

Arguments

internal_data A tibble of the internal data.

response Name of response variable

prior A distributional object corresponding to a beta distribution or a mixture distri-
bution of beta components



calc_post_norm 13

Details

For a given arm of an internal trial (e.g., the control arm or an active treatment arm) of size NI ,
suppose the response data are binary such that Yi ∼ Bernoulli(θ), i = 1, . . . , NI . The posterior
distribution for θ is written as

π(θ | y) ∝ L(θ | y) π(θ),

where L(θ | y) is the likelihood of the response data from the internal arm and π(θ) is a prior
distribution on θ (either a beta distribution or a mixture distribution with an arbitrary number of
beta components). The posterior distribution for θ is either a beta distribution or a mixture of beta
components depending on whether the prior is a single beta distribution or a mixture distribution.

Value

distributional object

Examples

library(dplyr)
library(distributional)
calc_post_beta(internal_data = filter(int_binary_df, trt == 1),

response = y,
prior = dist_beta(0.5, 0.5))

calc_post_norm Calculate Posterior Normal

Description

Calculate a posterior distribution that is normal (or a mixture of normal components). Only the
relevant treatment arms from the internal dataset should be read in (e.g., only the control arm if
constructing a posterior distribution for the control mean).

Usage

calc_post_norm(internal_data, response, prior, internal_sd = NULL)

Arguments

internal_data A tibble of the internal data.

response Name of response variable

prior A distributional object corresponding to a normal distribution, a t distribution,
or a mixture distribution of normal and/or t components

internal_sd Standard deviation of internal response data if assumed known. It can be left as
NULL if assumed unknown
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Details

For a given arm of an internal trial (e.g., the control arm or an active treatment arm) of size NI ,
suppose the response data are normally distributed such that Yi ∼ N(θ, σ2

I ), i = 1, . . . , NI . If σ2
I

is assumed known, the posterior distribution for θ is written as

π(θ | y, σ2
I ) ∝ L(θ | y, σ2

I ) π(θ),

where L(θ | y, σ2
I ) is the likelihood of the response data from the internal arm and π(θ) is a

prior distribution on θ (either a normal distribution, a t distribution, or a mixture distribution with
an arbitrary number of normal and/or t components). Any t components of the prior for θ are
approximated with a mixture of two normal distributions.

If σ2
I is unknown, the marginal posterior distribution for θ is instead written as

π(θ | y) ∝
{∫ ∞

0

L(θ, σ2
I | y) π(σ2

I ) dσ
2
I

}
× π(θ).

In this case, the prior for σ2
I is chosen to be π(σ2

I ) = (σ2
I )

−1 such that
{∫∞

0
L(θ, σ2

I | y) π(σ2
I ) dσ

2
I

}
becomes a non-standardized t distribution. This integrated likelihood is then approximated with a
mixture of two normal distributions.

If internal_sd is supplied a positive value and prior corresponds to a single normal distribution,
then the posterior distribution for θ is a normal distribution. If internal_sd = NULL or if other types
of prior distributions are specified (e.g., mixture or t distribution), then the posterior distribution is
a mixture of normal distributions.

Value

distributional object

Examples

library(distributional)
library(dplyr)
post_treated <- calc_post_norm(internal_data = filter(int_norm_df, trt == 1),

response = y,
prior = dist_normal(0.5, 10),
internal_sd = 0.15)

calc_post_weibull Calculate Posterior Weibull

Description

Calculate a posterior distribution for the probability of surviving past a given analysis time(s) for
time-to-event data with a Weibull likelihood. Only the relevant treatment arms from the internal
dataset should be read in (e.g., only the control arm if constructing a posterior distribution for the
control survival probability).
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Usage

calc_post_weibull(internal_data, response, event, prior, analysis_time, ...)

Arguments

internal_data This can either be a propensity score object or a tibble of the internal data.

response Name of response variable

event Name of event indicator variable (1: event; 0: censored)

prior A distributional object corresponding to a multivariate normal distribution or a
mixture of 2 multivariate normals. The first element of the mean vector and
the first row/column of covariance matrix correspond to the log-shape parame-
ter, and the second element corresponds to the intercept (i.e., log-inverse-scale)
parameter.

analysis_time Vector of time(s) when survival probabilities will be calculated

... rstan sampling option. This overrides any default options. For more information,
see rstan::sampling()

Details

For a given arm of an internal trial (e.g., the control arm or an active treatment arm) of size NI ,
suppose the response data are time to event such that Yi ∼ Weibull(α, σ), where

f(yi | α, σ) =
(α
σ

)(yi
σ

)α−1

exp
(
−
(yi
σ

)α)
,

i = 1, . . . , NI . Define θ = {log(α), β} where β = − log(σ) is the intercept parameter of a Weibull
proportional hazards regression model. The posterior distribution for θ is written as

π(θ | y,ν) ∝ L(θ | y,ν) π(θ),

where L(θ | y,ν) =
∏NI

i=1 f(yi | θ)νiS(yi | θ)1−νi is the likelihood of the response data from the
internal arm with event indicator ν and survival function S(yi | θ) = 1 − F (yi | θ), and π(θ) is
a prior distribution on θ (either a multivariate normal distribution or a mixture of two multivariate
normal distributions). Note that the posterior distribution for θ does not have a closed form, and
thus MCMC samples for log(α) and β are drawn from the posterior. These MCMC samples are
used to construct samples from the posterior distribution for the probability of surviving past the
specified analysis time(s) for the given arm.

