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Abstract

The R package bsvarSIGNs implements state-of-the-art algorithms for the Bayesian
analysis of Structural Vector Autoregressions identified by sign, zero, and narrative
restrictions. It offers fast and efficient estimation thanks to the deployment of frontier
econometric and numerical techniques and algorithms written in C++. The core model is
based on a flexible Vector Autoregression with estimated hyper-parameters of the
Minnesota prior and the dummy observation priors. The structural model can be
identified by sign, zero, and narrative restrictions, including a novel solution making it
possible to use the three types of restrictions at once. The package facilitates predictive
and structural analyses using impulse responses, forecast error variance and historical
decompositions, forecasting and conditional forecasting, as well as analyses of structural
shocks and fitted values. All this is complemented by colourful plots, user-friendly
summary functions, and comprehensive documentation. The package was granted the
Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in
2024.
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1. Introduction

Following the seminal developments proposed by Sims (1980) and Doan, Litterman, and Sims
(1984) Structural Vector Autoregressions (SVARs) have become go-to models for empirical
research in macroeconomics and finance. This fact is attributed to the model’s capacity to
accommodate basic features of macroeconomic aggregates, relative simplicity of
implementation, and interpretability facilitating a wide range of applications (see, for
instance, Kilian and Lütkepohl 2017). The SVARs are models that treat all the variables and
endogenously determined in a structural, stochastic, dynamic system capturing the data
serial autocorrelation, as well as their temporal and contemporaneous interdependencies.
Additional assumptions of linearity and conditional Gaussianity lead to analytical tractability
and parsimonious estimation (see, for instance, Lütkepohl 2005; Karlsson 2013). Finally, they
can be used to investigate Granger causality, dynamic causal effects of well-isolated shocks,
network connections, and forecast future values of the variables of interest. All these features,
make them indispensable for decision-making at economic governance and financial
institutions.

Bayesian approach applied to SVARs facilitates inference in finite samples, which is particularly
important due to a relatively small number of observations given the large dimension of the
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parameter space in many applications. In this context, the prior distribution of parameters of
the model that must be specified to apply Bayes’ rule provides an additional tool to handle
identification, sparsity, regularisation, and improve the forecasting performance. Additionally,
the reliability of numerical methods used for Bayesian estimation has driven the incorporation
of a large number of variables, sophisticated identification strategies, and non-linearity in
the model specification. All this comes at a cost of computational complexity to be paid for
estimation, inference, and forecasting. Following these developments, macroeconometrics
as an academic field became increasingly computational and characterised by data-driven
application-specific modelling approaches.

An important development facilitating Bayesian analysis of Vector Autoregressions (VARs)
was the application of a matrix-variate normal inverse Wishart prior distribution for the model
parameters, namely the autoregressive parameters matrix and error term covariance matrix,
proposed by Drèze and Morales (1976) for the multivariate regression model and adapted
to VARs by Kadiyala and Karlsson (1997). This natural-conjugate prior combined with the
assumption of conditional normality of the error term result in a joint posterior distribution of
these parameters being matrix-variate normal inverse Wishart (see, e.g., Woźniak 2016). This
posterior distribution has a known analytical form, is easy to sample from, and has become the
basis for multiple modelling approaches (see, for instance, Bańbura, Giannone, and Reichlin
2010; Koop 2013; Chan 2020).

This paper and the corresponding R package bsvarSIGNs by Wang and Woźniak (2024)
provides fast and efficient algorithms for Bayesian analysis of SVARs. It takes advantage of
this convenient model formulation and applies frontier econometric and numerical
techniques and code written in C++ to ensure blazingly fast computations. Additionally, it
offers a great flexibility in choosing the model identification pattern, modifying the prior
assumptions, and accessing interpretable tabulated or plotted outputs. Therefore, the package
makes it possible to benefit from the best of the two facilities: the convenience of data analysis
using R and the computational speed using code written in C++.

