Package ‘dsos’

February 19, 2023
Title Dataset Shift with Outlier Scores
Version 0.1.2

Description Test for no adverse shift in two-sample comparison when we
have a training set, the reference distribution, and a test set. The
approach is flexible and relies on a robust and powerful test
statistic, the weighted AUC. Technical details are in Kamulete, V. M.
(2021) <arXiv:1908.04000>. Modern notions of outlyingness such as
trust scores and prediction uncertainty can be used as the underlying
scores for example.

License GPL (>=3)
URL https://github.com/vathymut/dsos

BugReports https://github.com/vathymut/dsos/issues

Imports data.table (>= 1.14.6), future.apply (>= 1.10.0), ggplot2 (>=
3.4.0), scales (>= 1.2.1), simctest (>= 2.6), stats (>=4.2.1)

Suggests fdrtool (>= 1.2.17), knitr (>= 1.42), rmarkdown (>= 2.20),
testthat (>= 3.1.6)

VignetteBuilder knitr
Encoding UTF-8
Language en-US
RoxygenNote 7.2.3
NeedsCompilation no

Author Vathy M. Kamulete [aut, cre] (<https://orcid.org/0000-0002-4451-3743>),
Royal Bank of Canada (RBC) [cph] (Research supported and funded by RBC)

Maintainer Vathy M. Kamulete <vathymut@gmail.com>
Repository CRAN
Date/Publication 2023-02-19 07:30:06 UTC

https://arxiv.org/abs/1908.04000
https://github.com/vathymut/dsos
https://github.com/vathymut/dsos/issues
https://orcid.org/0000-0002-4451-3743

2

R topics documented:

as_bf

as_bf . . e 2
as_pvalue e 3
at_from_0S e e 4
at_00b . . L e 5
bf_compare L 7
bf from_0S 8
plotoutlierbayes 10
plotoutliertest L L 10
print.outlierbayes 11
printoutlier.test Lo e 12
ptfrom_os 13
PLoob . . L e 14
prrefit e 16
wauc_from_0S. L e 17

Index 19

as_bf Convert P-value to Bayes Factor
Description

Convert P-value to Bayes Factor

Usage
as_bf(pvalue)

Arguments

pvalue P-value.

Value

Bayes Factor (scalar value).

References

Marsman, M., & Wagenmakers, E. J. (2017). Three insights from a Bayesian interpretation of the

one-sided P value. Educational and Psychological Measurement, 77(3), 529-539.

See Also

[as_pvalue()] to convert Bayes factor to p-value.

Other bayesian-test: as_pvalue(), bf_compare(), bf_from_os()

as_pvalue 3

Examples

library(dsos)
bf_from_pvalue <- as_bf(pvalue = 0.5)
bf_from_pvalue

as_pvalue Convert Bayes Factor to P-value

Description

Convert Bayes Factor to P-value

Usage
as_pvalue(bf)

Arguments

bf Bayes factor.

Value

p-value (scalar value).

References
Marsman, M., & Wagenmakers, E. J. (2017). Three insights from a Bayesian interpretation of the
one-sided P value. Educational and Psychological Measurement, 77(3), 529-539.

See Also

[as_bf()] to convert p-value to Bayes factor.

Other bayesian-test: as_bf (), bf_compare(), bf_from_os()

Examples

library(dsos)
pvalue_from_bf <- as_pvalue(bf = 1)
pvalue_from_bf

4 at_from_os

at_from_os Asymptotic Test from Outlier Scores

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training set, x_train as the as the reference. The method checks whether the test set,
x_test, is worse off relative to this reference set. The function scorer assigns an outlier score to
each instance/observation in both training and test set.

Usage

at_from_os(os_train, os_test)

Arguments
os_train Outlier scores in training (reference) set.
os_test Outlier scores in test set.

Details

Li and Fine (2010) derives the asymptotic null distribution for the weighted AUC (WAUC), the test
statistic. This approach does not use permutations and can, as a result, be much faster because it
sidesteps the need to refit the scoring function scorer. This works well for large samples. The
prefix at stands for asymptotic test to tell it apart from the prefix pz, the permutation test.