To construct a posterior distribution for the treatment difference (i.e., the difference in survival
probabilities at the specified analysis time), obtain MCMC samples from the posterior distributions
for the survival probabilities under each arm and then subtract the control-arm samples from the
treatment-arm samples.

Value

stan posterior object
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Examples

library(distributional)
library(dplyr)
library(rstan)
mvn_prior <- dist_multivariate_normal(

mu = list(c(0.3, -2.6)),
sigma = list(matrix(c(1.5, 0.3, 0.3, 1.1), nrow = 2)))

post_treated <- calc_post_weibull(filter(int_tte_df, trt == 1),
response = y,
event = event,
prior = mvn_prior,
analysis_time = 12,
warmup = 5000,
iter = 15000)

# Extract MCMC samples of survival probabilities at time t=12
surv_prob_treated <- as.data.frame(extract(post_treated,

pars = c("survProb")))[,1]

calc_power_prior_beta Calculate Power Prior Beta

Description

Calculate a (potentially inverse probability weighted) beta power prior for the control response rate
using external control data.

Usage

calc_power_prior_beta(external_data, response, prior)

Arguments

external_data This can either be a prop_scr_obj created by calling create_prop_scr() or a
tibble of the external data. If it is just a tibble the weights will be assumed to be
1.

response Name of response variable

prior A beta distributional object that is the initial prior for the control response rate
before the external control data are observed

Details

Weighted participant-level response data from the control arm of an external study are incorporated
into an inverse probability weighted (IPW) power prior for the control response rate θC . When
borrowing information from an external control arm of size NEC , the components of the IPW
power prior for θC are defined as follows:

Initial prior:
θC ∼ Beta(ν0, ϕ0)



calc_power_prior_norm 17

IPW likelihood of the external response data yE with weights â0:

LE(θC | yE , â0) ∝ exp

(
NEC∑
i=1

â0i [yi log(θC) + (1− yi) log(1− θC)]

)

IPW power prior:

θC | yE , â0 ∼ Beta

(
NEC∑
i=1

â0iyi + ν0,

NEC∑
i=1

â0i(1− yi) + ϕ0

)

Defining the weights â0 to equal 1 results in a conventional beta power prior.

Value

Beta power prior object

See Also

Other power prior: calc_power_prior_norm(), calc_power_prior_weibull()

Examples

library(distributional)
library(dplyr)
# This function can be used directly on the data
calc_power_prior_beta(external_data = ex_binary_df,

response = y,
prior = dist_beta(0.5, 0.5))

# Or this function can be used with a propensity score object
ps_obj <- calc_prop_scr(internal_df = filter(int_binary_df, trt == 0),

external_df = ex_binary_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

calc_power_prior_beta(ps_obj,
response = y,
prior = dist_beta(0.5, 0.5))

calc_power_prior_norm Calculate Power Prior Normal

Description

Calculate a (potentially inverse probability weighted) normal power prior using external data.
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Usage

calc_power_prior_norm(
external_data,
response,
prior = NULL,
external_sd = NULL

)

Arguments

external_data This can either be a prop_scr_obj created by calling create_prop_scr() or
a tibble of the external data. If it is just a tibble the weights will be assumed to
be 1. Only the external data for the arm(s) of interest should be included in this
object (e.g., external control data if creating a power prior for the control mean)

response Name of response variable

prior Either NULL or a normal distributional object that is the initial prior for the pa-
rameter of interest (e.g., control mean) before the external data are observed

external_sd Standard deviation of external response data if assumed known. It can be left as
NULL if assumed unknown

Details

Weighted participant-level response data from an external study are incorporated into an inverse
probability weighted (IPW) power prior for the parameter of interest θ (e.g., the control mean if
borrowing from an external control arm). When borrowing information from an external dataset of
size NE , the IPW likelihood of the external response data yE with weights â0 is defined as

LE(θ | yE , â0, σ
2
E) ∝ exp

(
− 1

2σ2
E

NE∑
i=1

â0i(yi − θ)2

)
.

The prior argument should be either a distributional object with a family type of normal or NULL,
corresponding to the use of a normal initial prior or an improper uniform initial prior (i.e., π(θ) ∝
1), respectively.

The external_sd argument can be a positive value if the external standard deviation is assumed
known or left as NULL otherwise. If external_sd = NULL, then prior must be NULL to indicate the
use of an improper uniform initial prior for θ, and an improper prior is defined for the unknown
external standard deviation such that π(σ2

E) ∝ (σ2
E)

−1. The details of the IPW power prior for
each case are as follows:

external_sd = positive value (σ2
E known): With either a proper normal or an improper uni-

form initial prior, the IPW weighted power prior for θ is a normal distribution.

external_sd = NULL (σ2
E unknown): With improper priors for both θ and σ2

E , the marginal IPW
weighted power prior for θ after integrating over σ2

E is a non-standardized t distribution.

Defining the weights â0 to equal 1 results in a conventional normal (or t) power prior if the external
standard deviation is known (unknown).
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Value

Normal power prior object

See Also

Other power prior: calc_power_prior_beta(), calc_power_prior_weibull()

Examples

library(distributional)
library(dplyr)
# This function can be used directly on the data
calc_power_prior_norm(ex_norm_df,

response = y,
prior = dist_normal(0.5, 10),
external_sd = 0.15)

# Or this function can be used with a propensity score object
ps_obj <- calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

calc_power_prior_norm(ps_obj,
response = y,
prior = dist_normal(0.5, 10),
external_sd = 0.15)

calc_power_prior_weibull

Calculate Power Prior Weibull

Description

Calculate an approximate (potentially inverse probability weighted) multivariate normal power prior
for the log-shape and log-inverse-scale parameters of a Weibull likelihood for external time-to-event
control data.

