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compute_likelihood Likelihood plot of a two parameter model
Description
compute_likelihood computes the likelihood for a model
Usage
compute_likelihood(model, data, parameters, loglLikely = FALSE)
Arguments
model a function or model of our situation, written with formula notation
data Data frame of data First column is the independent variable, second column
dependent variable. Must be a data.frame
parameters The data frame matrix of values of the parameters we are using. This will be
made using expand.grid or equivalent
loglLikely Do we compute the log likelihood function (default is FALSE). NOTE: what
gets returned is - logLikely - meaning that this will be a positive number to work
with.
Value

A list with two entries: (1) the likelihood values and (2) values of parameters that optimize the
likelihood.
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Examples

### Contour plot of a logistic model for two parameters K and b
### using data collected from growth of yeast population

# Define the solution to the differential equation with
# parameters K and b Gause model equation
gause_model <- volume ~ K / (1 + exp(log(K / ©.45 - 1) - b x time))
# Identify the ranges of the parameters that we wish to investigate
kParam <- seq(5, 20, length.out = 100)
bParam <- seq(@, 1, length.out = 100)
# Allow for all the possible combinations of parameters
gause_parameters <- expand.grid(K = kParam, b = bParam)
# Now compute the likelihood
gause_likelihood <- compute_likelihood( model = gause_model,
data = yeast,
parameters = gause_parameters,
loglikely = FALSE

eigenvalues Matrix eigenvalues and eigenvectors

Description

eigenvalues visualizes the vector field for a one or two dimensional differential equation.

Usage

eigenvalues(matrix_entries, matrix_rows = 2)

Arguments

matrix_entries entries of your matrix in row wise format. So the matrix #4 3 # 2 1 # would be
entered in ¢(4,3,2,1)

matrix_rows the number of rows and columns in your SQUARE matrix.

Value
The result is a list with two elements (denoted by the “$”), values and vectors. result$values are the

eigenvalues, stored as a vector. The leading eigenvalue is the first entry in the vector.

Examples

eigenvalues(c(1,2,3,4))

# Note: for the 3 x 3 case, we need to define the number of matrix rows:
eigenvalues(c(1,2,3,4,5,6,7,8,9),matrix_rows=3)
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euler Euler’s method solution for a differential equation.

Description

euler solves a multi-dimensional differential equation with Euler’s method. The parameters listed
as required are needed See the vignette for detailed examples of usage.

Usage

euler(
system_eq,
initial_condition,
parameters = NULL,

t_start = 0,
deltaT =1,
n_steps =1
)
Arguments
system_eq (REQUIRED) The 1 or multi dimensional system of equations, written in for-

mula notation as a vector (i.e. c(dx ~ f(x,y), dy ~ g(x,y)))
initial_condition
(REQUIRED) Listing of initial conditions, as a vector

parameters The values of the parameters we are using (optional)

t_start The starting time point (defaults to t = 0)

deltaT The timestep length (defaults to 1)

n_steps The number of timesteps to compute solution (defaults to n_steps = 1)
Value

A tidy of data frame for the calculated solutions and the time

See Also
rk4

Examples

# Define the rate equation:
lynx_hare_eq <- c(
dHdt ~r * H-b * H % L,
dldt ~e*xb *xH*L -d=*L
)

# Define the parameters (as a named vector):
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lynx_hare_params <- ¢c(r =2, b =0.5, e = 0.1, d =1)

# Define the initial condition (as a named vector):
lynx_hare_init <- ¢c(H =1, L = 3)

# Define deltaT and the number of time steps:
deltaT <- 0.05
n_steps <- 200

# Compute the solution via Euler's method:

out_solution <- euler(system_eq = lynx_hare_eq,
parameters = lynx_hare_params,
initial_condition = lynx_hare_init,
deltaT = deltaT,
n_steps = n_steps

)
euler_stochastic Euler-Maruyama method solution for a stochastic differential equa-
tion.
Description

euler_stochastic solves a multi-dimensional differential equation with the Euler-Maruyama method
with stochastic elements.