Value

A named list of class outlier. test containing:

* statistic: observed WAUC statistic
* seg_mct: sequential Monte Carlo test, when applicable
* p_value: p-value

* outlier_scores: outlier scores from training and test set

Notes

The outlier scores should all mimic out-of-sample behaviour. Mind that the training scores are
not in-sample and thus, biased (overfitted) while the test scores are out-of-sample. The mismatch
— in-sample versus out-of-sample scores — voids the test validity. A simple fix for this is to get
the training scores from an indepedent (fresh) validation set; this follows the train/validation/test
sample splitting convention and the validation set is effectively the reference set or distribution in
this case.

at_oob 5

References

Kamulete, V. M. (2022). Test for non-negligible adverse shifts. In The 38th Conference on Uncer-
tainty in Artificial Intelligence. PMLR.

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resam-
pling risk. Journal of the American Statistical Association, 104(488), 1504-1511.

See Also

[at_oob()] for variant requiring a scoring function. [pt_from_os()] for permutation test with the
outlier scores.

Other asymptotic-test: at_oob()

Examples

library(dsos)

set.seed(12345)

os_train <- rnorm(n = 100)

os_test <- rnorm(n = 100)

test_result <- at_from_os(os_train, os_test)
test_result

at_oob Asymptotic Test With Out-Of-Bag Scores

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training set, x_train as the as the reference. The method checks whether the test set,
x_test, is worse off relative to this reference set. The function scorer assigns an outlier score to
each instance/observation in both training and test set.

Usage

at_oob(x_train, x_test, scorer)

Arguments
x_train Training (reference/validation) sample.
x_test Test sample.
scorer Function which returns a named list with outlier scores from the training and test

sample. The first argument to scorer must be x_train; the second, x_test.
The returned named list contains two elements: train and fest, each of which is
a vector of (outlier) scores. See notes for more information.

6 at_oob

Details

Li and Fine (2010) derives the asymptotic null distribution for the weighted AUC (WAUC), the test
statistic. This approach does not use permutations and can, as a result, be much faster because it
sidesteps the need to refit the scoring function scorer. This works well for large samples. The
prefix at stands for asymptotic test to tell it apart from the prefix pz, the permutation test.

Value
A named list of class outlier. test containing:

* statistic: observed WAUC statistic
* seg_mct: sequential Monte Carlo test, when applicable
* p_value: p-value

* outlier_scores: outlier scores from training and test set

Notes

The scoring function, scorer, predicts out-of-bag scores to mimic out-of-sample behaviour. The
suffix oob stands for out-of-bag to highlight this point. This out-of-bag variant avoids refitting the
underlying algorithm from scorer at every permutation. It can, as a result, be computationally
appealing.

References

Kamulete, V. M. (2022). Test for non-negligible adverse shifts. In The 38th Conference on Uncer-
tainty in Artificial Intelligence. PMLR.

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resam-
pling risk. Journal of the American Statistical Association, 104(488), 1504-1511.

See Also

[pt_oob()] for (faster) p-value approximation via out-of-bag predictions. [pt_refit()] for (slower)
p-value approximation via refitting.

Other asymptotic-test: at_from_os()

Examples

library(dsos)

set.seed(12345)

data(iris)

setosa <- iris[1:5@, 1:4] # Training sample: Species == 'setosa'
versicolor <- iris[51:100, 1:4] # Test sample: Species == 'versicolor'

Using fake scoring function

scorer <- function(tr, te) list(train=runif(nrow(tr)), test=runif(nrow(te)))
oob_test <- at_oob(setosa, versicolor, scorer = scorer)

oob_test

bf_compare 7

bf_compare Bayesian and Frequentist Test from Outlier Scores

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training (outlier) scores, os_train, as the reference. The method checks whether the
test scores, os_test, are worse off relative to the training set.