Usage

calc_power_prior_weibull(
external_data,
response,
event,
intercept,
shape,
approximation = c("Laplace", "MCMC"),
...

)
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Arguments

external_data This can either be a prop_scr_obj created by calling create_prop_scr() or
a tibble of the external data. If it is just a tibble the weights will be assumed
to be 1. Only the external data for the arm(s) of interest should be included in
this object (e.g., external control data if creating a power prior for the control
Weibull shape and intercept parameters)

response Name of response variable

event Name of event indicator variable (1: event; 0: censored)

intercept Normal distributional object that is the initial prior for the intercept (i.e., log-
inverse-scale) parameter

shape Integer value that is the scale of the half-normal prior for the shape parameter

approximation Type of approximation to be used. Either Laplace or MCMC. Laplace is used by
default because it is faster than MCMC.

... Arguments passed to rstan::sampling (e.g. iter, chains).

Details

Weighted participant-level response data from the control arm of an external study are incorporated
into an approximated inverse probability weighted (IPW) power prior for the parameter vector θC =
{log(α), β}, where β = − log(σ) is the intercept parameter of a Weibull proportional hazards
regression model and α and σ are the Weibull shape and scale parameters, respectively. When
borrowing information from an external dataset of size NE , the IPW likelihood of the external
response data yE with event indicators νE and weights â0 is defined as

LE(α, σ | yE ,νE , â0) ∝
NE∏
i=1

{(α
σ

)(yi
σ

)α−1

exp
(
−
(yi
σ

)α)}â0iνi {
exp

(
−
(yi
σ

)α)}â0i(1−νi)

.

The initial priors for the intercept parameter β and the shape parameter α are assumed to be normal
and half-normal, respectively, which can be defined using the intercept and shape arguments.

The power prior for θC does not have a closed form, and thus we approximate it via a bivariate
normal distribution; i.e.,

θC | yE ,νE , â0 ∼̇ MVN
(
µ̃0, Σ̃0

)
.

If approximation = Laplace, then µ̃0 is the mode vector of the IPW power prior and Σ̃0 is the
negative inverse of the Hessian of the log IPW power prior evaluated at the mode. If approximation
= MCMC, then MCMC samples are obtained from the IPW power prior, and µ̃0 and Σ̃0 are the
estimated mean vector and covariance matrix of these MCMC samples. Note that the Laplace
approximation method is faster due to its use of optimization instead of MCMC sampling.

The first element of the mean vector and the first row/column of covariance matrix correspond
to the log-shape parameter (log(α)), and the second element corresponds to the intercept (β, the
log-inverse-scale) parameter.

Value

Multivariate Normal Distributional Object



calc_prop_scr 21

See Also

Other power prior: calc_power_prior_beta(), calc_power_prior_norm()

Examples

library(distributional)
library(dplyr)
# This function can be used directly on the data
calc_power_prior_weibull(ex_tte_df,

response = y,
event = event,
intercept = dist_normal(0, 10),
shape = 50,
approximation = "Laplace")

# Or this function can be used with a propensity score object
ps_obj <- calc_prop_scr(internal_df = filter(int_tte_df, trt == 0),

external_df = ex_tte_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

calc_power_prior_weibull(ps_obj,
response = y,
event = event,
intercept = dist_normal(0, 10),
shape = 50,
approximation = "Laplace")

calc_prop_scr Create a Propensity Score Object

Description

Calculate the propensity scores and ATT inverse probability weights for participants from internal
and external datasets. Only the relevant treatment arms from each dataset should be read in (e.g.,
only the control arm from each dataset if creating a hybrid control arm).

Usage

calc_prop_scr(internal_df, external_df, id_col, model, ...)

Arguments

internal_df Internal dataset with one row per subject and all the variables needed to run the
model

external_df External dataset with one row per subject and all the variables needed to run the
model
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id_col Name of the column in both datasets used to identify each subject. It must be
the same across datasets

model Model used to calculate propensity scores

... Optional arguments

Details

For the subset of participants in both the external and internal studies for which we want to balance
the covariate distributions (e.g., external control and internal control participants if constructing a
hybrid control arm), we define a study-inclusion propensity score for each participant as

e(xi) = P (Si = 1 | xi),

where xi denotes a vector of baseline covariates for the ith participant and Si denotes the indicator
that the participant is enrolled in the internal trial (Si = 1 if internal, Si = 0 if external). The
estimated propensity score ê(xi) is obtained using logistic regression.

An ATT inverse probability weight is calculated for each individual as

â0i =
ê(xi)

P̂ (Si = si|xi)
= si + (1− si)

ê(xi)

1− ê(xi)
.

In a weighted estimator, data from participants in the external study are given a weight of ê(xi)/(1−
ê(xi)) whereas data from participants in the internal trial are given a weight of 1.

Value

prop_scr_obj object, with the internal and the external data and the propensity score and inverse
probability weight calculated for each subject.

