Package ‘dipm’

June 16, 2025
Title Depth Importance in Precision Medicine (DIPM) Method
Version 1.11
Date 2025-06-15
Maintainer Cai Li <cai.li.stats@gmail.com>

Description An implementa-
tion by Chen, Li, and Zhang (2022) <doi:10.1093/bioadv/vbac041> of the Depth Impor-
tance in Precision Medicine (DIPM) method
in Chen and Zhang (2022) <doi:10.1093/biostatistics/kxaa021> and Chen and
Zhang (2020) <doi:10.1007/978-3-030-46161-4_16>. The DIPM method is a classification
tree that searches for subgroups with especially poor or strong performance in a given treat-
ment group.

Depends R (>=3.0.0)

Imports stats, utils, survival, partykit (>= 1.2-6), ggplot2, grid
NeedsCompilation yes

License GPL (>=2)

Encoding UTF-8

LazyLoad yes

Repository CRAN

RoxygenNote 7.3.2

Author Cai Li [aut, cre],
Victoria Chen [aut],
Heping Zhang [aut]

Date/Publication 2025-06-16 02:10:02 UTC

Contents
dipm e e 2
node_dipm 8
PMPIUNE ot vttt e e e e e e e e e e e e e e 10
SPMETEE . o v v v v v e 13
Index 20

https://doi.org/10.1093/bioadv/vbac041
https://doi.org/10.1093/biostatistics/kxaa021
https://doi.org/10.1007/978-3-030-46161-4_16

2 dipm

dipm Depth Importance in Precision Medicine (DIPM)

Description

This function creates a classification tree designed to identify subgroups in which subjects perform
especially well or especially poorly in a given treatment group.

Usage
dipm(

formula,
data,
types = NULL,
nmin = 5,
nmin2 = 5,
ntree = NULL,
mtry = Inf,

maxdepth = Inf,
maxdepth2 = Inf,
ncores = 2,

print = TRUE,
dataframe = FALSE,
prune = FALSE

)
Arguments

formula A description of the model to be fit with format Y ~ treatment | X1 + X2 for
data with a continuous outcome variable Y and Surv(Y, delta) ~ treatment
| X1 + X2 for data with a right-censored survival outcome variable Y and a status
indicator delta

data A matrix or data frame of the data

types A vector, data frame, or matrix of the types of each variable in the data; if left
blank, the default is to assume all of the candidate split variables are ordinal;
otherwise, all variables in the data must be specified, and the possible variable
types are: "response’, "treatment”, "status", "binary", "ordinal", and "nominal"
for outcome variable Y, the treatment variable, the status indicator (if appli-
cable), binary candidate split variables, ordinal candidate split variables, and
nominal candidate split variables respectively

nmin An integer specifying the minimum node size of the overall classification tree

nmin2 An integer specifying the minimum node size of embedded trees

ntree An integer specifying the number of embedded trees to construct at each node of

the overall classification tree; if left blank, the default value of ceiling(min(max (sqrt(n),
sqrt(nc)), 1000)) will be used if mtry = Inf below and ceiling(min(max(n,

dipm 3

nc), 1000)) otherwise; n is the total sample size of the data, and nc is the total
number of candidate split variables

mtry An integer specifying the number of candidate split variables to randomly select
at each node of embedded trees; if mtry is set equal to the default value of Inf,
then all possible splits of all candidate split variables are considered at the nodes
of the embedded trees; otherwise, a recommended value of mtry to use is the
square root of the total number of candidate split variables rounded up to the
nearest integer

maxdepth An integer specifying the maximum depth of the overall classification tree; this
argument is optional but useful for shortening computation time; if left blank,
the default is to grow the full tree until the minimum node size nmin is reached

maxdepth?2 An integer specifying the maximum depth of embedded trees; this argument is
optional but useful for shortening computation time; if left blank, the default is
to grow each full, embedded tree until the minimum node size nmin2 is reached

ncores An integer specifying the number of cores/threads to use with OpenMP; this
argument is optional; if left blank, the default is 2; if a value less than 1 is pro-
vided, the number of cores will be auto-detected and used based on the system

configuration

print A boolean (TRUE/FALSE) value, where TRUE prints a more readable version
of the final tree to the screen

dataframe A boolean (TRUE/FALSE) value, where TRUE returns the final tree as a dataframe

prune A boolean (TRUE/FALSE) value, where TRUE prunes the final tree using pmprune
function

Details

This function creates a classification tree to identify subgroups relevant to the precision medicine
setting. At each node of the classification tree, a random forest of so-called embedded trees are fit
and used to calculate a depth variable importance score for each candidate split variable in the data.
The candidate split variable with the largest variable importance score is identified as the best split
variable of the node. Then, all possible splits of the selected split variable are considered, and the
split with the greatest split criteria value is finally selected as the best split of the best variable.