Usage

bf_compare(os_train, os_test, threshold = 1/12, n_pt = 4000)

Arguments
os_train Outlier scores in training (reference) set.
os_test Outlier scores in test set.
threshold Threshold for adverse shift. Defaults to 1 / 12, the asymptotic value of the test
statistic when the two samples are drawn from the same distribution.
n_pt The number of permutations.
Details

This compares the Bayesian to the frequentist approach for convenience. The Bayesian test mimics
‘bf_from_os()‘ and the frequentist one, ‘pt_from_os()‘. The Bayesian test computes Bayes factors
based on the asymptotic (defaults to 1/12) and the exchangeable threshold. The latter calculates the
threshold as the median weighted AUC (WAUC) after n_pt permutations assuming outlier scores
are exchangeable. This is recommended for small samples. The frequentist test converts the one-
sided (one-tailed) p-value to the Bayes factor - see as_bf function.

Value
A list of factors (BF) for 3 different test specifications:

* frequentist: Frequentist BF.
* bayes_noperm: Bayestion BF test with asymptotic threshold.
* bayes_perm: Bayestion BF with exchangeable threshold.

Notes

The outlier scores should all mimic out-of-sample behaviour. Mind that the training scores are
not in-sample and thus, biased (overfitted) while the test scores are out-of-sample. The mismatch
— in-sample versus out-of-sample scores — voids the test validity. A simple fix for this is to get
the training scores from an indepedent (fresh) validation set; this follows the train/validation/test
sample splitting convention and the validation set is effectively the reference set or distribution in
this case.

8 bf from_os

See Also

[bf_from_os()] for bayes factor, the Bayesian test. [pt_from_os()] for p-value, the frequentist test.

Other bayesian-test: as_bf (), as_pvalue(), bf_from_os()

Examples

library(dsos)

set.seed(12345)

os_train <- rnorm(n = 100)

os_test <- rnorm(n = 100)

bayes_test <- bf_compare(os_train, os_test)
bayes_test

To run in parallel on local cluster, uncomment the next two lines.
library(future)

future::plan(future::multisession)
parallel_test <- bf_compare(os_train, os_test)
parallel_test

bf_from_os Bayesian Test from Outlier Scores

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training (outlier) scores, os_train, as the reference. The method checks whether the
test scores, os_test, are worse off relative to the training set.

Usage
bf_from_os(os_train, os_test, n_pt = 4000, threshold = 1/12)

Arguments
os_train Outlier scores in training (reference) set.
os_test Outlier scores in test set.
n_pt The number of permutations.
threshold Threshold for adverse shift. Defaults to 1 / 12, the asymptotic value of the test
statistic when the two samples are drawn from the same distribution.
Details

The posterior distribution of the test statistic is based on n_pt (boostrap) permutations. The method
uses the Bayesian bootstrap as a resampling procedure as in Gu et al (2008). Johnson (2005) shows
to leverage (turn) a test statistic into a Bayes factor. The test statistic is the weighted AUC (WAUC).

bf_from_os 9

Value

A named list of class outlier.bayes containing:

e posterior: Posterior distribution of WAUC test statistic
* threshold: WAUC threshold for adverse shift

* adverse_probability: probability of adverse shift

* bayes_factor: Bayes factor

* outlier_scores: outlier scores from training and test set

Notes

The outlier scores should all mimic out-of-sample behaviour. Mind that the training scores are
not in-sample and thus, biased (overfitted) while the test scores are out-of-sample. The mismatch
— in-sample versus out-of-sample scores — voids the test validity. A simple fix for this is to get
the training scores from an indepedent (fresh) validation set; this follows the train/validation/test
sample splitting convention and the validation set is effectively the reference set or distribution in
this case.

References

Kamulete, V. M. (2023). Are you OK? A Bayesian test for adverse shift. Manuscript in preparation.

Johnson, V. E. (2005). Bayes factors based on test statistics. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(5), 689-701.

Gu, J., Ghosal, S., & Roy, A. (2008). Bayesian bootstrap estimation of ROC curve. Statistics in
medicine, 27(26), 5407-5420.

See Also

Other bayesian-test: as_bf (), as_pvalue(), bf_compare()
Examples

library(dsos)

set.seed(12345)

os_train <- rnorm(n = 100)

os_test <- rnorm(n = 100)

bayes_test <- bf_from_os(os_train, os_test)
bayes_test

To run in parallel on local cluster, uncomment the next two lines.
library(future)

future::plan(future::multisession)
parallel_test <- bf_from_os(os_train, os_test)
parallel_test

10 plot.outlier.test

plot.outlier.bayes Plot Bayesian test for no adverse shift.