Examples

# This can be used for both continuous and binary data
library(dplyr)
# Continuous
calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

# Binary
calc_prop_scr(internal_df = filter(int_binary_df, trt == 0),

external_df = ex_binary_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)
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calc_study_duration Calculate the Analysis Time Based on a Target Number of Events
and/or Target Follow-up Time

Description

Calculate the Analysis Time Based on a Target Number of Events and/or Target Follow-up Time

Usage

calc_study_duration(
study_time,
observed_time,
event_indicator,
target_events = NULL,
target_follow_up = NULL

)

Arguments

study_time Vector of study times (accrual time + observed time)

observed_time Vector of observed times (event time or censoring time)
event_indicator

Vector of boolean values (TRUE/FALSE or 1/0) indicating if the observed time
value is an event or censoring time

target_events Target number of events, where the analysis time is determined once this number
of events is reached. Default is NULL, in which case target_follow_up must
be specified.

target_follow_up

Target follow-up for each participant, where the analysis time is determined
once each participant in the risk set is followed up for this amount of time (i.e.,
minimum follow-up time). Default is NULL, in which case target_events must
be specified.

Details

This function calculates the analysis time for a study with a time-to-event endpoint for which the
target number of events (target_events) and/or target follow-up time (target_follow_up) are
specified. If only target_events is specified, the analysis will occur at the time when the target
number of events has been reached. If only target_follow_up is specified, the analysis will occur
once the last-enrolled participant who is still in the risk set has been followed up for this amount of
time. If both target_events and target_follow_up are specified, the analysis time will be based
on whichever occurs first.

Value

Time of analysis
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Examples

library(dplyr)

# Determining analysis time by reaching a target number of events
ex_tte_df |> mutate(

analysis_time = calc_study_duration(study_time = total_time, observed_time = y,
event_indicator = event, target_events = 30)

)

# Determining analysis time by a target follow-up time
ex_tte_df |> mutate(

analysis_time = calc_study_duration(study_time = total_time, observed_time = y,
event_indicator = event, target_follow_up = 12)

)

# Or use both (whichever happens first)
ex_tte_df |> mutate(

analysis_time = calc_study_duration(study_time = total_time, observed_time = y,
event_indicator = event,
target_events = 30, target_follow_up = 12)

)

ex_binary_df External Binary Control Data for Propensity Score Balancing

Description

This is a simulated dataset used to illustrate Bayesian dynamic borrowing in the case when borrow-
ing from an external control arm with a binary endpoint, where the baseline covariate distributions
of the internal and external data are balanced via inverse probability weighting.

Usage

ex_binary_df

Format

ex_binary_df:
A data frame with 150 rows and 6 columns:

subjid Unique subject ID
cov1 Covariate 1, which is normally distributed around 65 with a SD of 10
cov2 Covariate 2, which is binary (0 vs. 1) with about 30% of participants having level 1
cov3 Covariate 3, which is binary (0 vs. 1) with about 40% of participants having level 1
cov4 Covariate 4, which is binary (0 vs. 1) with about 50% of participants having level 1
y Response, which is binary (0 vs. 1)
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ex_norm_df External Normal Control Data for Propensity Score Balancing

Description

This is a simulated dataset used to illustrate Bayesian dynamic borrowing in the case when borrow-
ing from an external control arm with a normal endpoint, where the baseline covariate distributions
of the internal and external data are balanced via inverse probability weighting.

Usage

ex_norm_df

Format

ex_norm_df:
A data frame with 150 rows and 6 columns:

subjid Unique subject ID

cov1 Covariate 1, which is normally distributed around 50 with a SD of 10

cov2 Covariate 2, which is binary (0 vs. 1) with about 20% of participants having level 1

cov3 Covariate 3, which is binary (0 vs. 1) with about 60% of participants having level 1

cov4 Covariate 4, which is binary (0 vs. 1) with about 30% of participants having level 1

y Response, which is normally distributed with a SD of 0.15

ex_tte_df External Time-to-Event Control Data for Propensity Score Balancing

Description

This is a simulated dataset used to illustrate Bayesian dynamic borrowing in the case when bor-
rowing from an external control arm with a time-to-event endpoint, where the baseline covariate
distributions of the internal and external data are balanced via inverse probability weighting.

Usage

ex_tte_df
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Format

ex_tte_df:
A data frame with 150 rows and 9 columns:

subjid Unique subject ID
y Response (observed time at which the participant either had an event or was censored)
enr_time Enrollment time
total_time Time from study start
event Event indicator (1: event; 0: censored)
cov1 Covariate 1, which is normally distributed around 65 with a SD of 10
cov2 Covariate 2, which is binary (0 vs. 1) with about 30% of participants having level 1
cov3 Covariate 3, which is binary (0 vs. 1) with about 40% of participants having level 1
cov4 Covariate 4, which is binary (0 vs. 1) with about 50% of participants having level 1

int_binary_df Internal Binary Data for Propensity Score Balancing

Description

This is a simulated dataset used to illustrate Bayesian dynamic borrowing in the case when borrow-
ing from an external control arm with a binary endpoint, where the baseline covariate distributions
of the internal and external data are balanced via inverse probability weighting.

Usage

int_binary_df

Format

int_binary_df:
A data frame with 160 rows and 7 columns:

subjid Unique subject ID
cov1 Covariate 1, which is normally distributed around 62 with an sd of 8
cov2 Covariate 2, which is binary (0 vs. 1) with about 40% of participants having level 1
cov3 Covariate 3, which is binary (0 vs. 1) with about 40% of participants having level 1
cov4 Covariate 4, which is binary (0 vs. 1) with about 60% of participants having level 1
trt Treatment indicator, where 0 = control and 1 = active treatment
y Response, which is binary (0 vs. 1)
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int_norm_df Internal Normal Data for Propensity Score Balancing

Description

This is a simulated dataset used to illustrate Bayesian dynamic borrowing in the case when borrow-
ing from an external control arm with a normal endpoint, where the baseline covariate distributions
of the internal and external data are balanced via inverse probability weighting.