The depth variable importance score was originally proposed by Chen et al. (2007), and the score
has been adapted to the precision medicine setting here. The depth variable importance score is
a relatively simple measure that takes into account two components: the depth of a split in a tree
and the strength of the split. The strength of the split is captured with a G test statistic that may
be modified depending on the type of analysis at hand. When the outcome variable is continuous,
G is the test statistic that tests the significance of the split by treatment interaction term in a linear
regression model. When the outcome variable is a right-censored survival time, G is the test statistic
that tests the significance of the split by interaction term in a Cox proportional hazards model.

When using dipm, note the following requirements for the supplied data. First, the dataset must
contain an outcome variable Y and a treatment variable. If Y is a right-censored survival time out-
come, then there must also be a status indicator delta, where values of 1 denote the occurrence of the
(harmful) event of interest, and values of 0 denote censoring. If there are only two treatment groups,
then the two possible values must be O or 1. If there are more than two treatment groups, then the
possible values must be integers starting from 1 to the total number of treatment assignments. In

dipm

regard to the candidate split variables, if a variable is binary, then the variable must take values of
0 or 1. If a variable is nominal, then the values must be integers starting from 1 to the total number
of categories. There cannot be any missing values in the dataset. For candidate split variables with
missing values, the missings together (MT) method proposed by Zhang et al. (1996) is helpful.

Value

dipm returns the final classification tree as a party object by default or a data frame. See Hothorn
and Zeileis (2015) for details. The data frame contains the following columns of information:

node

splitvar

splitvar_name

type

splitval

lchild

rchild

depth

nsubj
besttrt

References

Unique integer values that identify each node in the tree, where all of the nodes
are indexed starting from 1

Integers that represent the candidate split variable used to split each node, where
all of the variables are indexed starting from 1; for terminal nodes, i.e., nodes
without child nodes, the value is set equal to NA

The names of the candidate split variables used to split each node obtained from
the column names of the supplied data; for terminal nodes, the value is set equal
to NA

Characters that denote the type of each candidate split variable; "bin" is for
binary variables, "ord" for ordinal, and "nom" for nominal; for terminal nodes,
the value is set equal to NA

Values of the left child node of the current split/node; for binary variables, a
value of 0 is printed, and subjects with values of 0 for the current splitvar are
in the left child node, while subjects with values of 1 are in the right child node;
for ordinal variables, splitval is numeric and implies that subjects with values
of the current splitvar less than or equal to splitval are in the left child node,
while the remaining subjects with values greater than splitval are in the right
child node; for nominal variables, the splitval is a set of integers separated by
commas, and subjects in that set of categories are in the left child node, while
the remaining subjects are in the right child node; for terminal nodes, the value
is set equal to NA

Integers that represent the index (i.e., node value) of each node’s left child node;
for terminal nodes, the value is set equal to NA

Integers that represent the index (i.e., node value) of each node’s right child
node; for terminal nodes, the value is set equal to NA

Integers that specify the depth of each node; the root node has depth 1, its chil-
dren have depth 2, etc.

Integers that count the total number of subjects within each node

Integers that denote the identified best treatment assignment of each node

Chen, V., Li, C., and Zhang, H. (2022). dipm: an R package implementing the Depth Impor-
tance in Precision Medicine (DIPM) tree and Forest-based method. Bioinformatics Advances, 2(1),

vbac041.

Chen, V. and Zhang, H. (2022). Depth importance in precision medicine (DIPM): A tree-and forest-
based method for right-censored survival outcomes. Biostatistics 23(1), 157-172.

dipm 5

Chen, V. and Zhang, H. (2020). Depth importance in precision medicine (DIPM): a tree and forest
based method. In Contemporary Experimental Design, Multivariate Analysis and Data Mining,
243-259.