More specifically the bsvarSIGNs package builds upon a Bayesian VAR model relying on the
conditional prior and posterior distribution for the parameter of the model being the
normal-inverse Wishart distribution. The models can be further extended by hierarchical
prior distribution as in Giannone, Lenza, and Primiceri (2015) featuring the Minnesota and
dummy-observation priors by Doan et al. (1984), explicit specification of a prior distribution
for the rotation of the structural system as in Rubio-Ramírez, Waggoner, and Zha (2010).
These additional model features are introduced through their corresponding marginal prior
distributions and they are treated as given in the conditional prior specification of the VAR
parameters. This construction of the joint prior and posterior distributions allow the models
to benefit from both: the analytical convenience of the natural conjugate prior distribution
granting computational efficiency and the flexibility of the structural model specification
leading to its empirical relevance.

This convenient model construction facilitates the application of a variety of methods for the
identification of structural shocks. The bsvarSIGNs package implements the identification of
the SVARs using sign restrictions as in Rubio-Ramírez et al. (2010), zero and sign restrictions
proposed by Arias, Rubio-Ramírez, and Waggoner (2018), and narrative sign restrictions
introduced by Antolín-Díaz and Rubio-Ramírez (2018). We also prove that all of these
restrictions can be used simultaneously and include this novel possibility in the package
algorithms.

All of these models are set identified up to a rotation matrix such that the sign, zero, and
narrative restrictions hold. Appropriate handling of the orthogonal matrix rotating the
structural system is essential as this rotation is not updated with the information from the
data and is featured in the asymptotic posterior distribution of the model parameters as



Xiaolei Wang, Tomasz Woźniak 3

Figure 1: The hexagonal package logo features an impulse response that can be
fully reproduced using the bsvarSIGNs package following a script available at:
github.com/bsvars/hex/blob/main/bsvarSIGNs/bsvarSIGNs.R

shown by Baumeister and Hamilton (2015). Following Rubio-Ramírez et al. (2010), all the
models provided in the bsvarSIGNs package sample the rotation matrix from the uniform
distribution over the space of orthogonal matrices, namely the Haar distribution by Stewart
(1980). Subsequently, this draw, together with the VAR model parameters, is accepted or not
based on whether the sign, zero, or narrative restrictions hold. When the zero and narrative
restrictions are used, the accepted draws are resampled using importance weights as in Arias
et al. (2018) and Antolín-Díaz and Rubio-Ramírez (2018). This approach ensures that the
posterior distribution of the model parameters is consistent with the restrictions imposed on
the structural shocks and that the coverage of the subspace of orthogonal matrices consistent
with the restrictions is optimal.

Additionally, the bsvarSIGNs package is aligned regarding objects, workflows, and code
structure with the R package bsvars by Woźniak (2024a,b) for the Bayesian SVARs identified by
exclusion restrictions, heteroskedasticity and non-normality, and they constitute an integrated
toolset with more information available at https://bsvars.org. Altogether, these packages offer
an unmatched number of SVAR models that will be appropriate for the estimation of the effects
of monetary and fiscal policies, analysis of labour, financial, and housing markets, and many
other essential applications.

The package implements also a wide range of tools for structural and predictive analyses. The
former encompasses the methods comprehensively revised by (Kilian and Lütkepohl 2017,
Chapter 4: SVAR Tools) and include the impulse response functions, forecast error variance
decompositions, historical decompositions, as well as the basic analysis of fitted values, and
structural shocks. The predictive analysis includes Bayesian forecasting implemented
through an algorithm sampling from the predictive density of the unknown future values of
the dependent variables, and conditional forecasting of a number of variables given other
variables’ projections. Methods summary() and plot() support the user in the interpretations
and visualisation of such analyses.