Description

Plot Bayesian test for no adverse shift.

Usage
S3 method for class 'outlier.bayes'
plot(x, ...)
Arguments
X A outlier.bayes result from test of no adverse shift.
Placeholder to be compatible with S3 method plot.
Value

A ggplot2 plot with outlier scores and p-value.

See Also

Other s3-method: plot.outlier.test(), print.outlier.bayes(), print.outlier.test()

Examples

set.seed(12345)

os_train <- rnorm(n = 3e2)

os_test <- rnorm(n = 3e2)

test_to_plot <- bf_from_os(os_train, os_test)
plot(test_to_plot)

plot.outlier.test Plot frequentist test for no adverse shift.

Description

Plot frequentist test for no adverse shift.

Usage

S3 method for class 'outlier.test'
plot(x, ...)

print.outlier.bayes 11

Arguments
X A outlier. test result from test of no adverse shift.
Placeholder to be compatible with S3 method plot.
Value

A ggplot2 plot with outlier scores and p-value.

See Also

Other s3-method: plot.outlier.bayes(), print.outlier.bayes(), print.outlier.test()

Examples

set.seed(12345)

os_train <- rnorm(n = 3e2)

os_test <- rnorm(n = 3e2)

test_to_plot <- at_from_os(os_train, os_test)

Also: pt_from_os(os_train, os_test) for permutation test
plot(test_to_plot)

print.outlier.bayes Print Bayesian test for no adverse shift.

Description

Print Bayesian test for no adverse shift.

Usage
S3 method for class 'outlier.bayes'
print(x, ...)
Arguments
X A outlier.test object from a D-SOS test.
Placeholder to be compatible with S3 method plot.
Value

Print to screen: display Bayes factor and other information.

See Also

Other s3-method: plot.outlier.bayes(), plot.outlier.test(), print.outlier.test()

12 print.outlier.test

Examples

set.seed(12345)

os_train <- rnorm(n = 3e2)

os_test <- rnorm(n = 3e2)

test_to_print <- bf_from_os(os_train, os_test)
test_to_print

print.outlier.test Print frequentist test for no adverse shift.

Description

Print frequentist test for no adverse shift.

Usage
S3 method for class 'outlier.test'
print(x, ...)
Arguments
X A outlier.test object from a D-SOS test.
Placeholder to be compatible with S3 method plot.
Value

Print to screen: display p-value and other information.

See Also

Other s3-method: plot.outlier.bayes(), plot.outlier.test(), print.outlier.bayes()

Examples

set.seed(12345)

os_train <- rnorm(n = 3e2)

os_test <- rnorm(n = 3e2)

test_to_print <- at_from_os(os_train, os_test)

Also: pt_from_os(os_train, os_test) for permutation test
test_to_print

pt_from_os 13

pt_from_os Permutation Test from Outlier Scores

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training (outlier) scores, os_train, as the reference. The method checks whether the
test scores, os_test, are worse off relative to the training set.

Usage

pt_from_os(os_train, os_test, n_pt = 2000)

Arguments
os_train Outlier scores in training (reference) set.
os_test Outlier scores in test set.
n_pt The number of permutations.

Details

The null distribution of the test statistic is based on n_pt permutations. For speed, this is imple-
mented as a sequential Monte Carlo test with the simctest package. See Gandy (2009) for details.
The prefix pt refers to permutation test. This approach does not use the asymptotic null distribution
for the test statistic. This is the recommended approach for small samples. The test statistic is the
weighted AUC (WAUC).

Value

A named list of class outlier. test containing:

* statistic: observed WAUC statistic
* seq_mct: sequential Monte Carlo test, when applicable
* p_value: p-value

* outlier_scores: outlier scores from training and test set

Notes

The outlier scores should all mimic out-of-sample behaviour. Mind that the training scores are
not in-sample and thus, biased (overfitted) while the test scores are out-of-sample. The mismatch
— in-sample versus out-of-sample scores — voids the test validity. A simple fix for this is to get
the training scores from an indepedent (fresh) validation set; this follows the train/validation/test
sample splitting convention and the validation set is effectively the reference set or distribution in
this case.