Chen, X., Liu, C.-T., Zhang, M., and Zhang, H. (2007). A forest-based approach to identifying gene
and gene-gene interactions. Proceedings of the National Academy of Sciences of the United States
of America 204, 19199-19203.

Zhang, H., Holford, T., and Bracken, M.B. (1996). A tree-based method of analysis for prospective
studies. Statistics in Medicine 15, 37-49.

Hothorn, T. and Zeileis, A. (2015). partykit: a modular toolkit for recursive partytioning in R. The
Journal of Machine Learning Research 16(1), 3905-3909.

See Also

spmtree

Examples

. an example with a continuous outcome variable
and two treatment groups

o o R

N = 100
set.seed(123)

generate binary treatments
treatment = rbinom(N, 1, 0.5)

generate candidate split variables
X1 = rnorm(n = N, mean = @, sd = 1)

X2 = rnorm(n = N, mean = @, sd = 1)
X3 = rnorm(n = N, mean = @, sd = 1)
X4 = rnorm(n = N, mean = @, sd = 1)
X5 = rnorm(n = N, mean = @, sd = 1)
X = cbind(X1, X2, X3, X4, X5)

colnames(X) = paste@("X", 1:5)

generate continuous outcome variable
calculateLink = function(X, treatment){

(X[, 11 <=0) & (X[, 21 <= 0)) *
(25 * (1 - treatment) + 8 * treatment) +

(XL, 11 <= 0) & (XL, 21 > 0))
(18 * (1 - treatment) + 20 * treatment) +

*

((XL, 11> 0) & (X[, 31 <= 0))
(20 * (1 - treatment) + 18 * treatment) +

*

(XL, 11 > @) & (X[, 31> @) *

(8 * (1 - treatment) + 25 * treatment)
3

Link = calculateLink(X, treatment)
Y = rnorm(N, mean = Link, sd = 1)

combine variables in a data frame
data = data.frame(X, Y, treatment)

fit a dipm classification tree

treel = dipm(Y ~ treatment | ., data, mtry = 1, maxdepth = 3)

predict optimal treatment for new subjects
predict(treel, newdata = head(data),
FUN = function(n) as.numeric(n$info$opt_trt))

#

... an example with a continuous outcome variable
and three treatment groups

#

N = 600

set.seed(123)

generate treatments
treatment = sample(1:3, N, replace = TRUE)

generate candidate split variables
X1 = round(rnorm(n = N, mean = @, sd
X2 = round(rnorm(n = N, mean = @, sd
X3 = sample(1:4, N, replace = TRUE)
X4 = sample(1:5, N, replace = TRUE)
X5 = rbinom(N, 1, 0.5)

X6 = rbinom(N, 1, 0.5)

X7 = rbinom(N, 1, 0.5)

X = cbind(X1, X2, X3, X4, X5, X6, X7)
colnames(X) = paste@("X", 1:7)

D, 4
D, 4

generate continuous outcome variable
calculatelLink = function(X,treatment){

10.2 - 0.3 * (treatment == 1) - 0.1 x X[, 1] +

2.1 % (treatment == 1) % X[, 1] +
1.2 x X[, 2]

Link = calculateLink(X, treatment)
Y = rnorm(N, mean = Link, sd = 1)

combine variables in a data frame
data = data.frame(X, Y, treatment)

create vector of variable types

dipm

dipm

types = c(rep("ordinal”, 2), rep("nominal”, 2), rep("binary", 3),
"response”, "treatment")

fit a dipm classification tree

tree2 = dipm(Y ~ treatment | ., data, types = types, maxdepth = 2)
#

... an example with a survival outcome variable

and two treatment groups

#

N = 300
set.seed(321)

generate binary treatments
treatment = rbinom(N, 1, 0.5)

generate candidate split variables
X1 = rnorm(n = N, mean = @, sd = 1)

X2 = rnorm(n = N, mean = @, sd = 1)
X3 = rnorm(n = N, mean = @, sd = 1)
X4 = rnorm(n = N, mean = @, sd = 1)
X5 = rnorm(n = N, mean = @, sd = 1)

X = cbind(X1, X2, X3, X4, X5)
colnames(X) = paste@("X", 1:5)

generate survival outcome variable
calculatelLink = function(X, treatment){

X[, 11 + 0.5 x X[, 31 + (3 * treatment - 1.5) x (abs(X[, 51) - 0.67)