The bsvarSIGNs package is written for R (R Core Team 2021). However, all of the algorithms
are written in C++ implemented thanks to the Rcpp by Eddelbuettel, François, Allaire, Ushey,
Kou, Russel, Chambers, and Bates (2011), Eddelbuettel, Francois, Allaire, Ushey, Kou, Russell,
Ucar, Bates, and Chambers (2024a), and Eddelbuettel (2013). The essential parts of our
algorithms rely on linear algebra operations and random matrices generators provided by the
C++ library Armadillo by Sanderson and Curtin (2016) through the RcppArmadillo package
by Eddelbuettel, Francois, Bates, Ni, and Sanderson (2024b) and Eddelbuettel and Sanderson
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(2014). We use the progress bar from package RcppProgress by Forner (2020). Finally, the
bsvarSIGNs package provides a range of methods for the generics defined by the bsvars
package by Woźniak (2024a) that use classes from the R6 package by Chang (2021).

The bsvarSIGNs package offers a range of improvements relative to existing software
packages. Our algorithms are faster than those from competing packages for the same models
or procedures, and we offer a greater range of model specifications and interpretable outputs
to report. As we have already pointed out this package is highly-compatible with the bsvars
package by Woźniak (2024a) in terms of the workflows, objects, and code structure. These two
packages differ in terms of the model structures leading to different classes of Bayesian
estimation algorithms. While the bsvarSIGNs package provides models that lead to
independent draws from the posterior distribution of the parameters, the bsvars package
relies on Monte Carlo Markov Chain methods producing dependent samples.

The most similar existing software packages offering Bayesian SVARs are the R package BVAR
by Kuschnig and Vashold (2021) and the BEAR toolbox by Dieppe and van Roye (2024) for
MATLAB. The former implements the same hierarchical model and identification through sign
and zero restrictions. The latter implements the sign restrictions and a selection of other
structural models. None of them implements narrative restrictions or the possibility of using
sign, zero, and narrative restrictions at once. Woźniak (2024b) revises other relevant packages
for VAR and SVAR models comprehensively. Here, we only mention those relying on Bayesian
inference such as bvarsv by Krueger (2015) and FAVAR by Chen and Chen (2022) implementing
specific SVARs from influential studies by Primiceri (2005) and Bernanke, Boivin, and Eliasz
(2005) respectively, and those applying hierarchical modelling to reduced-form VAR models,
such as bvartools by Mohr (2022), bayesianVARs by Gruber (2024), and BGVAR by Boeck,
Feldkircher, and Huber (2020).

In this context, the bsvarSIGNs package offers a unique combination of features significantly
enhancing the existing tools for Bayesian SVAR analysis. This is achieved by the appropriate
VAR model specification, providing a number of structural identification strategies aligned
with that specification, application of dedicated numerical methods, writing algorithms in C++,
designing user-friendly workflows, offering a range of methods for structural and predictive
empirical analyses and ways of tabular and visual presentation of the results. All this makes
the bsvarSIGNs package an indispensable tool for empirical macroeconomic and financial
research.

2. Workflows for SVAR analysis

The methods proposed in this paper are implemented in the R package bsvarSIGNs version 2.0
by Wang and Woźniak (2024). The package offers a simple workflow for the model specification,
estimation, forecasting, computation of interpretable quantities, and their summaries and
visualizations. This section first presents the basic workflow of the package visualized in
Figure 2 and then focuses on its particular steps.

Figure 2 illustrates the basic workflow of the bsvarSIGNs package that is determined by the
statistical procedures. Working with the package begins with uploading the package which
uploads the sample data sets as well, including the matrix optimism used by Arias et al.
(2018). This data matrix is provided as argument to the function specify_bsvarSIGN that
sets the objects necessary to work with the model, such as the data matrices for dependent
and explanatory variables, prior hyper-parameters that are fixed, identification restrictions, the
VAR model lag order set to the default value p = 1, starting values. They are set as convenient
R6 objects.

