| Title: | Some Distributions from the 'Boost' Library and More |
| Version: | 1.0.0 |
| Description: | Make some distributions from the 'C++' library 'Boost' available in 'R'. In addition, the normal-inverse Gaussian distribution and the generalized inverse Gaussian distribution are provided. The distributions are represented by 'R6' classes. The method to sample from the generalized inverse Gaussian distribution is the one given in "Random variate generation for the generalized inverse Gaussian distribution" Luc Devroye (2012) <doi:10.1007/s11222-012-9367-z>. |
| License: | GPL-3 |
| URL: | https://github.com/stla/boodist |
| BugReports: | https://github.com/stla/boodist/issues |
| Imports: | R6, Rcpp, RcppNumerical, stats |
| LinkingTo: | BH, Rcpp, RcppEigen, RcppNumerical |
| Suggests: | plotly |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.2.3 |
| SystemRequirements: | C++17 |
| NeedsCompilation: | yes |
| Packaged: | 2023-08-09 13:14:44 UTC; SDL96354 |
| Author: | Stéphane Laurent [aut, cre] |
| Maintainer: | Stéphane Laurent <laurent_step@outlook.fr> |
| Repository: | CRAN |
| Date/Publication: | 2023-08-10 10:00:02 UTC |
Generalized inverse Gaussian distribution
Description
A R6 class to represent a generalized inverse Gaussian distribution.
Details
See Wikipedia.
Active bindings
thetaGet or set the value of
theta.etaGet or set the value of
eta.lambdaGet or set the value of
lambda.
Methods
Public methods
Method new()
New generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$new(theta, eta, lambda)
Arguments
thetaconcentration parameter,
>0etascale parameter,
>0lambdaparameter (denoted by
pon Wikipedia)
Returns
A GeneralizedInverseGaussian object.
Method d()
Density function of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$d(x, log = FALSE)
Arguments
xvector of positive numbers
logBoolean, whether to return the log-density
Returns
The density or the log-density evaluated at x.
Method p()
Cumulative distribution function of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$p(q)
Arguments
qnumeric vector of quantiles (
>= 0)
Returns
The cumulative probabilities corresponding to q, with two
attributes (see the Note).
Method q()
Quantile function of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$q(p, bounds = NULL)
Arguments
pnumeric vector of probabilities
boundsbounds enclosing the quantiles to be found (see the Note), or
NULLfor automatic bounds
Returns
The quantiles corresponding to p.
Method r()
Sampling from the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$mean()
Returns
The mean of the generalized inverse Gaussian distribution.
Method mode()
Mode of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$mode()
Returns
The mode of the generalized inverse Gaussian distribution.
Method sd()
Standard deviation of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$sd()
Returns
The standard deviation of the generalized inverse Gaussian distribution.
Method variance()
Variance of the generalized inverse Gaussian distribution.
Usage
GeneralizedInverseGaussian$variance()
Returns
The variance of the generalized inverse Gaussian distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
GeneralizedInverseGaussian$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Note
The cumulative distribution function is evaluated by integrating the
density function (in C++). Its returned value has two attributes: a
numeric vector "error_estimate" and an integer vector
"error_code". The error code is 0 if no problem is detected. If an
error code is not 0, a warning is thrown. The quantile function is
evaluated by root-finding and then the user must provide some bounds
enclosing the values of the quantiles or choose the automatic bounds.
A maximum number of iterations is fixed in the root-finding algorithm.
If it is reached, a warning is thrown.