Link = calculateLink(X, treatment)

T = rexp(N, exp(-Link))

Co = rexp(N, 0.1 x exp(X[, 51 + X[, 21))
Y = pmin(T, CO)

delta = (T <= C0)

combine variables in a data frame
data = data.frame(X, Y, delta, treatment)

fit a dipm classification tree
tree3 = dipm(Surv(Y, delta) ~ treatment | .,data, ntree = 1, maxdepth = 2,
maxdepth2 = 6)

#

... an example with a survival outcome variable
and four treatment groups

#

N = 800

set.seed(321)

node_dipm

generate treatments
treatment = sample(1:4, N, replace = TRUE)

generate candidate split variables

X1 = round(rnorm(n = N, mean = @, sd = 1), 4)
X2 = round(rnorm(n = N, mean = @, sd = 1), 4)
X3 = sample(1:4, N, replace = TRUE)

X4 = sample(1:5, N, replace = TRUE)

X5 = rbinom(N, 1, 0.5)

X6 = rbinom(N, 1, 0.5)

X7 = rbinom(N, 1, 0.5)

X = cbind(X1, X2, X3, X4, X5, X6, X7)
colnames(X) = paste@("X", 1:7)

generate survival outcome variable
calculateLink = function(X, treatment, noise){

-0.2 * (treatment == 1) +

-1.1 % X[, 1] +

1.2 % (treatment == 1) * X[, 1] +
1.2 = X[, 2]

Link = calculateLink(X, treatment)

T = rweibull(N, shape=2, scale = exp(Link))
Cnoise = runif(n = N) + runif(n = N)

CO = rexp(N, exp(@.3 * -Cnoise))

Y = pmin(T, CO)

delta = (T <= C0@)

combine variables in a data frame
data = data.frame(X, Y, delta, treatment)

create vector of variable types
types = c(rep(”ordinal”, 2), rep("nominal”, 2), rep("binary”, 3),
"response”, "status”, "treatment"”)

fit two dipm classification trees

tree4 = dipm(Surv(Y, delta) ~ treatment | ., data, types = types, ntree = 1,
maxdepth = 2, maxdepth2 = 6)

tree5 = dipm(Surv(Y, delta) ~ treatment | X3 + X4, data, types = types, ntree = 1,
maxdepth = 2, maxdepth2 = 6)

node_dipm Panel-Generator for Visualization of A Precision Medicine Tree

node_dipm 9

Description

This function provides a new plot method for dipm and spmtree. It visualizes stratified treatment
groups through boxplots for a continuous outcome and survival plots for a survival outcome, re-

spectively.
Usage
node_dipm(obj, ...)
Arguments
obj A party tree object returned from either the dipm() or spmtree() function
Arguments passed on to plotfun
Details

This function visualizes the precision medicine trees proposed in Chen and Zhang (2020a, b).

Value

No return value, called for plot

References

Chen, V., Li, C., and Zhang, H. (2022). dipm: an R package implementing the Depth Impor-
tance in Precision Medicine (DIPM) tree and Forest-based method. Bioinformatics Advances, 2(1),
vbac041.

Chen, V. and Zhang, H. (2020). Depth importance in precision medicine (DIPM): a tree and forest
based method. In Contemporary Experimental Design, Multivariate Analysis and Data Mining,
243-259.

Chen, V. and Zhang, H. (2022). Depth importance in precision medicine (DIPM): A tree-and forest-
based method for right-censored survival outcomes. Biostatistics 23(1), 157-172.

Seibold, H., Zeileis, A., and Hothorn, T. (2019). model4you: An R package for personalised
treatment effect estimation. Journal of Open Research Software 7(1).

Hothorn, T. and Zeileis, A. (2015). partykit: a modular toolkit for recursive partytioning in R. The
Journal of Machine Learning Research 16(1), 3905-3909.