14 pt_oob

References

Kamulete, V. M. (2022). Test for non-negligible adverse shifts. In The 38th Conference on Uncer-
tainty in Artificial Intelligence. PMLR.

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resam-
pling risk. Journal of the American Statistical Association, 104(488), 1504-1511.

See Also

[pt_oob()] for variant requiring a scoring function. [at_from_os()] for asymptotic test with the
outlier scores.

Other permutation-test: pt_oob(), pt_refit()

Examples

library(dsos)

set.seed(12345)

os_train <- rnorm(n = 100)

os_test <- rnorm(n = 100)

null_test <- pt_from_os(os_train, os_test)
null_test

pt_oob Permutation Test With Out-Of-Bag Scores

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training set, x_train as the as the reference. The method checks whether the test set,
x_test, is worse off relative to this reference set. The function scorer assigns an outlier score to
each instance/observation in both training and test set.

Usage

pt_oob(x_train, x_test, scorer, n_pt = 2000)

Arguments
x_train Training (reference/validation) sample.
x_test Test sample.
scorer Function which returns a named list with outlier scores from the training and

test sample. The first argument to scorer must be x_train; the second, x_test.
The returned named list contains two elements: train and test, each of which is a
vector of corresponding (outlier) scores. See notes below for more information.

n_pt The number of permutations.

pt_oob 15

Details

The null distribution of the test statistic is based on n_pt permutations. For speed, this is imple-
mented as a sequential Monte Carlo test with the simctest package. See Gandy (2009) for details.
The prefix pt refers to permutation test. This approach does not use the asymptotic null distribution
for the test statistic. This is the recommended approach for small samples. The test statistic is the
weighted AUC (WAUC).

Value

A named list of class outlier. test containing:

* statistic: observed WAUC statistic
* seg_mct: sequential Monte Carlo test, when applicable
* p_value: p-value

* outlier_scores: outlier scores from training and test set

Notes

The scoring function, scorer, predicts out-of-bag scores to mimic out-of-sample behaviour. The
suffix oob stands for out-of-bag to highlight this point. This out-of-bag variant avoids refitting the
underlying algorithm from scorer at every permutation. It can, as a result, be computationally
appealing.

References

Kamulete, V. M. (2022). Test for non-negligible adverse shifts. In The 38th Conference on Uncer-
tainty in Artificial Intelligence. PMLR.

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resam-
pling risk. Journal of the American Statistical Association, 104(488), 1504-1511.

See Also

[pt_refit()] for (slower) p-value approximation via refitting. [at_oob()] for p-value approximation
from asymptotic null distribution.

Other permutation-test: pt_from_os(), pt_refit()

Examples

library(dsos)

set.seed(12345)

data(iris)

idx <- sample(nrow(iris), 2 / 3 * nrow(iris))

iris_train <- iris[idx,]

iris_test <- iris[-idx,]

Use a synthetic (fake) scoring function for illustration

scorer <- function(tr, te) list(train=runif(nrow(tr)), test=runif(nrow(te)))
pt_test <- pt_oob(iris_train, iris_test, scorer = scorer)

pt_test

16 pt_refit

pt_refit Permutation Test By Refitting

Description

Test for no adverse shift with outlier scores. Like goodness-of-fit testing, this two-sample compari-
son takes the training set, x_train as the as the reference. The method checks whether the test set,
x_test, is worse off relative to this reference set. The function scorer assigns an outlier score to
each instance/observation in both training and test set.

Usage

pt_refit(x_train, x_test, scorer, n_pt = 2000)

Arguments
x_train Training (reference/validation) sample.
x_test Test sample.
scorer Function which returns a named list with outlier scores from the training and
test sample. The first argument to scorer must be x_train; the second, x_test.
The returned named list contains two elements: train and test, each of which is a
vector of corresponding (outlier) scores. See notes below for more information.
n_pt The number of permutations.
Details

The null distribution of the test statistic is based on n_pt permutations. For speed, this is imple-
mented as a sequential Monte Carlo test with the simctest package. See Gandy (2009) for details.
The prefix pt refers to permutation test. This approach does not use the asymptotic null distribution
for the test statistic. This is the recommended approach for small samples. The test statistic is the
weighted AUC (WAUC).