Examples
if(require("plotly")) {
library(boodist)
x_ <- seq(0, 3, length.out = 100L)
lambda_ <- seq(-1, 1, length.out = 100L)
dsty <- vapply(lambda_, function(lambda) {
GeneralizedInverseGaussian$new(theta = 1, eta = 1, lambda)$d(x_)
}, numeric(length(x_)))
#
txt <- matrix(NA_character_, nrow = length(x_), ncol = length(lambda_))
for(i in 1L:nrow(txt)) {
for(j in 1L:ncol(txt)) {
txt[i, j] <- paste0(
"x: ", formatC(x_[i]),
"<br> lambda: ", formatC(lambda_[j]),
"<br> density: ", formatC(dsty[i, j])
)
}
}
#
plot_ly(
x = ~lambda_, y = ~x_, z = ~dsty, type = "surface",
text = txt, hoverinfo = "text", showscale = FALSE
) %>% layout(
title = "Generalized inverse Gaussian distribution",
margin = list(t = 40, r= 5, b = 5, l = 5),
scene = list(
xaxis = list(
title = "lambda"
),
yaxis = list(
title = "x"
),
zaxis = list(
title = "density"
)
)
)
}
Gumbel distribution
Description
A R6 class to represent a Gumbel distribution.
Details
See Wikipedia.
Active bindings
aGet or set the value of
a.bGet or set the value of
b.
Methods
Public methods
Method new()
New Gumbel distribution.
Usage
Gumbel$new(a, b)
Arguments
alocation parameter
bscale parameter,
>0
Returns
A Gumbel object.
Method d()
Density function of the Gumbel distribution.
Usage
Gumbel$d(x, log = FALSE)
Arguments
xnumeric vector
logBoolean, whether to return the logarithm of the density
Returns
The density or the log-density evaluated at x.
Method p()
Cumulative distribution function of the Gumbel distribution.
Usage
Gumbel$p(q, lower = TRUE)
Arguments
qnumeric vector of quantiles
lowerBoolean, whether to deal with the lower tail
Returns
The cumulative probabilities corresponding to q.
Method q()
Quantile function of the Gumbel distribution.
Usage
Gumbel$q(p, lower = TRUE)
Arguments
pnumeric vector of probabilities
lowerBoolean, whether to deal with the lower tail
Returns
The quantiles corresponding to p.
Method r()
Sampling from the Gumbel distribution.
Usage
Gumbel$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the Gumbel distribution.
Usage
Gumbel$mean()
Returns
The mean of the Gumbel distribution.
Method median()
Median of the Gumbel distribution.
Usage
Gumbel$median()
Returns
The median of the Gumbel distribution.
Method mode()
Mode of the Gumbel distribution.
Usage
Gumbel$mode()
Returns
The mode of the Gumbel distribution.
Method sd()
Standard deviation of the Gumbel distribution.
Usage
Gumbel$sd()
Returns
The standard deviation of the Gumbel distribution.
Method variance()
Variance of the Gumbel distribution.
Usage
Gumbel$variance()
Returns
The variance of the Gumbel distribution.
Method skewness()
Skewness of the Gumbel distribution.
Usage
Gumbel$skewness()
Returns
The skewness of the Gumbel distribution.
Method kurtosis()
Kurtosis of the Gumbel distribution.
Usage
Gumbel$kurtosis()
Returns
The kurtosis of the Gumbel distribution.
Method kurtosisExcess()
Kurtosis excess of the Gumbel distribution.
Usage
Gumbel$kurtosisExcess()
Returns
The kurtosis excess of the Gumbel distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
Gumbel$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Hyperexponential distribution
Description
A R6 class to represent a hyperexponential distribution.
Details
See Wikipedia.
Active bindings
probsGet or set the value of
probs.ratesGet or set the value of
rates.
Methods
Public methods
Method new()
New hyperexponential distribution.
Usage
Hyperexponential$new(probs, rates)
Arguments
probsprobabilities (weights), a vector of positive numbers
ratesrate parameters, vector of positive numbers of the same length as the
probsvector
Returns
A Hyperexponential object.
Method d()
Density function of the hyperexponential distribution.
Usage
Hyperexponential$d(x)
Arguments
xvector of positive numbers
Returns
The density evaluated at x.
Method p()
Cumulative distribution function of the hyperexponential distribution.
Usage
Hyperexponential$p(q, lower = TRUE)
Arguments
qnumeric vector of quantiles
lowerBoolean, whether to deal with the lower tail
Returns
The cumulative probabilities corresponding to q.
Method q()
Quantile function of the hyperexponential distribution.