The estimation proceeds in two steps. In the first optional one, the hyper-parameters can be
estimated using function estimate_hyper being a method of the R6 objects spec generated
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Specify a model

specify_bsvarSIGN

example:
data(optimism)

spec = specify_bsvarSIGN$new(optimism)

Estimate prior hyper-parameters

spec$prior$estimate_hyper(S = 1000)

Estimate a model

estimate

Forecast

forecast

Compute interpretable quantities

compute_conditional_sd
compute_fitted_values
compute_historical_decompositions
compute_impulse_responses
compute_structural_shocks
compute_variance_decompositions

Figure 2: Workflow for SVAR analysis

in the model specification by running specify_bsvarSIGN. The hyper-parameter estimation
is done marginally on the autoregressive parameters and the covariance matrix following the
model structure proposed by Giannone et al. (2015). In this step, we use the Adaptive Random
Walk Metropolis-Hastings algorithm by Andrieu and Moulines (2006) and Atchadé and Fort
(2010) as presented by Kalli and Griffin (2018). It offers scalability, fast convergence, and
higher sampling efficiency than the original solution used by Giannone et al. (2015). If the
user decides not to estimate these hyper-parameters and skip this step, the default values of
hyper-parameters proposed by Giannone et al. (2015) are used.

Subsequently, for each of the hyper-parameter draws, or given the fixed, that is, not estimated
hyper-parameter values, the corresponding draws of the autoregressive parameters and the
covariance matrix are sampled independently from the matrix-variate normal inverse Wishart
distribution (see Woźniak 2016) using method estimate.BSVARSIGN. Here the autoregressive
parameters are drawn equation-by-equation as in Carriero, Chan, Clark, and Marcellino (2022)
significantly speeding up the computations.

Finally, given the draws of the parameters of the model, the user can compute the corresponding
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posterior draws from the predictive density of the future unknown values using method
forecast.PosteriorBSVARSIGN, or those for a selection of interpretable quantities such as
impulse responses, historical decompositions, forecast error variance decompositions, as well
as conditional standard deviations, fitted values, and structural shocks using the methods
listed on the bottom of Figure 2. Each of these computations can be summarised in terms of the
corresponding posterior distribution mean, standard deviation, and quantiles, and visualized
using the methods summary and plot respectively.

2.1. The Basic Workflow

Upload the package to the R environment by executing the following line:

R> library(bsvarSIGNs)

The package includes sample data object formatted so that they can be provided directly as
arguments of functions. The optimism data set, downloaded from the replication package of
Arias et al. (2018), contains the time series formatted as matrix. Upload this data object to the
memory and display several first observations by

R> data(optimism)
R> head(optimism)

productivity stock_prices consumption real_interest_rate hours_worked
[1,] 0.2172072 -11.28895 -4.331866 0.008022252 -7.599184
[2,] 0.2129482 -11.17647 -4.324255 0.021877748 -7.592445
[3,] 0.2069894 -11.11805 -4.318455 0.018811208 -7.580577
[4,] 0.2003908 -11.08317 -4.301382 0.012867114 -7.572133
[5,] 0.1945243 -11.02211 -4.293948 0.024503568 -7.577512
[6,] 0.2002138 -11.06306 -4.291474 0.000876887 -7.577491

To impose sign restrictions on the impulse response functions, the user needs to specify a
N×N×h sign restrictions array where h is number of periods. When only imposing restrictions
on the contemporaneous responses, a N ×N matrix is also accepted. This sign restriction array
only accepts -1, 0, 1 and NA values. Specify -1 if the user wants to impose a negative sign
restriction, 0 for a zero restriction, 1 for a positive sign restriction, and NA if the user does not
want to impose any restrictions. In each matrix of the restriction array, one can interpret rows
as variables and columns as structural shocks. For example, to identify the optimism shock as
in Arias et al. (2018), the user can impose restrictions on contemporaneous impulse responses
of the first shock by:

R> sign_irf = matrix(c(0, 1, rep(NA, 23)), 5, 5)
R> sign_irf

[,1] [,2] [,3] [,4] [,5]
[1,] 0 NA NA NA NA
[2,] 1 NA NA NA NA
[3,] NA NA NA NA NA
[4,] NA NA NA NA NA
[5,] NA NA NA NA NA

Specify the model by running a simple function that specifies the model and all the required
values, such as the number of lags, data matrices, prior distribution parameters, and some
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characteristics for the specific steps of the estimation algorithm. For instance, the code below
will use data matrix optimism (by setting the first argument data = optimism), specify a
model with 4 lags (p = 4), and the Minnesota prior with prior mean for the autoregressive
parameters reflecting unit-root non-stationary of the variables (the default value of the
argument stationary that is not explicitly stated below), sign restrictions on the
contemporaneous impulse responses (sign_irf = sign_irf), and save the model
specification in the object spec that is of class BSVARSIGN.

R> spec = specify_bsvarSIGN$new(optimism, p = 4, sign_irf = sign_irf)

This object contains all the necessary information for the estimation of the model. In particular,
following Giannone et al. (2015) it includes hyper-parametersµ for the sum-of-coefficients prior,
δ for the single-unit-root prior, as well as λ and ψ for the Minnesota prior. By default, they are
fixed to the values used by Doan et al. (1984).

In a fully Bayesian way, the user can also specify hyper-prior distributions for these
hyper-parameters, and sample from their posterior distributions with an adaptive Metropolis
algorithm using spec$prior$estimate_hyper(). To sample 5,000 burn-in draws and 10,000
posterior draws in the returned sample for all hyper-parameters, the user can run the
following code:

R> set.seed(123)
R> spec$prior$estimate_hyper(
+ S = 15000,
+ burn_in = 5000,
+ mu = TRUE,
+ delta = TRUE,
+ lambda = TRUE,
+ psi = TRUE
+ )

Given hyper-parameters, the VAR model exploits the normal inverse Wishart conjugate prior
distribution, which allows for independent sampling from the posterior distribution of the
same form without relying on MCMC methods. This is done by passing the spec object as
the first argument to the function estimate(), the following code samples 10,000 independent
draws from the posterior distribution and displays the progress bar:

R> set.seed(123)
R> post = estimate(spec, S = 10000)

**************************************************|
bsvarSIGNs: Bayesian Structural VAR with sign, |

zero and narrative restrictions |
**************************************************|
Progress of simulation for 10000 independent draws
Press Esc to interrupt the computations
**************************************************|

One way to interpret the structural parameters is to compute the impulse response functions
of the structural shocks. The user can compute the impulse response functions and plot them
by running the following code:
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R> irf = compute_impulse_responses(post, horizon = 20)
R> plot(irf, probability = 0.68, col = "#F500BD")
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This IRF plots replicates the results of Arias et al. (2018) and shows the response of the variables
to a one standard deviation optimism shock. On impact, we see the optimism shock does not
affect productivity and there is significant positive response of stock prices by construction,
which can be seen in the plot from the fifth row and the first column. The response of the other
variables, consumption, real interest rate, and hours worked, are not significantly different
from 0.

On the other hand, the user can also compute the forecasts from the reduced-form parameters
and plot them by running the following code:

R> fore = forecast(post, horizon = 8)
R> plot(fore, data_in_plot = 0.2, col = "#F500BD")
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In what follows, we focus on particular elements of the workflow describe above, and other
interpretations of the model result. Including details on specifying the model, estimating
hyper-parameters, estimating the model, structural analysis and predictive analysis.

2.2. Install the Package

The package is available on CRAN and can be installed using the following command:

R> install.packages("bsvarSIGNs")

To install the development version from GitHub repository github.com/bsvars/bsvarSIGNs,
use the following command:

R> devtools::install_github("bsvars/bsvarSIGNs")

The correct functioning of the bsvarSIGNs package requires the installation of the R package
bsvars by Woźniak (2024a), which will proceed automatically during the installation of the
bsvarSIGNs package.