See Also

dipm, spmtree

Examples

' #
. an example with a continuous outcome variable
and two treatment groups

ETE TN

10 pmprune

N = 100
set.seed(123)

generate binary treatments
treatment = rbinom(N, 1, 0.5)

generate candidate split variables
X1 = rnorm(n = N, mean = @, sd = 1)
X2 = rnorm(n = N, mean = @, sd = 1)
X3 = rnorm(n = N, mean = @, sd = 1)
X4 = rnorm(n = N, mean = @, sd = 1)
X5 = rnorm(n = N, mean = @, sd = 1)
X = cbind(X1, X2, X3, X4, X5)
colnames(X) = paste@(”"X", 1:5)

generate continuous outcome variable
calculateLink = function(X, treatment){

(X[, 1] <= 0) & (X[, 2] <= 0)) *
(25 * (1 - treatment) + 8 * treatment) +

(X[, 11 <= @) & (X[, 2] > @)) *
(18 * (1 - treatment) + 20 * treatment) +

((X[,1 1 >0) & (X[, 3] <=0)) *
(20 * (1 - treatment) + 18 * treatment) +

((XL,1]1 > @) & (X[,3] > 0)) *
(8 * (1 - treatment) + 25 * treatment)

Link = calculateLink(X, treatment)
Y = rnorm(N, mean = Link, sd = 1)

combine variables in a data frame
data = data.frame(X, Y, treatment)

fit a dipm classification tree
tree = dipm(Y ~ treatment | ., data, mtry = 1, maxdepth = 3)
plot(tree, terminal_panel = node_dipm)

pmprune Pruning A Precision Medicine Tree

Description

This function prunes classification trees designed for the precision medicine setting.

pmprune

Usage

pmprune(tree)

Arguments

tree

Details

11

A data frame object returned from either the dipm() or spmtree() function

This function implements the simple pruning strategy proposed and used in Tsai et al. (2016).
Terminal sister nodes, i.e., nodes with no child nodes that share the same parent node, are removed
if they have the same identified optimal treatment assignment.

Value

pmprune returns the pruned classification tree as a data frame. The data frame contains the following
columns of information:

node

splitvar

splitvar_name

type

splitval

lchild

rchild

depth

nsubj
besttrt

Unique integer values that identify each node in the tree, where all of the nodes
are indexed starting from 1

Integers that represent the candidate split variable used to split each node, where
all of the variables are indexed starting from 1; for terminal nodes, i.e., nodes
without child nodes, the value is set equal to NA

The names of the candidate split variables used to split each node obtained from
the column names of the supplied data; for terminal nodes, the value is set equal
to NA

Characters that denote the type of each candidate split variable; "bin" is for
binary variables, "ord" for ordinal, and "nom" for nominal; for terminal nodes,
the value is set equal to NA

Values of the left child node of the current split/node; for binary variables, a
value of 0 is printed, and subjects with values of O for the current splitvar are
in the left child node, while subjects with values of 1 are in the right child node;
for ordinal variables, splitval is numeric and implies that subjects with values
of the current splitvar less than or equal to splitval are in the left child node,
while the remaining subjects with values greater than splitval are in the right
child node; for nominal variables, the splitval is a set of integers separated by
commas, and subjects in that set of categories are in the left child node, while
the remaining subjects are in the right child node; for terminal nodes, the value
is set equal to NA

Integers that represent the index (i.e., node value) of each node’s left child node;
for terminal nodes, the value is set equal to NA

Integers that represent the index (i.e., node value) of each node’s right child
node; for terminal nodes, the value is set equal to NA

Integers that specify the depth of each node; the root node has depth 1, its chil-
dren have depth 2, etc.

Integers that count the total number of subjects within each node

Integers that denote the identified best treatment assignment of each node

12 pmprune

References

Tsai, W.-M., Zhang, H., Buta, E., O’Malley, S., Gueorguieva, R. (2016). A modified classification
tree method for personalized medicine decisions. Statistics and its Interface 9, 239-253.

See Also

dipm, spmtree
Examples

. an example with a continuous outcome variable
and three treatment groups

ETE ST

N = 100
set.seed(123)

generate treatments
treatment = sample(1:3, N, replace = TRUE)

generate candidate split variables
X1 = round(rnorm(n = N, mean = @, sd
X2 = round(rnorm(n = N, mean = @, sd
X3 = sample(1:4, N, replace = TRUE)
X4 = sample(1:5, N, replace = TRUE)
X5 = rbinom(N, 1, 0.5)

X6 = rbinom(N, 1, 0.5)

X7 = rbinom(N, 1, 0.5)

X = cbind(X1, X2, X3, X4, X5, X6, X7)
colnames(X) = paste@("X", 1:7)