Usage
Hyperexponential$q(p, lower = TRUE)
Arguments
pnumeric vector of probabilities
lowerBoolean, whether to deal with the lower tail
Returns
The quantiles corresponding to p.
Method r()
Sampling from the hyperexponential distribution.
Usage
Hyperexponential$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the hyperexponential distribution.
Usage
Hyperexponential$mean()
Returns
The mean of the hyperexponential distribution.
Method mode()
Mode of the hyperexponential distribution.
Usage
Hyperexponential$mode()
Returns
The mode of the hyperexponential distribution.
Method sd()
Standard deviation of the hyperexponential distribution.
Usage
Hyperexponential$sd()
Returns
The standard deviation of the hyperexponential distribution.
Method variance()
Variance of the hyperexponential distribution.
Usage
Hyperexponential$variance()
Returns
The variance of the hyperexponential distribution.
Method skewness()
Skewness of the hyperexponential distribution.
Usage
Hyperexponential$skewness()
Returns
The skewness of the hyperexponential distribution.
Method kurtosis()
Kurtosis of the hyperexponential distribution.
Usage
Hyperexponential$kurtosis()
Returns
The kurtosis of the hyperexponential distribution.
Method kurtosisExcess()
Kurtosis excess of the hyperexponential distribution.
Usage
Hyperexponential$kurtosisExcess()
Returns
The kurtosis excess of the hyperexponential distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
Hyperexponential$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Inverse Gamma distribution
Description
A R6 class to represent an inverse Gamma distribution.
Details
See Wikipedia.
Active bindings
alphaGet or set the value of
alpha.betaGet or set the value of
beta.
Methods
Public methods
Method new()
New inverse Gamma distribution.
Usage
InverseGamma$new(alpha, beta)
Arguments
alphashape parameter,
>0betascale parameter,
>0
Returns
An inverseGamma object.
Method d()
Density function of the inverse Gamma distribution.
Usage
InverseGamma$d(x, log = FALSE)
Arguments
xvector of positive numbers
logBoolean, whether to return the logarithm of the density
Returns
The density or the log-density evaluated at x.
Method p()
Cumulative distribution function of the inverse Gamma distribution.
Usage
InverseGamma$p(q, lower = TRUE)
Arguments
qnumeric vector of quantiles
lowerBoolean, whether to deal with the lower tail
Returns
The cumulative probabilities corresponding to q.
Method q()
Quantile function of the inverse Gamma distribution.
Usage
InverseGamma$q(p, lower = TRUE)
Arguments
pnumeric vector of probabilities
lowerBoolean, whether to deal with the lower tail
Returns
The quantiles corresponding to p.
Method r()
Sampling from the inverse Gamma distribution.
Usage
InverseGamma$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the inverse Gamma distribution.
Usage
InverseGamma$mean()
Returns
The mean of the inverse Gamma distribution.
Method median()
Median of the inverse Gamma distribution.
Usage
InverseGamma$median()
Returns
The median of the inverse Gamma distribution.
Method mode()
Mode of the inverse Gamma distribution.
Usage
InverseGamma$mode()
Returns
The mode of the inverse Gamma distribution.
Method sd()
Standard deviation of the inverse Gamma distribution.
Usage
InverseGamma$sd()
Returns
The standard deviation of the inverse Gamma distribution.
Method variance()
Variance of the inverse Gamma distribution.
Usage
InverseGamma$variance()
Returns
The variance of the inverse Gamma distribution.
Method skewness()
Skewness of the inverse Gamma distribution.
Usage
InverseGamma$skewness()
Returns
The skewness of the inverse Gamma distribution.
Method kurtosis()
Kurtosis of the inverse Gamma distribution.
Usage
InverseGamma$kurtosis()
Returns
The kurtosis of the inverse Gamma distribution.
Method kurtosisExcess()
Kurtosis excess of the inverse Gamma distribution.