Usage

euler_stochastic(
deterministic_rate,
stochastic_rate,
initial_condition,
parameters = NULL,

t_start = 0,
deltaT =1,
n_steps = 1,
D=1
)
Arguments

deterministic_rate
The 1 or multi dimensional system of equations for the deterministic part of the
differential equation, written in formula notation as a vector (i.e. c(dx ~ f(x,y),
dy ~ g(x.)))

stochastic_rate
The 1 or multi dimensional system of equations for the stochastic part of the
differential equation, written in formula notation as a vector (i.e. c(dx ~ f(x,y),

dy ~ g(x,y))
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initial_condition
(REQUIRED) Listing of initial conditions, as a vector

parameters The values of the parameters we are using
t_start The starting time point (defaults to t = 0)
deltaT The timestep length (defaults to 1)
n_steps The number of timesteps to compute solution (defaults to n_steps = 1)
D diffusion coefficient for the stochastic part of the SDE
Value

A tidy of data frame the solutions

Examples

### Simulate the stochastic differential equation dx = r*xx(1-x/K) dt + dwW(t)
# Identify the deterministic and stochastic parts of the DE:
deterministic_logistic <- c(dx ~ rxxx(1-x/K))

stochastic_logistic <- c(dx ~ 1)

# Identify the initial condition and any parameters
init_logistic <- c(x=3)

logistic_parameters <- c(r=0.8, K=100) # parameters: a named vector

# Identify how long we run the simulation
deltaT_logistic <- .05 # timestep length
timesteps_logistic <- 200 # must be a number greater than 1

# Identify the standard deviation of the stochastic noise
D_logistic <- 1

# Do one simulation of this differential equation

logistic_out <- euler_stochastic(

deterministic_rate = deterministic_logistic,

stochastic_rate = stochastic_logistic,

initial_condition = init_logistic,

parameters = logistic_parameters,

deltaT = deltaT_logistic,

n_steps = timesteps_logistic, D = D_logistic

)

### Simulate a stochastic process for the tourism model presented in
### Sinay, Laura, and Leon Sinay. 2006. “A Simple Mathematical

### Model for the Effects of the Growth of Tourism on Environment.”
### In International Tourism Conference. Alanya, Turkey.

### where we have the following SDE:

### dr = rx(1-r)-a*v dt, dv = bxvx(r-v) dt + vx(r-v) dw(t)

# Identify the deterministic and stochastic parts of the DE:
deterministic_tourism<- c(dr ~ rx(1-r)-a*v, dv ~ bxvx(r-v))
stochastic_tourism <- c(dr ~ @, dv ~ vx(r-v))
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# Identify the initial condition and any parameters
init_tourism <- c(r = 0.995, v = 0.00167)
tourism_parameters <- c(a = 0.15, b = 0.3316) #

deltaT_tourism <- .5 # timestep length
timeSteps_tourism <- 200 # must be a number greater than 1

# Identify the diffusion coefficient
D_tourism <- .05

# Do one simulation of this differential equation
tourism_out <- euler_stochastic(
deterministic_rate = deterministic_tourism,
stochastic_rate = stochastic_tourism,
initial_condition = init_tourism,
parameters = tourism_parameters,
deltaT = deltaT_tourism,
n_steps = timeSteps_tourism,
D = D_tourism

global_temperature Measured average global temperature anomaly by year

Description
A dataset containing average global temperature anomaly for each year since 1880. The variables
are as follows:

Usage

data(global_temperature)

Format

A data frame with 142 rows and 2 variables

Details
* year_since_1880. The year since 1880 (year)
* temperature_anomaly. Average global temperature anomaly (degrees Celsius, relative to 1951-
1980)
Source

The data were collected from NOAA. https://climate.nasa.gov/vital-signs/global-temperature/,
download 2022-06-08


https://climate.nasa.gov/vital-signs/global-temperature/
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mcmc_analyze Markov Chain parameter estimates

Description

mcmc_analyze Computes summary histograms and model-data comparisons from and Markov
Chain Monte Carlo parameter estimate for a given model

Usage

mcmc_analyze(
model,
data,
mcmc_out,
mode = "emp”,
initial_condition = NULL,
deltaT = NULL,
n_steps = NULL,
verbose = TRUE