D, 4
D, 4

generate continuous outcome variable
calculateLink = function(X, treatment){

10.2 - 0.3 * (treatment == 1) - 0.1 x X[, 1] +
2.1 % (treatment == 1) %= X[, 1] +
1.2 x X[, 2]

3

Link = calculateLink(X, treatment)
Y = rnorm(N, mean = Link, sd = 1)

combine variables in a data frame
data = data.frame(X, Y, treatment)

create vector of variable types
types = c(rep(”ordinal”, 2), rep("nominal”, 2), rep("binary”, 3),

"response”, "treatment")

fit a classification tree

spmtree

13

tree = spmtree(Y ~ treatment | ., data, types = types, dataframe = TRUE)

prune the tree

ptree = pmprune(tree)

spmtree

Simple Precision Medicine Tree

Description

This function creates a classification tree designed to identify subgroups in which subjects perform
especially well or especially poorly in a given treatment group.

Usage

spmtree(

formula,

data,

types = NULL,

nmin = 5,

maxdepth = Inf,
print = TRUE,
dataframe = FALSE,
prune = FALSE

)
Arguments

formula A description of the model to be fit with format Y ~ treatment | X1 + X2 for
data with a continuous outcome variable Y and Surv(Y, delta) ~ treatment
| X1 + X2 for data with a right-censored survival outcome variable Y and a status
indicator delta

data A matrix or data frame of the data

types A vector, data frame, or matrix of the types of each variable in the data; if left
blank, the default is to assume all of the candidate split variables are ordinal;
otherwise, all variables in the data must be specified, and the possible variable
types are: "response", "treatment", "status", "binary", "ordinal", and "nominal"
for outcome variable Y, the treatment variable, the status indicator (if appli-
cable), binary candidate split variables, ordinal candidate split variables, and
nominal candidate split variables respectively

nmin An integer specifying the minimum node size of the overall classification tree

maxdepth An integer specifying the maximum depth of the overall classification tree; this

argument is optional but useful for shortening computation time; if left blank,
the default is to grow the full tree until the minimum node size nmin is reached

14 spmtree

print A boolean (TRUE/FALSE) value, where TRUE prints a more readable version
of the final tree to the screen
dataframe A boolean (TRUE/FALSE) value, where TRUE returns the final tree as a dataframe
prune A boolean (TRUE/FALSE) value, where TRUE prunes the final tree using pmprune
function
Details

To identify the best split at each node of the classification tree, all possible splits of all candidate
split variables are considered. The single split with the highest split criteria score is identified as
the best split of the node. For data with a continuous outcome variable, the split criteria is the
DIFF value that was first proposed for usage in the relative-effectiveness based method (Zhang et
al. (2010), Tsai et al. (2016)). For data with a survival outcome variable, the split criteria is the
squared test statistic that tests the significance of the split by treatment interaction term in a Cox
proportional hazards model.

When using spmtree, note the following requirements for the supplied data. First, the dataset must
contain an outcome variable Y and a treatment variable. If Y is a right-censored survival time out-
come, then there must also be a status indicator delta, where values of 1 denote the occurrence of the
(harmful) event of interest, and values of O denote censoring. If there are only two treatment groups,
then the two possible values must be O or 1. If there are more than two treatment groups, then the
possible values must be integers starting from 1 to the total number of treatment assignments. In
regard to the candidate split variables, if a variable is binary, then the variable must take values of
0 or 1. If a variable is nominal, then the values must be integers starting from 1 to the total number
of categories. There cannot be any missing values in the dataset. For candidate split variables with
missing values, the missings together (MT) method proposed by Zhang et al. (1996) is helpful.

Value

spmtree returns the final classification tree as a party object by default or a data frame. See
Hothorn and Zeileis (2015) for details. The data frame contains the following columns of informa-

tion:

node Unique integer values that identify each node in the tree, where all of the nodes
are indexed starting from 1

splitvar Integers that represent the candidate split variable used to split each node, where

all of the variables are indexed starting from 1; for terminal nodes, i.e., nodes
without child nodes, the value is set equal to NA

splitvar_name The names of the candidate split variables used to split each node obtained from
the column names of the supplied data; for terminal nodes, the value is set equal
to NA

type Characters that denote the type of each candidate split variable; "bin" is for
binary variables, "ord" for ordinal, and "nom" for nominal; for terminal nodes,
the value is set equal to NA