Usage

int_norm_df

Format

int_norm_df:
A data frame with 120 rows and 7 columns:

subjid Unique subject ID

cov1 Covariate 1, which is normally distributed around 55 with a SD of 8

cov2 Covariate 2, which is binary (0 vs. 1) with about 30% of participants having level 1

cov3 Covariate 3, which is binary (0 vs. 1) with about 50% of participants having level 1

cov4 Covariate 4, which is binary (0 vs. 1) with about 30% of participants having level 1

trt Treatment indicator, where 0 = control and 1 = active treatment

y Response, which is normally distributed with a SD of 0.15

int_tte_df Internal Time-to-Event Control Data for Propensity Score Balancing

Description

This is a simulated dataset used to illustrate Bayesian dynamic borrowing in the case when bor-
rowing from an external control arm with a time-to-event endpoint, where the baseline covariate
distributions of the internal and external data are balanced via inverse probability weighting.

Usage

int_tte_df
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Format

int_tte_df:
A data frame with 160 rows and 10 columns:

subjid Unique subject ID
y Response (observed time at which the participant either had an event or was censored)
enr_time Enrollment time
total_time Time from study start
event Event indicator (1: event; 0: censored)
trt Treatment indicator, where 0 = control and 1 = active treatment
cov1 Covariate 1, which is normally distributed around 62 with a SD of 8
cov2 Covariate 2, which is binary (0 vs. 1) with about 40% of participants having level 1
cov3 Covariate 3, which is binary (0 vs. 1) with about 40% of participants having level 1
cov4 Covariate 4, which is binary (0 vs. 1) with about 60% of participants having level 1

inv_logit Inverse Logit Function

Description

Inverse Logit Function

Usage

inv_logit(x)

Arguments

x Real number(s) to take the inverse logit of

Details

This function is a short hand to exp(x)/(1 + exp(x)).

Value

Vector of probabilities between 0 and 1

Examples

inv_logit(0.5)
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is_prop_scr Test If Propensity Score Object

Description

Test If Propensity Score Object

Usage

is_prop_scr(x)

Arguments

x Object to test

Value

Boolean

Examples

library(dplyr)
x <- calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

is_prop_scr(x)

mix_means Extract Means of Mixture Components

Description

Extract Means of Mixture Components

Usage

mix_means(x)

Arguments

x A mixture distributional object



30 mix_sigmas

Details

If a distributional object that is a mixture of two or more normal distributions is read in, the function
will return a numeric object with the means of each normal component. If the distributional object
is a mixture of two or more multivariate normal distributions, the function will return a list with the
mean vectors of each multivariate normal component.

Value

numeric or list object

Examples

library(distributional)
mix_norm <- dist_mixture(comp1 = dist_normal(1, 10),

comp2 = dist_normal(1.5, 12),
weights = c(.5, .5))

mix_means(mix_norm)

mix_sigmas Extract Standard Deviations of Mixture Components

Description

Extract Standard Deviations of Mixture Components

Usage

mix_sigmas(x)

Arguments

x A mixture distributional object

Details

If a distributional object that is a mixture of two or more normal distributions is read in, the function
will return a numeric object with the standard deviations of each normal component. If the distribu-
tional object is a mixture of two or more multivariate normal distributions, the function will return
a list with the covariance matrices of each multivariate normal component.

Value

numeric or list object
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Examples

library(distributional)
mix_norm <- dist_mixture(comp1 = dist_normal(1, 10),

comp2 = dist_normal(1.5, 12),
weights = c(.5, .5))

mix_sigmas(mix_norm)

plot_dist Plot Distribution

Description

Plot Distribution

Usage

plot_dist(...)

Arguments

... Distributional object(s) to plot. When passing multiple objects naming them
will change the labels in the plot, else they will use the distributional format

Value

ggplot object that is the density of the provided distribution

Examples

library(distributional)
plot_dist(dist_normal(0, 1))
plot_dist(dist_multivariate_normal(mu = list(c(1, 2)), sigma = list(matrix(c(4, 2, 2, 3), ncol=2))))
#Plotting Multiple
plot_dist(dist_normal(0, 1), dist_normal(10, 5))
plot_dist('Prior' = dist_normal(0, 1), 'Posterior' = dist_normal(10, 5))

prop_scr_cloud Propensity Score Cloud Plot

Description

Propensity Score Cloud Plot

Usage

prop_scr_cloud(x, trimmed_prop_scr = NULL)



32 prop_scr_dens

Arguments

x A prop_scr object
trimmed_prop_scr

A trimmed prop_scr object

Value

ggplot object

Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

ps_obj_trimmed <- trim_ps(ps_obj, low = 0.1, high = 0.6)
# Plotting the Propensity Scores
prop_scr_cloud(ps_obj, trimmed_prop_scr = ps_obj_trimmed)

prop_scr_dens Density of the Propensity Score Object

Description

Plot overlapping density curves of the propensity scores for both the internal and external partici-
pants, or plot external IPWs.

Usage

prop_scr_dens(
x,
variable = c("propensity score", "ps", "inverse probability weight", "ipw"),
...

)

Arguments

x Propensity score object

variable Variable to plot. It must be either a propensity score ("ps" or "propensity score")
or inverse probability weight ("ipw" or "inverse probability weight")

... Optional arguments for geom_density

Value

ggplot object
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Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

# Plotting the Propensity Scores
prop_scr_dens(ps_obj)
# Or plotting the inverse probability weights
prop_scr_dens(ps_obj, variable = "ipw")

prop_scr_hist Histogram of the Propensity Score Object

Description

Plot overlapping histograms of the propensity scores for both the internal and external participants,
or plot external IPWs.