)
Arguments
model the model equations that we use to compute the result.
data the data used to assess the model
mcmc_out A dataframe: the first column is the accept flag of the mcmc run (TRUE/FALSE),
the log likelihood, and the parameter values
mode two choices: emp —> empirical (default) or de —> differential equations. The

estimator works differently depending on which is used.
initial_condition
The initial condition for the differential equation (DE mode only)

deltaT The length between timesteps (DE mode only)
n_steps The number of time steps we run the model (DE mode only)
verbose TRUE / FALSE indicate if parameter estimates should be printed to console

(option, defaults to TRUE)

Value

Two plots: (1) fitted model results compared to data, and (2) pairwise parameter histograms and
scatterplots to test model equifinality.

See Also

mcmc_estimate
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Examples

## Example with an empirical model:
## Step 1: Define the model and parameters
phos_model <- daphnia ~ ¢ * algae*(1 / theta)

phos_param <- tibble::tibble( name = c("c"”, "theta"),
lower_bound = c(0, 1),
upper_bound = c(2, 20))

## Step 2: Determine MCMC settings
# Define the number of iterations
phos_iter <- 1000

## Step 3: Compute MCMC estimate

phos_mcmc <- mcmc_estimate(model = phos_model,
data = phosphorous,

parameters = phos_param,

iterations = phos_iter)

## Step 4: Analyze results:
mcmc_analyze(model = phos_model,
data = phosphorous,

mcmc_out = phos_mcmc)

## Example with a differential equation:

## Step 1: Define the model, parameters, and data

## Define the tourism model

tourism_model <- c(dRdt ~ resources * (1 - resources) - a * visitors,
dvdt ~ b x visitors * (resources - visitors))

# Define the parameters that you will use with their bounds
tourism_param <- tibble::tibble( name = c("a", "b"),
lower_bound = c(10, 0),

upper_bound = c(30, 5))

## Step 2: Determine MCMC settings

# Define the initial conditions

tourism_init <- c(resources = 0.995, visitors = 0.00167)
deltaT <- .1 # timestep length

n_steps <- 15 # must be a number greater than 1

# Define the number of iterations

tourism_iter <- 1000

## Step 3: Compute MCMC estimate

tourism_out <- mcmc_estimate(

model = tourism_model,

data = parks,

parameters = tourism_param,

mode = "de",

initial_condition = tourism_init, deltaT = deltaT,
n_steps = n_steps,
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iterations = tourism_iter)

## Step 4: Analyze results

mcmc_analyze(

model = tourism_model,

data = parks,

mcmc_out = tourism_out,

mode = "de",

initial_condition = tourism_init, deltaT = deltaT,
n_steps = n_steps

mcmc_estimate Markov Chain parameter estimates

Description

mcmc_estimate Computes and Markov Chain Monte Carlo parameter estimate for a given model

Usage

mcmc_estimate(
model,
data,
parameters,
iterations = 1,
knob_flag = FALSE,
mode = "emp”,
initial_condition = NULL,
deltaT = NULL,
n_steps = NULL

)
Arguments
model the model equations that we use to compute the result.
data the data used to assess the model
parameters a data frame that lists the names of the parameters along with upper and lower
bounds
iterations the number of iterations we wish to run the MCMC for.
knob_flag determines if we tune the range that can be search (annealing)
mode two choices: emp —> empirical (default) or de —> differential equations. The

estimator works differently depending on which is used.
initial_condition
The initial condition for the differential equation (DE mode only)
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deltaT The length between timesteps (DE mode only)
n_steps The number of time steps we run the model (DE mode only)
Value

A dataframe: the first column is the accept flag of the mcmc run (TRUE/FALSE), the log likelihood,
and the parameter values

See Also

mcmc_analyze

Examples

## Example with an empirical model:
## Step 1: Define the model and parameters
phos_model <- daphnia ~ ¢ * algae*(1 / theta)

phos_param <- tibble::tibble( name = c("c", "theta"),
lower_bound = c(0, 1),
upper_bound = c(2, 20))

## Step 2: Determine MCMC settings
# Define the number of iterations
phos_iter <- 1000

## Step 3: Compute MCMC estimate

phos_mcmc <- mcmc_estimate(model = phos_model,
data = phosphorous,

parameters = phos_param,

iterations = phos_iter)

