Package 'doofa'

May 14, 2024

Version 1.0

Date 2024-05-13
Title Designs for Order-of-Addition Experiments
Author Baidya Nath Mandal [aut, cre], Rajender Parsad [aut], Sukanta Dash [aut]
Maintainer Baidya Nath Mandal <mandal.stat@gmail.com>

Depends R (>= 4.4.0)

Imports lpSolve, combinat

Description A facility to generate efficient designs for order-of-additions experiments under pairwise-order model, see Dennis K. J. Lin and Jiayu Peng (2019). Order-of-addition experiments: A review and some new thoughts". Quality Engineering, 31:1, 49-59, <doi:10.1080/08982112.2018.1548021>. It also provides a facility to generate component

orthogonal arrays under component position model, see Jian-

Feng Yang, Fasheng Sun & Hongquan Xu (2020): ``A Component Position Model, Analysis and Design for Order-of-

Addition Experiments". Technometrics, <doi:10.1080/00401706.2020.1764394>.

License GPL (≥ 2)

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2024-05-14 08:23:19 UTC

R topics documented:

bin	2
xoa	2
ycle	3
loofa.pwo	4
gen.design2	4
nitial.design	5
one	5

pwo		•		•		•			•				•	•	•			•	•	•								•		•						6
revbin .																																				6
shuffle .		•				•			•				•	•	•			•										•		•			•	•		7
swap		•							•				•	•	•													•								7
vbin																																				
vrevbin	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		8
																																				9
																																				9

Index

bin

binary representation of x (an element from 1 to m) with m components

Description

binary representation of x (an element from 1 to m) with m components

Usage

bin(x, m)

Arguments

х	a positive integer less than or equal to m
m	number of components, a positive integer

Value

a vector with elements 1 and 0

Examples

bin(x = 2, m = 4);

coa

construct a component orthogonal array with m components

Description

construct a component orthogonal array with m components such that each pair of columns contains each (i != j) combinations lambda times

Usage

coa(m, lambda, ntrial)

cycle

Arguments

m	a positive integer, currently supports less than 8
lambda	a positive integer, usually 1
ntrial	a positive integer, default is 10

Value

a component orthogonal array with m components

Examples

coa(m = 4, lambda = 1, ntrial = 10);

cycle

cycle elements of a vector by one element to right

Description

cycle elements of a vector by one element to right

Usage

cycle(x)

Arguments

x a vector

Value

cycled vector

Examples

cycle(c(1, 2, 3));

doofa.pwo

construct a design for order-of-addition experiment under pwo model with n runs and m components

Description

construct a design for order-of-addition experiment under pwo model with n runs and m components

Usage

doofa.pwo(n, m)

Arguments

n	a positive integer, preferably less than 100
m	a positive integer, currently supports less than 8

Value

a design for order-of-addition experiment under pwo model with n runs and m components

Examples

doofa.pwo(5,3);

gen.design2	Repeat the process of design generation using doofa.pwo several times
	and return the best design

Description

Repeat the process of design generation using doofa.pwo several times and return the best design

Usage

```
gen.design2(n, m, num.repeat = 10)
```

Arguments

n	number of runs, a positive integer
m	number of components, a positive integer
num.repeat	number of repeats, a positive integer

Value

a design with D-efficiency

initial.design

Examples

gen.design2(n = 5, m = 3, num.repeat = 10);

initial.design create an initial design of o-of-a with n rows and m columns

Description

create an initial design of o-of-a with n rows and m columns

Usage

initial.design(n, m)

Arguments

n	a positive integer
m	a positive integer

Value

a matrix with n rows and m columns

Examples

initial.design(n = 6, m = 3);

one

create a matrix of 1s with t rows

Description

create a matrix of 1s with t rows

Usage

one(t)

Arguments

t a positive integer

Value

a matrix of 1s with t rows

Examples

one(3);

рwo

Description

create PWO ordering of the given run

Usage

pwo(x)

Arguments

х

a numeric vector containing elements 1 to m in some order

Value

PWO ordering of the given run

Examples

row = c(3,1,2)
pwo(row);

revbin	reverse of bin function i.e., returns which elements of a binary vector
	is 1

Description

reverse of bin function i.e., returns which elements of a binary vector is 1

Usage

revbin(x)

Arguments ×

a vector with 0 and 1s such that there is only 1

Value

a postive integer m

Examples

revbin(c(0,1,0,0));

shuffle

Description

shuffle elements of a randomly chosen row of x matrix

Usage

shuffle(x)

Arguments ×

a matrix

Value

a matrix with shuffled elements of a row

Examples

```
x = matrix(c(3,1,2, 1,2,3,1,3,2,2,1,3),ncol = 3, byrow = TRUE)
shuffle(x);
```

swap

swap elements at i and i+1 of a vector

Description

swap elements at i and i+1 of a vector

Usage

swap(x, i)

Arguments

х	a vector
i	a positive integer, less than length of x

Value

a vector with swapped elements

Examples

swap(c(1,2,3),2);

vbin

Description

vectorized bin function

Usage

vbin(x)

Arguments

Х

a vector of length m with positive integers less than or equal to m

Value

a binary matrix

Examples

vbin(c(3,1,2));

vrevbin

vectorized revbin function

Description

vectorized revbin function

Usage

vrevbin(x, m)

Arguments

Х	a binary vector of length nm, such that each length of m has only one 1 and rest
	as 0
m	a positive integer

Value

a vector of n positive integers

Examples

vrevbin(x=c(0,0,1,0,1,0), m = 3);

Index

bin, 2
coa, 2
cycle, 3
doofa.pwo, 4
gen.design2, 4
initial.design, 5
one, 5
pwo, 6
revbin, 6
shuffle, 7
swap, 7
vbin, 8
vrevbin, 8