Usage

prop_scr_hist(
x,
variable = c("propensity score", "ps", "inverse probability weight", "ipw"),
...

)

Arguments

x Propensity score object

variable Variable to plot. It must be either a propensity score ("ps" or "propensity score")
or inverse probability weight ("ipw" or "inverse probability weight")

... Optional arguments for geom_histogram

Value

ggplot object

Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

# Plotting the Propensity Scores
prop_scr_hist(ps_obj)
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# Or plotting the inverse probability weights
prop_scr_hist(ps_obj, variable = "ipw")

prop_scr_love Love Plot of the Absolute Standardized Mean Differences

Description

Plot the unadjusted and IPW-adjusted absolute standardized mean differences for each covariate.

Usage

prop_scr_love(x, reference_line = NULL, ...)

Arguments

x Propensity score object

reference_line Numeric value of where along the x-axis the vertical reference line should be
placed

... Optional options for geom_point

Value

ggplot object

Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_norm_df, trt == 0),

external_df = ex_norm_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

# Plotting the Propensity Scores
prop_scr_love(ps_obj, reference_line = 0.1)
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rescale_ps Rescale a prop_scr object

Description

Rescale a prop_scr object

Usage

rescale_ps(x, n = NULL, scale_factor = NULL)

Arguments

x a prop_scr obj

n Desired sample size that the external data should effectively contribute to the
analysis of the internal trial data. This will be used to scale the external weights
if scale_factor is not specified

scale_factor Value to multiple all weights by. This will be used to scale the external weights
if n is not specified

Value

a prop_scr object with rescaled weights

Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_binary_df, trt == 0),

external_df = ex_binary_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

# weights in a propensity score object can be rescaled to achieve a desired
# effective sample size (i.e., sum of weights)
rescale_ps(ps_obj, n = 75)

# Or by a predetermined factor
rescale_ps(ps_obj, scale_factor = 1.5)
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robustify_mvnorm Robustify Multivariate Normal Distributions

Description

Adds vague normal component, where the level of vagueness is controlled by the n parameter

Usage

robustify_mvnorm(prior, n, weights = c(0.5, 0.5))

Arguments

prior Multivariate Normal distributional object

n Number of theoretical participants (or events, for time-to-event data)

weights Vector of weights, where the first number corresponds to the informative com-
ponent and the second is the vague

Details

In cases with a time-to-event endpoint, a robust mixture prior can be created by adding a vague
multivariate normal component to any multivariate normal prior with mean vector µ and covariance
matrix Σ. The vague component is calculated to have the same mean vector µ and covariance
matrix equal to Σ× n, where n is the specified number of theoretical events.

Value

mixture distribution

Examples

library(distributional)
robustify_mvnorm(

dist_multivariate_normal(mu = list(c(1, 0)), sigma = list(c(10, 5))),
n = 15)

robustify_norm Robustify Normal Distributions

Description

Adds vague normal component, where the level of vagueness is controlled by the n parameter

Usage

robustify_norm(prior, n, weights = c(0.5, 0.5))
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Arguments

prior Normal or Multivariate Normal distributional object

n Number of theoretical participants (or events, for time-to-event data)

weights Vector of weights, where the first number corresponds to the informative com-
ponent and the second is the vague

Details

In cases with a normal endpoint, a robust mixture prior can be created by adding a vague normal
component to any normal prior with mean θ and variance σ2.The vague component is calculated to
have the same mean θ and variance equal to σ2 × n, where n is the specified number of theoretical
participants. If robustifying a normal power prior that was calculated from external control data and
n is defined as the number of external control participants, and the vague component would then
correspond to one external control participant’s worth of data.

Value

mixture distribution

Examples

library(distributional)
robustify_norm(dist_normal(0,1), n = 15)

sim_accrual Simulate Participant Accrual Times

Description

Simulate Participant Accrual Times

Usage

sim_accrual(n, accrual_periods, accrual_props)

Arguments

n Number of participants
accrual_periods

Vector of right endpoints defining the time periods of accrual, e.g., c(6,8) defines
0<=x<6, 6<=x<8.

accrual_props Vector indicating the proportion of participants that are expected to be enrolled
during each of the defined accrual periods. Should sum to 1, otherwise these
proportions will be normalized.



38 sim_pw_const_haz

Details

Simulate the accrual times for each participant, where accrual_periods defines the right time
points for each accrual period (with the last element corresponding to the end of accrual), and
accrual_props defines the proportion of study participants who are enrolled during each of these
periods. The simulated accrual times for participants within a given accrual period are assumed to
be uniformly distributed.

Value

Vector of accrual times corresponding to when each participant enters the study

Examples

at <- sim_accrual(n = 100000, accrual_periods = c(6, 8), accrual_props = c(.5, .5))
hist(at, breaks = 100, main = "Histogram of Enrollment Times", xlab = "Enrollment Time")

sim_pw_const_haz Simulate Event Times for Each Individual from a Piecewise Constant
Hazard Model

Description

Simulate Event Times for Each Individual from a Piecewise Constant Hazard Model

Usage

sim_pw_const_haz(n, hazard_periods = NULL, hazard_values)

Arguments

n Number of individuals

hazard_periods Vector of break points between time periods with separate constant hazards,
e.g., c(6,8) defines [0,6), [6,8), [8, infinity). Leave as NULL if defining only one
hazard period.

hazard_values Vector of constant hazard values associated with the time intervals

Details

Simulate the event or censoring times for each participant using a piecewise constant hazard model
where each time period is defined to have a different constant hazard. Here, hazard_periods
defines the right time points for each time period (with the exception of the last time period which
extends to infinity), and hazard_values defines the constant hazards for each time period.