splitval Values of the left child node of the current split/node; for binary variables, a
value of 0 is printed, and subjects with values of O for the current splitvar are
in the left child node, while subjects with values of 1 are in the right child node;
for ordinal variables, splitval is numeric and implies that subjects with values

spmtree 15

of the current splitvar less than or equal to splitval are in the left child node,
while the remaining subjects with values greater than splitval are in the right
child node; for nominal variables, the splitval is a set of integers separated by
commas, and subjects in that set of categories are in the left child node, while
the remaining subjects are in the right child node; for terminal nodes, the value
is set equal to NA

lchild Integers that represent the index (i.e., node value) of each node’s left child node;
for terminal nodes, the value is set equal to NA

rchild Integers that represent the index (i.e., node value) of each node’s right child
node; for terminal nodes, the value is set equal to NA

depth Integers that specify the depth of each node; the root node has depth 1, its chil-
dren have depth 2, etc.

nsubj Integers that count the total number of subjects within each node

besttrt Integers that denote the identified best treatment assignment of each node

References

Chen, V., Li, C., and Zhang, H. (2022). dipm: an R package implementing the Depth Impor-
tance in Precision Medicine (DIPM) tree and Forest-based method. Bioinformatics Advances, 2(1),
vbac041.

Chen, V. and Zhang, H. (2022). Depth importance in precision medicine (DIPM): A tree-and forest-
based method for right-censored survival outcomes. Biostatistics 23(1), 157-172.

Chen, V. and Zhang, H. (2020). Depth importance in precision medicine (DIPM): a tree and forest
based method. In Contemporary Experimental Design, Multivariate Analysis and Data Mining,
243-259.

Tsai, W.-M., Zhang, H., Buta, E., O’Malley, S., Gueorguieva, R. (2016). A modified classification
tree method for personalized medicine decisions. Statistics and its Interface 9, 239-253.

Zhang, H., Holford, T., and Bracken, M.B. (1996). A tree-based method of analysis for prospective
studies. Statistics in Medicine 15, 37-49.

Zhang, H., Legro, R.S., Zhang, J., Zhang, L., Chen, X., et al. (2010). Decision trees for identifying
predictors of treatment effectiveness in clinical trials and its application to ovulation in a study of
women with polycystic ovary syndrome. Human Reproduction 25, 2612-2621.

Hothorn, T. and Zeileis, A. (2015). partykit: a modular toolkit for recursive partytioning in R. The
Journal of Machine Learning Research 16(1), 3905-3909.

See Also

dipm
Examples

. an example with a continuous outcome variable
and two treatment groups

ETE Ty

16

N = 300
set.seed(123)

generate binary treatments
treatment = rbinom(N, 1, 0.5)

generate candidate split variables
X1 = rnorm(n = N, mean = @, sd = 1)
X2 = rnorm(n = N, mean = @, sd = 1)
X3 = rnorm(n = N, mean = @, sd = 1)
X4 = rnorm(n = N, mean = @, sd = 1)
X5 = rnorm(n = N, mean = @, sd = 1)
X = cbind(X1, X2, X3, X4, X5)
colnames(X) = paste@(”"X", 1:5)

generate continuous outcome variable
calculateLink = function(X, treatment){

(X[, 1] <= 0) & (X[, 2] <= 0)) *
(25 * (1 - treatment) + 8 * treatment) +

(X[, 11 <= @) & (X[, 2] > @)) *
(18 * (1 - treatment) + 20 * treatment) +

(XL, 11 > 0) & (X[, 3] <=0)) *
(20 * (1 - treatment) + 18 * treatment) +

(XL, 11 >0) & (X[, 31 >0)) *
(8 * (1 - treatment) + 25 * treatment)
Link = calculateLink(X, treatment)

Y = rnorm(N, mean = Link, sd = 1)

combine variables in a data frame
data = data.frame(X, Y, treatment)

fit a classification tree

treel = spmtree(Y ~ treatment | ., data, maxdepth = 3)

predict optimal treatment for new subjects
predict(treel, newdata = head(data),
FUN = function(n) as.numeric(n$info$opt_trt))

#

... an example with a continuous outcome variable
and three treatment groups

#

N = 600

set.seed(123)

spmtree

spmtree

generate treatments
treatment = sample(1:3, N, replace = TRUE)

generate candidate split variables

X1 = round(rnorm(n = N, mean = @, sd = 1), 4)
X2 = round(rnorm(n = N, mean = @, sd = 1), 4)
X3 = sample(1:4, N, replace = TRUE)