Usage
InverseGamma$kurtosisExcess()
Returns
The kurtosis excess of the inverse Gamma distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
InverseGamma$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
if(require("plotly")) {
x_ <- seq(0, 2, length.out = 100L)
alpha_ <- seq(0.5, 2.5, length.out = 100L)
dsty <- vapply(alpha_, function(alpha) {
InverseGamma$new(alpha, beta = 1)$d(x_)
}, numeric(length(x_)))
#
txt <- matrix(NA_character_, nrow = length(x_), ncol = length(alpha_))
for(i in 1L:nrow(txt)) {
for(j in 1L:ncol(txt)) {
txt[i, j] <- paste0(
"x: ", formatC(x_[i]),
"<br> alpha: ", formatC(alpha_[j]),
"<br> density: ", formatC(dsty[i, j])
)
}
}
#
plot_ly(
x = ~alpha_, y = ~x_, z = ~dsty, type = "surface",
text = txt, hoverinfo = "text", showscale = FALSE
) %>% layout(
title = "Inverse Gamma distribution",
margin = list(t = 40, r= 5, b = 5, l = 5),
scene = list(
xaxis = list(
title = "alpha"
),
yaxis = list(
title = "x"
),
zaxis = list(
title = "density"
)
)
)
}
Inverse Gaussian distribution
Description
A R6 class to represent an inverse Gaussian distribution.
Details
See Wikipedia.
Active bindings
muGet or set the value of
mu.lambdaGet or set the value of
lambda.
Methods
Public methods
Method new()
New inverse Gaussian distribution.
Usage
InverseGaussian$new(mu, lambda)
Arguments
muparameter, the mean,
>0lambdashape parameter,
>0
Returns
An inverseGaussian object.
Method d()
Density function of the inverse Gaussian distribution.
Usage
InverseGaussian$d(x, log = FALSE)
Arguments
xvector of positive numbers
logBoolean, whether to return the logarithm of the density
Returns
The density or the log-density evaluated at x.
Method p()
Cumulative distribution function of the inverse Gaussian distribution.
Usage
InverseGaussian$p(q, lower = TRUE)
Arguments
qnumeric vector of quantiles
lowerBoolean, whether to deal with the lower tail
Returns
The cumulative probabilities corresponding to q.
Method q()
Quantile function of the inverse Gaussian distribution.
Usage
InverseGaussian$q(p, lower = TRUE)
Arguments
pnumeric vector of probabilities
lowerBoolean, whether to deal with the lower tail
Returns
The quantiles corresponding to p.
Method r()
Sampling from the inverse Gaussian distribution.
Usage
InverseGaussian$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the inverse Gaussian distribution.
Usage
InverseGaussian$mean()
Returns
The mean of the inverse Gaussian distribution.
Method median()
Median of the inverse Gaussian distribution.
Usage
InverseGaussian$median()
Returns
The median of the inverse Gaussian distribution.
Method mode()
Mode of the inverse Gaussian distribution.
Usage
InverseGaussian$mode()
Returns
The mode of the inverse Gaussian distribution.
Method sd()
Standard deviation of the inverse Gaussian distribution.
Usage
InverseGaussian$sd()
Returns
The standard deviation of the inverse Gaussian distribution.
Method variance()
Variance of the inverse Gaussian distribution.
Usage
InverseGaussian$variance()
Returns
The variance of the inverse Gaussian distribution.
Method skewness()
Skewness of the inverse Gaussian distribution.
Usage
InverseGaussian$skewness()
Returns
The skewness of the inverse Gaussian distribution.
Method kurtosis()
Kurtosis of the inverse Gaussian distribution.
Usage
InverseGaussian$kurtosis()
Returns
The kurtosis of the inverse Gaussian distribution.
Method kurtosisExcess()
Kurtosis excess of the inverse Gaussian distribution.
Usage
InverseGaussian$kurtosisExcess()
Returns
The kurtosis excess of the inverse Gaussian distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
InverseGaussian$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Normal-inverse Gaussian distribution
Description
A R6 class to represent a normal-inverse Gaussian distribution.
Details
See Wikipedia.
Active bindings
muGet or set the value of
mu.alphaGet or set the value of
alpha.betaGet or set the value of
beta.deltaGet or set the value of
delta.