Value

Vector of simulated times from the time-to-event distribution
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Examples

tte_dat <- sim_pw_const_haz(n = 100000, hazard_periods = c(6, 8), hazard_values = c(0.1, 0.1, 0.1))
hist(tte_dat, breaks = 100, main = "Event Time Distribution", xlab = "Event Time")

sim_weib_ph Simulate Event Times for Each Participant from a Weibull Propor-
tional Hazards Regression Model

Description

Simulate Event Times for Each Participant from a Weibull Proportional Hazards Regression Model

Usage

sim_weib_ph(weibull_ph_mod, samp_df, cond_drift = 0, cond_trt_effect = 0)

Arguments

weibull_ph_mod survreg object corresponding to a Weibull proportional hazards model fit using
the external data

samp_df Data frame of covariates corresponding to the sample arm (control or treated) for
which event times should be simulated. The column names should correspond
to the covariate names in the survreg object.

cond_drift Optional value of the conditional drift by which the intercept in the Weibull pro-
portional hazards regression model should be increased/decreased to incorporate
the impact of unmeasurable sources of drift. Default is 0.

cond_trt_effect

Optional value of the conditional treatment effect by which the intercept in the
Weibull proportional hazards regression model should be increased/decreased if
simulating event data for a treated arm. Default is 0.

Details

Simulate the event times for each participant using a Weibull proportional hazards (PH) regression
model. The "true" parameter values for the Weibull shape α and the regression coefficients β are
assumed to be equal to the parameter estimates from a survreg object (weibull_ph_mod) fit using
external data (note that the Weibull shape parameter α is defined as the inverse of the scale parameter
reported by survreg).

For participant i, let yi denote the time-to-event random variable and xi = {xi,1, . . . , xi,p} the
vector of p covariates (row i of samp_df) that correspond to the (p + 1)-dimensional vector of
regression coefficients β. The density function of the Weibull PH regression model is

f(yi | xi, α,β, δ, γ) =

(
α

σi

)(
yi
σi

)α−1

exp

(
−
(
yi
σi

)α)
,



40 sweet_spot_plot

where − log(σi) = β0 + β1xi,1 + . . .+ βpxi,p + δ + γ. Here, δ and γ denote the conditional drift
(cond_drift) and conditional treatment effect (cond_trt_effect), respectively, that can be calcu-
lated using calc_cond_weibull() for desired values of the marginal drift and marginal treatment
effect.

Value

Vector of simulated event times from a Weibull proportional hazards regression model

Examples

library(dplyr)
library(survival)
# Model "true" regression coefficients and shape parameter using the external data
weibull_ph_mod <- survreg(Surv(y, event) ~ cov1 + cov2 + cov3 + cov4, data = ex_tte_df,

dist = "weibull")

# Sample covariates for internal control arm via bootstrap from external data
samp_int_ctrl <- bootstrap_cov(ex_tte_df, n = 100) |>

select(c(cov1, cov2, cov3, cov4)) # keep only covariate columns
tte_dat <- sim_weib_ph(weibull_ph_mod, samp_df = samp_int_ctrl)

sweet_spot_plot Create Sweet Spot Plots for Multiple Simulation Scenarios

Description

Create visualization plots to help identify the "sweet spot" in borrowing strategies across differ-
ent simulation scenarios. For each unique scenario defined by the combination of variables in
scenario_vars, the function produces a plot showing power, type I error, and the distribution of
the design prior for the control marginal parameter for approaches with and without borrowing.

Usage

sweet_spot_plot(
.data,
scenario_vars,
trt_diff,
control_marg_param,
h0_prob,
h0_prob_no_borrowing,
design_prior = NULL,
highlight = TRUE

)
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Arguments

.data A data frame containing iteration-level simulation results.

scenario_vars A vector of quoted column names corresponding to variables used to define
unique simulation scenarios. Each unique combination of values in these columns
will generate a separate plot.

trt_diff An unquoted column name representing the treatment difference. Used to iden-
tify scenarios with null effect (trt_diff = 0) for type I error calculation.

control_marg_param

An unquoted column name to be used as the x-axis in the plots. This is typically
the control endpoint of interest on the marginal scale (e.g., control response
rate).

h0_prob An unquoted column name containing the probability of rejecting the null hy-
pothesis when when borrowing external data.

h0_prob_no_borrowing

An unquoted column name containing the probability of rejecting the null hy-
pothesis when not borrowing external data.

design_prior An unquoted column name containing distributional objects that represent the
design prior distribution for the control marginal parameter (e.g., posterior dis-
tribution using the external control data). Used to aid visualization of which
values of the control marginal parameter are assumed to be plausible. Default is
NULL, in which case no design prior is plotted. See Details for more information.

highlight Logical value to indicate if you want sweet spot highlighting or not. If TRUE the
sweet spot (where borrowing increase power and reduces type 1 error) will be
highlighted.