## Example with a differential equation:

## Step 1: Define the model, parameters, and data

## Define the tourism model

tourism_model <- c(dRdt ~ resources * (1 - resources) - a * visitors,
dvdt ~ b * visitors * (resources - visitors))

# Define the parameters that you will use with their bounds
tourism_param <- tibble::tibble( name = c("a", "b"),
lower_bound = c(10, 0),

upper_bound = c(30, 5))

## Step 2: Determine MCMC settings

# Define the initial conditions

tourism_init <- c(resources = 0.995, visitors = 0.00167)
deltaT <- .1 # timestep length

n_steps <- 15 # must be a number greater than 1

# Define the number of iterations

tourism_iter <- 1000
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## Step 3: Compute MCMC estimate
tourism_out <- mcmc_estimate(
model = tourism_model,
data = parks,
parameters = tourism_param,
mode = "de",
initial_condition = tourism_init, deltaT = deltaT,
n_steps = n_steps,
iterations = tourism_iter)

parks Visitor and resource usage to a national park

Description

A dataset containing scaled visitor usage to a national park. The variables are as follows:

Usage

data(parks)

Format

A data frame with 8 rows and 3 variables

Details

* time. (days)
* visitors. number of visitors to a national parked, scaled by the equilibrium value.

e resources. scaled area of the reserve not deforested.

Source

Sinay, Laura, and Leon Sinay. 2006. “A Simple Mathematical Model for the Effects of the Growth
of Tourism on Environment.” In International Tourism Conference. Alanya, Turkey.
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phaseplane

Phase plane of differential equation.

Description

phaseplane visualizes the vector field for a one or two dimensional differential equation.

Usage

phaseplane(

system_eq,

x_var,
y_var,

parameters
X_window =

y_window

= NULL,
c(-4, 4),
C<_4Y 4)’

plot_points = 10,

eg_soln =

Arguments

system_eq

x_var
y_var
parameters

X_window

y_window

plot_points

eg_soln

Value

FALSE

(required) The 1 or 2 dimensional system of equations, written in formula nota-
tion as a vector (i.e. c(dx ~ f(x,y), dy ~ g(x,y)))

(required) x axis variable (used to create the plot and label axes)
(required) y axis variable (used to create the plot and label axes)
(optional) any parameters in the system of equations

(optional) x axis limits. Must be of the form c(minVal,maxVal). Defaults to -4
to 4.

(optional) y axis limits. Must be of the form c(minVal,maxVal). Defaults to -4
to 4.

(optional) number of points we evaluate on the grid in both directions. Defaults
to 10.

(optional) TRUE / FALSE - lets you know if you want the code to estimate if
there are any equilibrium solutions in the provided window. This will print out
the equilibrium solutions to the console.

A phase plane diagram of system of differential equations
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Examples

# For a two variable system of differential equations we use the
# formula notation for dx/dt and the dy/dt separately:
system_eq <- c(dx ~ cos(y),

dy ~ sin(x))
phaseplane(system_eq,x_var="'x"',y_var='y")
# For a one dimensional system: dy/dt = f(t,y). In this case the
# xWindow represents time.
# However, the code is structured a little differently.
# Consider dy/dt = -y*(1-y):

system_eq <- c(dt ~ 1,
dy ~ -yx(1-y))

phaseplane(system_eq,x_var="t",y_var="y")
# Here is an example to find equilibrium solutions.

system_eq <- c(dx ~ y+x,
dy ~ x-y)

phaseplane(system_eq,x_var='x',y_var='y', eq_soln=TRUE)

# We would expect an equilibrium at the origin,
# but no equilibrium solution was found, but if we narrow the search range:

phaseplane(system_eq,x_var="'x"',y_var="y',x_window = ¢(-0.1,0.1),y_window=c(-0.1,0.1),eg_soln=TRUE)

# Confirm any equilbrium solutions through direct evaluation of the differential equation.

phosphorous Measured phosphorous of Daphnia and algae

Description

A dataset containing phosphorous content in Daphnia and algae. The variables are as follows:

Usage

data(phosphorous)

Format

A data frame with 6 rows and 2 variables
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Details

