Package 'cutoff'

October 12, 2022

Title Seek the Significant Cutoff Value

Version 1.3

Description Seek the significant cutoff value for a continuous variable, which will be transformed into a classification, for linear regression, logistic regression, logrank analysis and cox regression. First of all, all combinations will be gotten by combn() function. Then n.per argument, abbreviated of total number percentage, will be used to remove the combination of smaller data group. In logistic, Cox regression and logrank analysis, we will also use p.per argument, patient percentage, to filter the lower proportion of patients in each group. Finally, p value in regression results will be used to get the significant combinations and output relevant parameters. In this package, there is no limit to the number of cutoff points, which can be 1, 2, 3 or more. Still, we provide 2 methods, typical Bonferroni and Duglas G (1994) <doi:10.1093/jnci/86.11.829>, to adjust the p value, Missing values will be deleted by na.omit() function before analysis.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports survival, set, do, ROCit

URL https://github.com/yikeshu0611/cutoff

BugReports https://github.com/yikeshu0611/cutoff/issues

NeedsCompilation no

Author Jing Zhang [aut, cre], Zhi Jin [aut]

Maintainer Jing Zhang <zj391120@163.com>

Repository CRAN

Date/Publication 2019-12-20 10:10:05 UTC

R topics documented:

																																										10
x_ab	·	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	•	•	•	•	9
roc																																										
logrank																																										
logit			•		•					•	•		•	•		•	•	•																								6
linear					•		•		•		•		•											•			•						•		•	•					•	5
judge_321 .																																										
judge_123 .					•		•		•		•		•											•			•						•		•	•					•	4
cutit			•		•		•		•		•		•			•	•	•						•	•	•	•						•		•	•			•		•	3
cox	·	•	•		•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	•	•	•	•	2

Index

сох

Significant Cutoff Value for Cox Regression

Description

Significant Cutoff Value for Cox Regression

Usage

```
cox(data, time, y, x, cut.numb, n.per, y.per, p.cut = 0.05,
strict = TRUE, include = "low", round = 2, adjust = 1)
```

Arguments

data	data
time	name for time variable
У	name for y, must be coded as 1 and 0. The outcome must be 1
х	name for x
cut.numb	number of cutoff points
n.per	the least percentage of the smaller group comprised in all patients
y.per	the least percentage of the smaller outcome patients comprised in each group
p.cut	cutoff of p value, default is 0.05
strict	logical. TRUE means significant differences for each group combination were considered. FALSE means considering for any combination
include	direction of cutoff point. Any left letter of lower or upper
round	digital. Default is 2
adjust	numeric value, adjust methord for p value. 1, defaulted, represents Bonferroni. 2 represent formula given by Douglas G in 1994

cutit

Value

a dataframe contains cutoff points value, subject numbers in each group, dumb variable, beta of regression and p value.

Examples

```
cox(data=mtcars,
    time = 'disp', y='am', x='wt',
    cut.numb=2,
    n.per=0.25,
    y.per=0.10)
cox(data=mtcars,
    time = 'disp', y='am', x='wt',
    cut.numb=2,
    n.per=0.25,
    y.per=0.10,
    p.cut=0.05,
    strict=TRUE,
    include='low',
    round=2)
```

cutit

Cut Continuous Vector to Classification

Description

Cut Continuous Vector to Classification

Usage

```
cutit(x, cut_points, include = "low", labels = FALSE)
```

Arguments

х	numeric vector
cut_points	cuting points value
include	The direction of cutoff point. Any left letter of lower or upper
labels	logical. False is defaulted. TRUE means set range as factor.

Value

numeric vector or factor

Examples

```
cutit(mtcars$disp,c(150,190))
cutit(mtcars$disp,c(150,190),labels = TRUE)
```

judge_123

Description

Whether the Data Is Arranged from Small to Large

Usage

judge_123(x)

Arguments

х

numeric vector

Value

logical

Examples

judge_123(c(1,2,3,4,5))
judge_123(c(1,3,2))

judge_321

Whether the Data Is Arranged from Large to Small

Description

Whether the Data Is Arranged from Large to Small

Usage

judge_321(x)

Arguments

x numeric vector

Value

logical

Examples

judge_321(c(5,4,3,2,1))
judge_321(c(3,1,2))

linear

Description

Significant Cutoff Value for Linear Regression

Usage

```
linear(data, y, x, cut.numb, n.per, p.cut = 0.05, strict = TRUE,
include = "low", round = 2, adjust = 1)
```

Arguments

data	data
У	name for y
х	name for x
cut.numb	number of cutoff points
n.per	the least percentage of the smaller group comprised in all patients
p.cut	cutoff of p value, default is 0.05
strict	logical. TRUE means significant differences for each group combination were considered. FALSE means considering for any combination
include	direction of cutoff point. Any left letter of lower or upper
round	digital. Default is 2
adjust	numeric value, adjust methord for p value. 1, defaulted, represents Bonferroni. 2 represent formula given by Douglas G in 1994

Value

a dataframe contains cutoff points value, subject numbers in each group, dumb variable, beta of regression and p value.