Methods
Public methods
Method new()
New normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$new(mu, alpha, beta, delta)
Arguments
mulocation parameter
alphatail heaviness parameter,
>0betaasymmetry parameter
deltascale parameter,
>0
Returns
A NormalInverseGaussian object.
Method d()
Density function of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$d(x, log = FALSE)
Arguments
xnumeric vector
logBoolean, whether to return the logarithm of the density
Returns
The density or the log-density evaluated at x.
Method p()
Cumulative distribution function of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$p(q)
Arguments
qnumeric vector of quantiles
Returns
The cumulative probabilities corresponding to q, with two
attributes (see the Note).
Method q()
Quantile function of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$q(p, bounds = NULL)
Arguments
pnumeric vector of probabilities
boundsbounds enclosing the quantiles to be found (see the Note), or
NULLfor automatic bounds
Returns
The quantiles corresponding to p.
Method r()
Sampling from the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$mean()
Returns
The mean of the normal-inverse Gaussian distribution.
Method sd()
Standard deviation of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$sd()
Returns
The standard deviation of the normal-inverse Gaussian distribution.
Method variance()
Variance of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$variance()
Returns
The variance of the normal-inverse Gaussian distribution.
Method skewness()
Skewness of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$skewness()
Returns
The skewness of the normal-inverse Gaussian distribution.
Method kurtosis()
Kurtosis of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$kurtosis()
Returns
The kurtosis of the normal-inverse Gaussian distribution.
Method kurtosisExcess()
Kurtosis excess of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$kurtosisExcess()
Returns
The kurtosis excess of the normal-inverse Gaussian distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
NormalInverseGaussian$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Note
The cumulative distribution function is evaluated by integrating the
density function (in C++). Its returned value has two attributes: a
numeric vector "error_estimate" and an integer vector
"error_code". The error code is 0 if no problem is detected. If an
error code is not 0, a warning is thrown. The quantile function is
evaluated by root-finding and then the user must provide some bounds
enclosing the values of the quantiles or choose the automatic bounds.
A maximum number of iterations is fixed in the root-finding algorithm.
If it is reached, a warning is thrown.
Skew normal distribution
Description
A R6 class to represent a skew normal distribution.
Details
See Wikipedia.
Active bindings
xiGet or set the value of
xi.omegaGet or set the value of
omega.alphaGet or set the value of
alpha.
Methods
Public methods
Method new()
New skew normal distribution.
Usage
SkewNormal$new(xi, omega, alpha)
Arguments
xilocation parameter
omegascale parameter,
>0alphashape parameter
Returns
A SkewNormal object.
Method d()
Density function of the skew normal distribution.
Usage
SkewNormal$d(x)
Arguments
xnumeric vector
Returns
The density evaluated at x.
Method p()
Cumulative distribution function of the skew normal distribution.
Usage
SkewNormal$p(q, lower = TRUE)
Arguments
qnumeric vector of quantiles
lowerBoolean, whether to deal with the lower tail
Returns
The cumulative probabilities corresponding to q.
Method q()
Quantile function of the skew normal distribution.
Usage
SkewNormal$q(p, lower = TRUE)
Arguments
pnumeric vector of probabilities
lowerBoolean, whether to deal with the lower tail
Returns
The quantiles corresponding to p.
Method r()
Sampling from the skew normal distribution.
Usage
SkewNormal$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the skew normal distribution.
Usage
SkewNormal$mean()
Returns
The mean of the skew normal distribution.
Method mode()
Mode of the skew normal distribution.
Usage
SkewNormal$mode()
Returns
The mode of the skew normal distribution.
Method sd()
Standard deviation of the skew normal distribution.
Usage
SkewNormal$sd()
Returns
The standard deviation of the skew normal distribution.
Method variance()
Variance of the skew normal distribution.
Usage
SkewNormal$variance()
Returns
The variance of the skew normal distribution.
Method skewness()
Skewness of the skew normal distribution.