* algae. Phosphorous content in algal food (%)

¢ daphnia. Phosphorous content in Daphnia (%)

Source

The data were digitized from Sterner and Elser Ecological Stoichiometry, page 22, Figure 1.9A.
The original study was DeMott et. al (1998) Limnol. Oceanogr. 44:1557.

precipitation Measured precipitation from a rainfall event

Description

A dataset containing measured precipitation data from the Minneapolis St. Paul Area:

Usage

data(precipitation)

Format

A data frame with 56 rows and 5 variables

Details

* date. Calendar day of year of measurement

 time. Time measurement is made

* station_id Shorthand name for station in CoCoRaHS network
¢ station_name Name of station in CoCoRaHS network

* precip. Observed precipitation (inches)

Source

The data were collected from Community Collaborative Rain Hail and Snow Network (CoCo-
RaHS). https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx


https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx
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rk4 Runge Kutta method solution for a differential equation.

Description

rk4 solves a multi-dimensional differential equation with Runge-Kutta 4th order method. The pa-
rameters listed as required are needed See the vignette for detailed examples of usage.

Usage

rk4(
system_eq,
initial_condition,
parameters = NULL,

t_start = 0,
deltaT =1,
n_steps =1
)
Arguments
system_eq (REQUIRED) The 1 or 2 dimensional system of equations, written in formula

notation as a vector (i.e. c(dx ~ f(x,y), dy ~ g(x,y)))
initial_condition
(REQUIRED) Listing of initial conditions, as a vector

parameters The values of the parameters we are using (optional)

t_start The starting time point (defaults to t = 0)

deltaT The timestep length (defaults to 1)

n_steps The number of timesteps to compute solution (defaults to n_steps = 1)
Value

A tidy of data frame for the calculated solutions and the time

See Also

See Runge Kutta methods for more explanation of Runge-Kutta methods, as well as the code euler

Examples

# Define the rate equation:

quarantine_eq <- c(

dSdt ~ -k *x S x I,

dIdt ~k * S * I - beta * I

)

# Define the parameters (as a named vector):
quarantine_parameters <- c(k = .05, beta = .2)


https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
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# Define the initial condition (as a named vector):

quarantine_init <- ¢(S =300, I = 1)

# Define deltaT and the number of time steps:

deltaT <- .1 # timestep length

n_steps <- 10 # must be a number greater than 1

# Compute the solution via Euler's method:

out_solution <- rk4(system_eq = quarantine_eq,
parameters = quarantine_parameters,
initial_condition = quarantine_init, deltaT = deltaT,
n_steps = n_steps

snowfall Measured snowfall from a blizzard in April 2018

Description

A dataset containing measured snowfall data from the Minneapolis St. Paul Area:

Usage

data(snowfall)

Format

A data frame with 16 rows and 5 variables

Details

* date. Calendar day of year of measurement

¢ time. Time measurement is made

¢ station_id Shorthand name for station in CoCoRaHS network
* station_name Name of station in CoCoRaHS network

¢ snowfall total snowfall (inches)

Source

The data were collected from Community Collaborative Rain Hail and Snow Network (CoCo-
RaHS). https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx


https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx
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wilson Measured Weight of a dog over time

Description

A dataset containing the mass of a growing dog.

Usage

data(wilson)

Format

A data frame with 19 rows and 2 variables

Details

* days since birth

* weight. (pounds)

Source

From https://bscheng.com/2014/05/07/modeling-logistic-growth-data-in-r/

yeast Measured Sacchromyces data (yeast) from Gause 1932 "Experimental
studies on the struggle for coexistence"

Description

A dataset containing measurements of growth of yeast in a culture. The variables are as follows:

Usage

data(yeast)

Format

A data frame with 7 rows and 2 variables

Details

« time. (hours)

* volume. Sacchromyces volume in container (cubic centimeters)


https://bscheng.com/2014/05/07/modeling-logistic-growth-data-in-r/
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Source

Table 1 from Gause, G. F. 1932. “Experimental Studies on the Struggle for Existence: 1. Mixed
Population of Two Species of Yeast.” Journal of Experimental Biology 9 (4): 389-402.
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