Details

The function calculates power and type I error rates for BDB approaches that borrow from external
data (e.g., use of a robust mixture prior with positive weight on the informative component) and an
approach that does not borrow from external data (e.g., use of a vague prior) under each scenario
and visualizes them together as a function of the underlying control marginal parameter of interest
(e.g., control response rate for binary outcomes) that may vary as a result of drift. This helps identify
the "sweet spot" where borrowing results in higher power and lower type I error rates compared to
not borrowing. Type I error is calculated using scenarios where trt_diff equals 0, and power is
calculated for all scenarios with positive values of trt_diff.

If design_prior is non-NULL, the design prior distribution is included in the plot to provide in-
sight into which values of the control marginal parameter are plausible given this assumed design
prior. We note that design_prior can represent any informative prior that potentially incorpo-
rates the external control data (e.g., the posterior distribution of the control marginal parameter
constructed using the external data and a vague prior). Each element of the vector corresponding
to design_prior must be a distributional object with a family equal to "beta", "normal", or "mix-
ture" (where each component is either "beta" or "normal"). For the time-to-event case in which a
multivariate normal prior is assumed for the control log-shape and intercept of a Weibull propor-
tional hazards model, this distribution must first be translated into a univariate beta design prior for
the control survival probability at some prespecified time. This approximation can be done using
approx_mvn_at_time(). If the design priors in the vector indicated by design_prior differ across
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iterations within a given scenario (e.g., using the IPW power prior as the iteration-specific design
prior), then the average distribution will be plotted (i.e., a distribution of the same family with the
hyperparameters averaged across iterations).

Value

A list of ggplot objects, one for each unique scenario defined by scenario_vars. Each plot shows:

• Power curves for the cases with and without borrowing

• Type I error rates for the cases with and without borrowing

• Distribution of the design prior (if design_prior is specified)

References

Best, N., Ajimi, M., Neuenschwander, B., Saint-Hilary, G., & Wandel, S. (2024). Beyond the
Classical Type I Error: Bayesian Metrics for Bayesian Designs Using Informative Priors. Statistics
in Biopharmaceutical Research, 17(2), 183–196. doi:10.1080/19466315.2024.2342817

Examples

library(dplyr)
# Assuming binary_sim_df is a data frame with simulation results in the shape
# of binary template code
plots <- sweet_spot_plot(

.data = binary_sim_df,
scenario_vars = c("population", "marg_trt_eff"),
trt_diff = marg_trt_eff,
control_marg_param = true_control_RR,
h0_prob = reject_H0_yes,
h0_prob_no_borrowing = no_borrowing_reject_H0_yes,
design_prior = pwr_prior

)

# Display the first plot
plots[[1]]

tte_plots <- tte_sim_df |>
mutate(beta_appox = approx_mvn_at_time(mix_prior, time = 12)) |>
sweet_spot_plot(
scenario_vars = c("population", "marg_trt_eff"),
trt_diff = marg_trt_eff,
control_marg_param = true_control_surv_prob,
h0_prob = reject_H0_yes,
h0_prob_no_borrowing = no_borrowing_reject_H0_yes,
design_prior = beta_appox

)

tte_plots[[1]]

https://doi.org/10.1080/19466315.2024.2342817
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tidy.prop_scr Tidy a(n) prop_scr object

Description

Tidy a(n) prop_scr object

Usage

## S3 method for class 'prop_scr'
tidy(x, ...)

Arguments

x a prop_scr obj

... Unused, included for generic consistency only.

Value

A tidy tibble::tibble() summarizing the results of the propensity score weighting. The tibble
will have the id column of the external data, an internal column to indicate all the data is external,
a ps column with the propensity scores and a weight column with the inverse probability weights

Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_binary_df, trt == 0),

external_df = ex_binary_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

tidy(ps_obj)

trim_ps Trim a prop_scr object

Description

Trim a prop_scr object

Usage

trim_ps(x, low = NULL, high = NULL, quantile = FALSE)
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Arguments

x A prop_scr object

low Low cut-off such that all participants with propensity scores less than this value
(or quantile if quantile = TRUE) are removed. If left NULL no lower bound will
be used

high High cut-off such that all participants with propensity scores greater than this
value (or quantile if quantile = TRUE) are removed. If left NULL no upper bound
will be used

quantile True/False value to determine if the cut-off values are based directly on the
propensity scores (false) or their quantiles (true). By default this is false.

Details

This function uses R’s default method of quantile calculation (type 7)

Value

a prop_scr object with a trimmed propensity score distribution

Examples

library(dplyr)
ps_obj <- calc_prop_scr(internal_df = filter(int_binary_df, trt == 0),

external_df = ex_binary_df,
id_col = subjid,
model = ~ cov1 + cov2 + cov3 + cov4)

trim_ps(ps_obj, low = 0.3, high = 0.7)

tte_sim_df Time-to-Event Simulation Data

Description

This is an example of output from a simulation study that investigates the operating characteris-
tics of inverse probability weighted Bayesian dynamic borrowing for the case with a time-to-event
outcome. This output was generated based on the time-to-event simulation template. For this simu-
lation study, only the degree of covariate imbalance (as indicated by population) and the marginal
treatment effect were varied.

Usage

tte_sim_df
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Format

tte_sim_df A data frame with 18 rows and 7 columns::

population Populations defined by different covariate imbalances
marg_trt_eff Marginal treatment effect
true_control_surv_prop True control survival probability at time t=12 months on the marginal

scale
reject_H0_yes Probability of rejecting the null hypothesis in the case with borrowing
no_borrowing_reject_H0_yes Probability of rejecting the null hypothesis without borrowing
pwr_prior Vector of IPW power priors as distributional objects
mix_prior Vector of mixture priors (i.e., the robustified IPW power priors) as distributional ob-

jects
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