X4 = sample(1:5, N, replace = TRUE)

X5 = rbinom(N, 1, 0.5)

X6 = rbinom(N, 1, 0.5)

X7 = rbinom(N, 1, 0.5)

X = cbind(X1, X2, X3, X4, X5, X6, X7)
colnames(X) = paste@("X", 1:7)

generate continuous outcome variable
calculateLink = function(X, treatment){

10.2 - 0.3 * (treatment == 1) - 0.1 x X[, 1] +
2.1 % (treatment == 1) = X[, 1] +
1.2 = X[, 2]

3

Link = calculateLink(X, treatment)
Y = rnorm(N, mean = Link, sd = 1)

combine variables in a data frame
data = data.frame(X, Y, treatment)

create vector of variable types
types = c(rep(”ordinal”, 2), rep("nominal”, 2), rep("binary”, 3),

"response”, "treatment")

fit a classification tree

tree2 = spmtree(Y ~ treatment | ., data, types = types)
#

... an example with a survival outcome variable

and two treatment groups

#

N = 300
set.seed(321)

generate binary treatments
treatment = rbinom(N, 1, 0.5)

generate candidate split variables
X1 = rnorm(n = N, mean = @, sd = 1)

X2 = rnorm(n = N, mean = @, sd = 1)
X3 = rnorm(n = N, mean = @, sd = 1)
X4 = rnorm(n = N, mean = @, sd = 1)
X5 = rnorm(n = N, mean = @, sd = 1)

X = cbind(X1, X2, X3, X4, X5)

18

spmtree

colnames(X) = paste@("X", 1:5)

generate survival outcome variable
calculatelLink = function(X, treatment){

X[, 11 + 0.5 x X[, 3] + (3 * treatment - 1.5) * (abs(X[, 5]) - 0.67)

Link = calculateLink(X, treatment)

T = rexp(N, exp(-Link))

Co = rexp(N, 0.1 x exp(X[, 51 + X[, 21))
Y = pmin(T, CQ)

delta = (T <= C0)

combine variables in a data frame
data = data.frame(X, Y, delta, treatment)

fit a classification tree

tree3 = spmtree(Surv(Y, delta) ~ treatment | ., data, maxdepth = 2)
#

... an example with a survival outcome variable

and four treatment groups

#

N = 800
set.seed(321)

generate treatments
treatment = sample(1:4, N, replace = TRUE)

generate candidate split variables

X1 = round(rnorm(n = N, mean = @, sd = 1), 4)
X2 = round(rnorm(n = N, mean = @, sd = 1), 4)
X3 = sample(1:4, N, replace = TRUE)

X4 = sample(1:5, N, replace = TRUE)

X5 = rbinom(N, 1, 0.5)

X6 = rbinom(N, 1, 0.5)

X7 = rbinom(N, 1, 0.5)

X = cbind(X1, X2, X3, X4, X5, X6, X7)
colnames(X) = paste@("X", 1:7)

generate survival outcome variable
calculatelLink = function(X, treatment, noise){

-0.2 x (treatment == 1) +
1.1 % X[, 1] +
1.2 * (treatment == 1) x X[, 1] +
1.2 x X[, 2]
3

Link = calculateLink(X, treatment)
T = rweibull(N, shape = 2, scale = exp(Link))

spmtree

Cnoise = runif(n = N) + runif(n = N)
Co = rexp(N, exp(@.3 * -Cnoise))

Y = pmin(T, C0)

delta = (T <= C0)

combine variables in a data frame
data = data.frame(X, Y, delta, treatment)

create vector of variable types
types = c(rep("ordinal”, 2), rep("nominal”, 2), rep("binary"”, 3),
"response”, "status”, "treatment"”)

fit two classification trees

tree4 = spmtree(Surv(Y, delta) ~ treatment | ., data, types = types, maxdepth = 2)

tree5 = spmtree(Surv(Y, delta) ~ treatment | X3 + X4, data, types = types,
maxdepth = 2)

19

Index

dipm, 2,9, 12,15
node_dipm, 8
pmprune, 10

spmtree, 5, 9, 12,13

20

	dipm
	node_dipm
	pmprune
	spmtree
	Index