Value
A named list of class outlier. test containing:
* statistic: observed WAUC statistic
* seg_mct: sequential Monte Carlo test, when applicable

* p_value: p-value

* outlier_scores: outlier scores from training and test set

wauc_from_os 17

Notes

The scoring function, scorer, predicts out-of-sample scores by refitting the underlying algorithm
from scorer at every permutation The suffix refit emphasizes this point. This is in contrast to the
out-of-bag variant, pt_oob, which only fits once. This method can be be computationally expensive.

References

Kamulete, V. M. (2022). Test for non-negligible adverse shifts. In The 38th Conference on Uncer-
tainty in Artificial Intelligence. PMLR.

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resam-
pling risk. Journal of the American Statistical Association, 104(488), 1504-1511.

See Also

[pt_oob()] for (faster) p-value approximation via out-of-bag predictions. [at_oob()] for p-value
approximation from asymptotic null distribution.

Other permutation-test: pt_from_os(), pt_oob()

Examples

library(dsos)

set.seed(12345)

data(iris)

setosa <- iris[1:50, 1:4] # Training sample: Species == 'setosa'

versicolor <- iris[51:100, 1:4] # Test sample: Species == 'versicolor'
scorer <- function(tr, te) list(train=runif(nrow(tr)), test=runif(nrow(te)))
pt_test <- pt_refit(setosa, versicolor, scorer = scorer)

pt_test

wauc_from_os Weighted AUC from Outlier Scores

Description

Computes the weighted AUC with the weighting scheme described in Kamulete, V. M. (2021). This
assumes that the training set is the reference distribution and specifies a particular functional form
to derive weights from threshold scores.

Usage

wauc_from_os(os_train, os_test, weight = NULL)

18

Arguments

os_train
os_test

weight

Value

wauc_from_os

Outlier scores in training (reference) set.
Outlier scores in test set.

Numeric vector of weights of length length(os_train) + length(os_test).
The first length(os_train) weights belongs to the training set, the rest is for
the test set. If NULL, the default, all weights are set to 1.

The weighted AUC (scalar value) given the weighting scheme.

References

Kamulete, V. M. (2022). Test for non-negligible adverse shifts. In The 38th Conference on Uncer-
tainty in Artificial Intelligence. PMLR.

Examples

library(dsos)
set.seed(12345)

os_train <- rnorm(n = 100)
os_test <- rnorm(n = 100)
test_stat <- wauc_from_os(os_train, os_test)

Index

* asymptotic-test
at_from_os, 4
at_oob, 5

* bayesian-test
as_bf, 2
as_pvalue, 3
bf_compare, 7
bf_from_os, 8

* permutation-test
pt_from_os, 13
pt_oob, 14
pt_refit, 16

* s3-method
plot.outlier.bayes, 10
plot.outlier.test, 10
print.outlier.bayes, 11
print.outlier.test, 12

* statistic
wauc_from_os, 17

as_bf,2,3,8 9
as_pvalue, 2,3,8, 9
at_from_os, 4, 6
at_oob, 5,5

bf_compare, 2, 3,7, 9
bf_from_os, 2, 3,8, 8

plot.outlier.bayes, 10, 11, 12
plot.outlier.test, 10, 10, 11, 12
print.outlier.bayes, 10, 11,11, 12
print.outlier.test, 10, 11,12
pt_from_os, 13, 15,17
pt_oob, 14, 14,17
pt_refit, 14, 15, 16

wauc_from_os, 17

	as_bf
	as_pvalue
	at_from_os
	at_oob
	bf_compare
	bf_from_os
	plot.outlier.bayes
	plot.outlier.test
	print.outlier.bayes
	print.outlier.test
	pt_from_os
	pt_oob
	pt_refit
	wauc_from_os
	Index

