Package ‘callme’

November 28, 2024
Type Package
Title Easily Compile and Call Inline 'C' Functions
Version 0.1.11
Maintainer Mike Cheng <mikefc@coolbutuseless.com>

Description Compile inline 'C' code and easily call with
automatically generated wrapper functions. By allowing user-defined headers
and compilation flags (preprocessor, compiler and linking flags) the user
can configure optimization options and linking to third party
libraries. Multiple functions may be defined in a single block of code - which
may be defined in a string or a path to a source file.

License MIT + file LICENSE

URL https://github.com/coolbutuseless/callme,
https://coolbutuseless.github.io/package/callme/

BugReports https://github.com/coolbutuseless/callme/issues
Imports methods

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

SystemRequirements Rtools (suitable for the installed R) for Windows,
Xcode for Mac

NeedsCompilation no

Author Mike Cheng [aut, cre, cph]
Repository CRAN

Date/Publication 2024-11-28 05:30:01 UTC

Contents

compile

https://github.com/coolbutuseless/callme
https://coolbutuseless.github.io/package/callme/
https://github.com/coolbutuseless/callme/issues

2 compile
Index 4
compile Compile C code and create wrapper functions to call from R
Description
This function uses the R CMD SHLIB process to compile C code into a linked library. This library is
then loaded, and appropriate functions created in R to call into this library. See also: ?SHLIB
Usage
compile(
code,
CFLAGS = NULL,
PKG_CPPFLAGS = NULL,
PKG_LIBS = NULL,
env = parent.frame(),
overwrite = "callme”,
verbosity = 0,
invisible = FALSE
)
Arguments
code C code following the .Call() conventions, or a filename containing this code.
This code must also include any #include statements - include <R.h> and
<Rinternals.h> at the very least.
CFLAGS character string of flags for the C compiler. e.g. "-O3" Default: NULL. If

PKG_CPPFLAGS

PKG_LIBS

env

overwrite

verbosity

specified this value will replace the default CFLAGS R would normally use. To
see these default flags use maketools: :cc_info()$flags.

character string of flags for the C pre-processor. Flags such as "-I", "-D" and "-
U" go here. Default: NULL e.g. PKG_CPPFLAGS = "-I/opt/homebrew/include”
to add the include path for homebrew to the compilation step.

character string of flags for linking. "-L" and "-1" flags go here. Default: NULL.
e.g. PKG_LIBS = "-L/opt/homebrew/1ib -1zstd" to include the homebrew li-
braries in the linker search path and to link to the zstd library installed there.

environment into which to assign the R wrapper functions. Default: parent. frame().
If NULL then no assignment takes place and the (invisible) return value should
be assigned to a variable to access the compiled code.

Which existing variables can be overwritten when wrapper functions are created
in the given environment? An error will be raised if the name of the wrapper
function already exists in the environment and permission has not been given to
overwrite.

Level of output: Default: 0. Max level: 4

compile 3

invisible Should the R wrapper function return the result invisibly? Default: FALSE. Set
this to TRUE if the code is only run for its side-effect e.g. just printing data and
not returning anything.

"callme'" (Default) Only functions created by this package can be overwritten
"all" All objects can be overwritten

"functions' Only functions can be overwritten

""none" No existing objects can be overwritten

Value

Invisibly returns a named list of R functions. Each R function calls to the equivalent C function. If
env is specified, then these wrapper functions are assigned in the given environment.

Examples

”n

code <-
#include <R.h>
#include <Rinternals.h>

// Add 2 numbers
SEXP add(SEXP vall, SEXP val2) {
return ScalarReal(asReal(vall) + asReal(val2));

}

// Multiply 2 numbers
SEXP mul(SEXP vall, SEXP val2) {
return ScalarReal(asReal(vall) * asReal(val2));

}

// sqrt elements in a vector
SEXP new_sqrt(SEXP vec) {
SEXP res = PROTECT(allocVector(REALSXP, length(vec)));
double *res_ptr = REAL(res);
double *vec_ptr = REAL(vec);
for (int i = 0; i < length(vec); i++) {
res_ptr[i] = sqrt(vec_ptr[il);
}

UNPROTECT(1) ;
return res N

compile the code and load into R
compile(code)

Call the functions
add(99.5, 0.5)

mul(99.5, 0.5)

new_sqrt(c(1, 10, 100, 1000))

Index

compile, 2

	compile
	Index

