This R package is designed to block records for data deduplication
and record linkage (also known as entity resolution) using approximate
nearest neighbor algorithms (ANN) and graphs (via the
igraph package).
It supports the following R packages that bind to specific ANN algorithms:
mlpack::lsh and mlpack::knn).The package can be used with the reclin2 package
via the blocking::pair_ann function.
Install the stable version from CRAN:
install.packages("blocking") You can also install the development version from GitHub:
# install.packages("pak") # uncomment if needed
pak::pkg_install("ncn-foreigners/blocking")Load packages for the examples:
library(blocking)
library(reclin2)
#> Loading required package: data.tableGenerate simple data with three groups (df_example) and
reference data (df_base):
df_example <- data.frame(txt = c(
"jankowalski",
"kowalskijan",
"kowalskimjan",
"kowaljan",
"montypython",
"pythonmonty",
"cyrkmontypython",
"monty"
))
df_base <- data.frame(txt = c("montypython", "kowalskijan", "other"))
df_example
#> txt
#> 1 jankowalski
#> 2 kowalskijan
#> 3 kowalskimjan
#> 4 kowaljan
#> 5 montypython
#> 6 pythonmonty
#> 7 cyrkmontypython
#> 8 monty
df_base
#> txt
#> 1 montypython
#> 2 kowalskijan
#> 3 otherDeduplication using the blocking function. Output
contains information:
nnd refers to the NN descent
algorithm),text2vec package (here 28),blocking_result <- blocking(x = df_example$txt)
blocking_result
#> ========================================================
#> Blocking based on the nnd method.
#> Number of blocks: 2.
#> Number of columns used for blocking: 28.
#> Reduction ratio: 0.5714.
#> ========================================================
#> Distribution of the size of the blocks:
#> 4
#> 2Table with blocking results contains:
blocking_result$result
#> x y block dist
#> <int> <int> <num> <num>
#> 1: 1 2 1 0.10000002
#> 2: 2 3 1 0.14188367
#> 3: 2 4 1 0.28286284
#> 4: 5 6 2 0.08333331
#> 5: 5 7 2 0.13397455
#> 6: 5 8 2 0.27831215Deduplication using the pair_ann function for
integration with the reclin2 package. Use the pipeline with
the reclin2 package:
pair_ann(x = df_example, on = "txt") |>
compare_pairs(on = "txt", comparators = list(cmp_jarowinkler())) |>
score_simple("score", on = "txt") |>
select_threshold("threshold", score = "score", threshold = 0.55) |>
link(selection = "threshold")
#> Total number of pairs: 8 pairs
#>
#> Key: <.y>
#> .y .x txt.x txt.y
#> <int> <int> <char> <char>
#> 1: 2 1 jankowalski kowalskijan
#> 2: 3 1 jankowalski kowalskimjan
#> 3: 3 2 kowalskijan kowalskimjan
#> 4: 4 1 jankowalski kowaljan
#> 5: 4 2 kowalskijan kowaljan
#> 6: 6 5 montypython pythonmonty
#> 7: 7 5 montypython cyrkmontypython
#> 8: 8 5 montypython montyLinking records using the same function where df_base is
the “register” and df_example is the reference data:
pair_ann(x = df_base, y = df_example, on = "txt", deduplication = FALSE) |>
compare_pairs(on = "txt", comparators = list(cmp_jarowinkler())) |>
score_simple("score", on = "txt") |>
select_threshold("threshold", score = "score", threshold = 0.55) |>
link(selection = "threshold")
#> Total number of pairs: 8 pairs
#>
#> Key: <.y>
#> .y .x txt.x txt.y
#> <int> <int> <char> <char>
#> 1: 1 2 kowalskijan jankowalski
#> 2: 2 2 kowalskijan kowalskijan
#> 3: 3 2 kowalskijan kowalskimjan
#> 4: 4 2 kowalskijan kowaljan
#> 5: 5 1 montypython montypython
#> 6: 6 1 montypython pythonmonty
#> 7: 7 1 montypython cyrkmontypython
#> 8: 8 1 montypython montySee section
Data Integration (Statistical Matching and Record Linkage)
in the
Official Statistics Task View.
Packages that allow blocking:
pair_blocking, pair_minsim functions,blockData function.Other:
Work on this package is supported by the National Science Centre, OPUS 20 grant no. 2020/39/B/HS4/00941.