Usage
SkewNormal$skewness()
Returns
The skewness of the skew normal distribution.
Method kurtosis()
Kurtosis of the skew normal distribution.
Usage
SkewNormal$kurtosis()
Returns
The kurtosis of the skew normal distribution.
Method kurtosisExcess()
Kurtosis excess of the skew normal distribution.
Usage
SkewNormal$kurtosisExcess()
Returns
The kurtosis excess of the skew normal distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
SkewNormal$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Non-central Student distribution
Description
A R6 class to represent a non-central Student distribution.
Active bindings
nuGet or set the value of
nu.deltaGet or set the value of
delta.
Methods
Public methods
Method new()
New Student distribution.
Usage
Student$new(nu, delta)
Arguments
nudegrees of freedom parameter,
>0deltanon-centrality parameter
Returns
A Student object.
Method d()
Density function of the Student distribution.
Usage
Student$d(x)
Arguments
xnumeric vector
Returns
The density evaluated at x.
Method p()
Cumulative distribution function of the Student distribution.
Usage
Student$p(q, lower = TRUE)
Arguments
qnumeric vector of quantiles
lowerBoolean, whether to deal with the lower tail
Returns
The cumulative probabilities corresponding to q.
Method q()
Quantile function of the Student distribution.
Usage
Student$q(p, lower = TRUE)
Arguments
pnumeric vector of probabilities
lowerBoolean, whether to deal with the lower tail
Returns
The quantiles corresponding to p.
Method r()
Sampling from the Student distribution.
Usage
Student$r(n)
Arguments
nnumber of simulations
Returns
A numeric vector of length n.
Method mean()
Mean of the Student distribution.
Usage
Student$mean()
Returns
The mean of the Student distribution.
Method median()
Median of the Student distribution.
Usage
Student$median()
Returns
The median of the Student distribution.
Method mode()
Mode of the Student distribution.
Usage
Student$mode()
Returns
The mode of the Student distribution.
Method sd()
Standard deviation of the Student distribution.
Usage
Student$sd()
Returns
The standard deviation of the Student distribution.
Method variance()
Variance of the Student distribution.
Usage
Student$variance()
Returns
The variance of the Student distribution.
Method skewness()
Skewness of the Student distribution.
Usage
Student$skewness()
Returns
The skewness of the Student distribution.
Method kurtosis()
Kurtosis of the Student distribution.
Usage
Student$kurtosis()
Returns
The kurtosis of the Student distribution.
Method kurtosisExcess()
Kurtosis excess of the Student distribution.
Usage
Student$kurtosisExcess()
Returns
The kurtosis excess of the Student distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
Student$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Note
The non-centrality parameter of the Student distribution in the
stats package is limited to abs(ncp) <= 37.62.
The present implementation allows a larger range.
Find degrees of freedom
Description
Find the degrees of freedom parameter of a non-central Chi-squared distribution given a quantile, its corresponding probability, and the non-centrality parameter.
Usage
findChi2df(ncp, q, p)
Arguments
ncp |
non-centrality parameter, a non-negative number |
q |
a quantile |
p |
probability corresponding to the quantile |
Value
The degrees of freedom parameter of the non-central Chi-squared
distribution with non-centrality parameter ncp and with
cumulative probability p at the quantile q.
Examples
library(boodist)
nu <- findChi2df(ncp = 10, q = 3, p = 0.1)
pchisq(3, df = nu, ncp = 10) # should be 0.1
Find non-centrality parameter
Description
Find the non-centrality parameter of a Chi-squared distribution given a quantile, its corresponding probability, and the degrees of freedom.
Usage
findChi2ncp(df, q, p)
Arguments
df |
degrees of freedom, a positive number |
q |
a quantile |
p |
probability corresponding to the quantile |
Value
The non-centrality parameter of the Chi-squared distribution with
degrees of freedom parameter df and with cumulative probability
p at the quantile q.
Examples
library(boodist)
ncp <- findChi2ncp(df = 1, q = 3, p = 0.1)
pchisq(3, df = 1, ncp = ncp) # should be 0.1