Before every use of the package load it to the memory by running the command:

R> library(bsvarSIGNs)

2.3. Upload Data

This package includes the optimismdata set, downloaded from the replication package of Arias
et al. (2018). It contains the quarterly observations from 1955 Q1 to 2004 Q4 of five variables in
the United States:

1. Productivity: quarterly factor-utilization-adjusted total factor productivity.
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2. Stock prices: quarterly end-of-period S&P 500 divided by CPI.
3. Consumption: quarterly real consumption expenditures on nondurable goods and

services.
4. Real interest rate: quarterly real interest rate.
5. Hours worked: quarterly hours of all persons in the non-farm business sector.

To use the time series, load and visualise them by running the code:

R> data(optimism)
R> plot(optimism, col = "#F500BD", nc = 1, bty = "n", cex.lab = 0.45)

0.
2

0.
6

pr
od

uc
tiv

ity

−
11

.5

st
oc

k_
pr

ic
es

−
4.

2
−

3.
4

co
ns

um
pt

io
n

−
0.

05
0.

10

re
al

_i
nt

er
es

t_
ra

te

−
7.

85
−

7.
60

1960 1970 1980 1990 2000 2010

ho
ur

s_
w

or
ke

d

Time

optimism

Finally, more info about the data and object is available in the documentation accessible by
running ?optimism.

2.4. Specify the Model

In specifying the model, there are two main steps. The first step is to specify the sign restrictions.
This package allows for three types of restrictions: (i) restrictions on the impulse response
functions, (ii) narrative restrictions, and (iii) restrictions on the structural matrix B.

To specify (i) restrictions on the impulse response functions, the user needs to specify the sign
restrictions array as described in Section 2.1. For example, to identify the optimism shock as in
Arias et al. (2018), the user can impose restrictions on contemporaneous impulse responses of
the first shock by:

R> sign_irf = matrix(c(0, 1, rep(NA, 23)), 5, 5)
R> sign_irf

[,1] [,2] [,3] [,4] [,5]
[1,] 0 NA NA NA NA
[2,] 1 NA NA NA NA
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[3,] NA NA NA NA NA
[4,] NA NA NA NA NA
[5,] NA NA NA NA NA

To specify (ii) narrative restrictions, the user needs to create a list of narrative objects using the
function specify_narrative(). As in Antolín-Díaz and Rubio-Ramírez (2018), we allow for
narrative restrictions on the structural shocks and the historical decompositions. For example,
to impose a negative optimism shock during the financial crisis in 2008 Q3, the user can specify
the narrative restriction by:

R> date_fc = which(time(optimism) == 2008.5)
R> narrative1 = specify_narrative(start = date_fc, sign = -1)
R> sign_narrative = list(narrative1)

To specify (iii) restrictions on the structural matrix, the user needs to create a N × N matrix.
Similar to (i), this matrix only accepts values -1, 1 and NA. Use -1 to impose a negative sign
restriction, 1 for a positive sign restriction, and NA if the user does not want to impose any
restrictions for the particular period.

The second step in specifying the model is to create the specification object using
specify_bsvarSIGN$new(), which takes the data object, the number of lags of the VAR
model, the specified sign restrictions, and other additional information. For example, to
specify a VAR model with 4 lags, sign restrictions on the impulse response functions and
narrative restrictions for structural shocks, the user can run the following code:

R> spec = specify_bsvarSIGN$new(
+ data = optimism,
+ p = 4,
+ sign_irf = sign_irf,
+ sign_narrative = sign_narrative
+ )

Finally, the documentation for the model specification can be accessed by running
?specify_bsvarSIGN with details on its particular parts, such as the function generating the
model specification specify_bsvarSIGN$new(), available following the links in the
documentation just displayed.