Examples

6

```
linear(data=mtcars,y='qsec',x='disp',
    cut.numb=2,
    n.per=0.25,
    p.cut=0.05,
    strict=FALSE,
    include='low',
    round=2)
```

logit

Significant Cutoff Value for Logistic Regression

Description

Significant Cutoff Value for Logistic Regression

Usage

```
logit(data, y, x, cut.numb, n.per, y.per, p.cut = 0.05, strict = TRUE,
include = "low", round = 2, adjust = 1)
```

Arguments

data	data
У	name for y, must be coded as 1 and 0. The outcome must be 1
х	name for x
cut.numb	number of cutoff points
n.per	the least percentage of the smaller group comprised in all patients
y.per	the least percentage of the smaller outcome patients comprised in each group
p.cut	cutoff of p value, default is 0.05
strict	logical. TRUE means significant differences for each group combination were considered. FALSE means considering for any combination
include	direction of cutoff point. Any left letter of lower or upper
round	digital. Default is 2
adjust	numeric value, adjust methord for p value. 1, defaulted, represents Bonferroni. 2 represent formula given by Douglas G in 1994

Value

a dataframe contains cutoff points value, subject numbers in each group, dumb variable, or of regression and p value.

logit

logrank

Examples

```
logit(data=mtcars,
      y='am',
      x='disp',
      cut.numb=1,
      n.per=0.25,
      y.per=0.25)
 logit(data=mtcars,
       y='am',
       x='disp',
       cut.numb=1,
       n.per=0.25,
       y.per=0.20,
       p.cut=0.05,
       strict=TRUE,
       include='low',
       round=2)
```

```
logrank
```

Significant Cutoff Value for Logrank Analysis

Description

Significant Cutoff Value for Logrank Analysis

Usage

```
logrank(data, time, y, x, cut.numb, n.per, y.per, p.cut = 0.05,
strict = TRUE, include = "low", round = 2, adjust = 1)
```

Arguments

data	data
time	name for time variable
У	name for y, must be coded as 1 and 0. The outcome must be 1
х	name for x
cut.numb	number of cutoff points
n.per	the least percentage of the smaller group comprised in all patients
y.per	the least percentage of the smaller outcome patients comprised in each group
p.cut	cutoff of p value, default is 0.05
strict	logical. TRUE means significant differences for each group combination were considered. FALSE means considering for any combination
include	direction of cutoff point. Any left letter of lower or upper
round	digital. Default is 2
adjust	numeric value, adjust methord for p value. 1, defaulted, represents Bonferroni. 2 represent formula given by Douglas G in 1994

Value

a dataframe contains cutoff points value, subject numbers in each group, dumb variable, beta of regression and p value.

Examples

```
logrank(data=mtcars,
    time = 'disp',y='am', x='wt',
    cut.numb=2,
    n.per=0.25,
    y.per=0.10)
logrank(data=mtcars,
    time = 'disp',y='am', x='wt',
    cut.numb=2,
    n.per=0.25,
    y.per=0.10,
    p.cut=0.05,
    strict=TRUE,
    include='low',
    round=2)
```

roc

To Get the Best Cutoff Value for ROC Curve

Description

Youden index is used for seeking the best cutoff value for ROC Curve.

Usage

roc(score, class)

Arguments

score	continuous value
class	bianary value, 0 and 1

Value

If the auc of a variate is lower than 0.5, we treat it as negative classification and return information about the negative prediction. Otherwise, The variate will be treated as positive one.

Examples

roc(score = mtcars\$qsec,class = mtcars\$am)
roc(score = mtcars\$drat,class = mtcars\$am)

x_ab

Description

Return x Between a and b

Usage

x_ab(x, a, b, include = "1")

Arguments

х	numeric vector
а	one number
b	one number
include	The direction of a and b. Any left letter of lower or upper

Value

values of x between a and b

Examples

x_ab(mtcars\$disp,150,190)

Index

cox, 2
cutit, 3
judge_123, 4
judge_321, 4
linear, 5
logit, 6
logrank, 7
roc, 8

x_ab, <mark>9</mark>

10