2.5. Estimate Hyper-Parameters

This specification object spec contains all the necessary information for the estimation of the
model. In particular, following Giannone et al. (2015) it includes hyper-parameters µ for the
sum-of-coefficients prior, δ for the single-unit-root prior, and λ and ψ for the Minnesota prior.
By default, they are fixed as µ = 1, δ = 1, λ = 0.2, and ψ are fixed as the OLS error variance
estimates (see Doan et al. 1984).

Before sampling the hyper-parameters, the user can display and alter the prior distribution
of the hyper-parameters by changing the default values. The hyper prior of ψ follows an
inverse gamma distribution and the hyper prior of other hyper-parameters follows a gamma
distribution. For example, to display the prior distribution of the shrinkage parameter λ in the
Minnesota prior, the user can run the following code:

R> spec$prior$lambda.shape
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[1] 1.370156

R> spec$prior$lambda.scale

[1] 0.5403124

These values can be changed by simply assigning a new value to them. For example,
spec$prior$lambda.scale = 0.5 will change the scale parameter of the prior distribution of
λ accordingly.

Given the specification object spec, we are now ready to estimate the hyper-parameters. Calling
the function spec$prior$estimate_hyper()will sample from the posterior distribution of the
hyper-parameters with an adaptive Metropolis algorithm. The user can specify the total
number of draws from the posterior distribution by setting the argument S, and the number of
burn-in draws by setting the argument burn_in to be discarted, then the algorithm will return
S - burn_in draws of the hyper-parameters. It is also possible to only estimate a subset of the
hyper-parameters by changing the argument of specific hyper-parameters to TRUE or FALSE.
For example, to sample 15,000 draws for all the hyper-parameters and discard the first 5,000
draws as burn-in, the user can run the following code:

R> set.seed(123)
R> spec$prior$estimate_hyper(
+ S = 15000,
+ burn_in = 5000,
+ mu = TRUE,
+ delta = TRUE,
+ lambda = TRUE,
+ psi = TRUE
+ )

**************************************************|
Adaptive Metropolis MCMC: hyper parameters |
**************************************************|

R> hyper_draws = t(spec$prior$hyper)
R> colnames(hyper_draws) = c("mu", "delta", "lambda", paste0("psi", 1:ncol(optimism)))
R> plot.ts(hyper_draws, col = "#F500BD", bty = "n", xlab = "iterations")
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The package also allows for more flexible specifications of the prior distribution, which can
be achieved by modifying the elements of the spec$prior list. For example, if the user
wishes to replicate the results in Arias et al. (2018), the specification should indicate fixed
hyper-parameters and turn off the sum-of-coefficients and single-unit-root dummy observation
priors. To do so, the user should set the corresponding dummy observation matrices to have
zero columns prior to running the previous code:

R> spec$prior$Ysoc = matrix(NA, nrow(spec$prior$Ysoc), 0)
R> spec$prior$Xsoc = matrix(NA, nrow(spec$prior$Xsoc), 0)
R> spec$prior$Ysur = matrix(NA, nrow(spec$prior$Ysur), 0)
R> spec$prior$Xsur = matrix(NA, nrow(spec$prior$Xsur), 0)

2.6. Estimate the Model

Given hyper-parameters, whether fixed or a sample from the posterior distribution, the user can
then sample the VAR parameters. The VAR models considered in the package all falls in the class
of normal-inverse Wishart conjugate prior models, which allows for independent sampling
from the posterior distribution without relying on Monte Carlo Markov Chain methods. This
is done by passing the spec object as the first argument to the function estimate(), the
following code samples 10,000 independent draws from the posterior distribution:

R> set.seed(123)
R> post = estimate(spec, S = 10000)

**************************************************|
bsvarSIGNs: Bayesian Structural VAR with sign, |

zero and narrative restrictions |
**************************************************|
Progress of simulation for 10000 independent draws
Press Esc to interrupt the computations
**************************************************|
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To assess the efficiency of the sampling algorithm, the user can print out the effective sample
size of the draws by running the following code:

R> post$posterior$ess

[1] 257.3824

2.7. Report Structural Analysis

The method compute_structural_shocks() computes the structural shocks by appropriate
rotations of the reduced-form shocks based on the specified restrictions. To visualize the
structural shocks, the user can run the following code:

R> ss = compute_structural_shocks(post)
R> plot(ss, col = "#F500BD")
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To compute the impulse response functions, use the method compute_impulse_responses()
with the posterior objectpost as the first argument, and specify the number of horizonshorizon.
For example, to compute the impulse response functions on impact and for 20 periods ahead,
and visualize the result, run the following code:

R> irf = compute_impulse_responses(post, horizon = 20)
R> plot(irf, probability = 0.68, col = "#F500BD")
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This plot verifies the sign restrictions imposed on the contemporaneous responses of the
variables to the identified structural shocks. The optimism shock (shock 1) has no
contemporaneous effect on productivity (variable 1) but has positive impact on stock prices
(variable 2). The effect of the optimism shock on both consumption and hours worked is
positive but not significant in the short run. However, a noticeable sharpening of the
identification of these effects is observed in a model with the additional narrative restriction
relative to the model with only sign and zero restrictions reported in Section 2.1.

To compute the forecast error variance decompositions, use the method
compute_variance_decompositions() with the posterior object post as the first argument.
The user can then visualize the forecast error variance decompositions by running the
following code:

R> fevd = compute_variance_decompositions(post, horizon = 20)
R> fc = colorRampPalette(c("#F500BD", "#001D31"))
R> cols = fc(5)
R> plot(fevd, cols = cols)
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2.8. Report Predictive Analysis

The method compute_fitted_values() computes the fitted values from the reduced-form
VAR model. More precisely, the method samples random draws from the sample data density.
TO perform th sampling and visualise the in-sample model fit, the user can run the following
code:

R> fit = compute_fitted_values(post)
R> plot(fit, col = "#F500BD")
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To compute an 2-year out-of-sample forecast, the user can pass the posterior object post as
the first argument to the method forecast() and specify the forecast horizon by setting, for
instancce, horizon = 8. In visualizing the forecast, it is possible to focus on the recent periods
by setting the argument data_in_plot to be the desired percentage of the last observations to
be included in the plot. For example, to visualize the forecast and the most recent 20% of the
data, the user can run the following code:

R> fore = forecast(post, horizon = 8)
R> plot(fore, data_in_plot = 0.2, col = "#F500BD")
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The forecasts, and other interpretable outputs, can be also presented using the summary()
function, which provides a detailed table of the forecasts. For example, to print out the forecast
of productivity (variable 1), the user can run the following code:

R> summary(fore)$variable1

**************************************************|
bsvars: Bayesian Structural Vector Autoregressions|
**************************************************|
Posterior summary of forecasts |

**************************************************|

mean sd 5% quantile 95% quantile
1 0.8458038 0.008377681 0.8317997 0.8595328
2 0.8463867 0.011949591 0.8264638 0.8661054
3 0.8467017 0.014756666 0.8220349 0.8707619
4 0.8463071 0.017534978 0.8168991 0.8749356
5 0.8449208 0.020845072 0.8105439 0.8788074
6 0.8422181 0.025390293 0.7998666 0.8831610
7 0.8374115 0.032229660 0.7828341 0.8881583
8 0.8297283 0.042756979 0.7555310 0.8947330
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3. Conclusions

The package bsvarSIGNs provides a comprehensive set of tools for estimating and analysing
Bayesian structural vector autoregressive models with sign, zero, and narrative restrictions.
The package is designed to be user-friendly and flexible, allowing users to specify a wide
range of prior distributions and restrictions. It implements efficient algorithms with C++
for estimation and inference, including an adaptive Metropolis algorithm for sampling the
hyper-parameters and independent sampling for the VAR parameters. The package also
provides a set of functions to summarise and visualise the results, including structural shocks,
impulse response functions, historical decompositions, forecast error variance decompositions,
fitted values, and forecasts.
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