Package ‘exreport’

October 13, 2022

Title Fast, Reliable and Elegant Reproducible Research
Version 0.4.1

Description Analysis of experimental results and automatic report generation in both interac-
tive HTML and LaTeX. This package ships with a rich interface for data model-
ing and built in functions for the rapid application of statistical tests and generation of com-
mon plots and tables with publish-ready quality.

Depends R (>=3.1.1)

Imports ggplot2, grDevices, methods, reshape?2, stats, tools, utils
License GPL-2

LazyData true

NeedsCompilation no

Author Jacinto Arias [aut, cre],
Javier Cozar [aut]

Maintainer Jacinto Arias <jacinto.arias@uclm.es>
Repository CRAN
Date/Publication 2016-02-01 22:01:15

R topics documented:

expCombine L e
eXpCONCat e e e e e
eXpCreate e e e e e e e
expCreateFromTable
expExtend
expEXtract e
expGetDuplicated L
explnstantiate L L e e e
expReduce L
expRemoveDuplicated
expRename
expReorder L
EXPSUDSEt

2 expCombine
EXIEPOIT . v vt o v e 13
exreportAdd L. 14
exreportRender L 15
plotCumulativeRank 15
PlOtEXpSummary e e e e e e 16
plotRankDistribution oL 17
tabularExpSummary Lo 18
tabularTestPairwise L 19
tabularTestSummary 20
testMultipleControl 21
testMultiplePairwise L. L 22
testPaired 23
wekaExperiment 24

Index 25

expCombine Combine two experiments with different outputs

Description

This fuctions joints two experiments sharing the same configuration of methods, problems and

parameters but different outputs. The resulting experiment includes the common rows for both
experiments with all the output columns.

Usage

expCombine(el, e2, name = NULL)

Arguments
el First experiment to combine.
e2 An second experiment to combine, must share the same config as el.
name Optional name for the resulting experiment. If not specified the new experiment
will be called "el_name U e2_name"
Value

An new experiment with common rows and all columns.

Examples

In

this example we turn the wekaExperiment into two different experiments,

with different outputs to combine them:

df_acc <- wekaExperiment[,

c("method”, "problem”, "fold", "featureSelection”, "accuracy")]

df_time <- wekaExperiment[,

expConcat 3

c("method”, "problem”, "fold", "featureSelection”, "trainingTime")]

exp_acc <- expCreate(df_acc, name="acc”, parameter="fold")
exp_time <- expCreate(df_time, name="time", parameter="fold")

With expCombine we can mix the two experiments:
expCombine(exp_acc, exp_time)

expConcat Concatenate rows of matching experiments

Description

This function concatenates two experiments with the same configuration of parameter an outputs.
At least one common output must be present, the rest of them will be removed from the resulting
experiment. Different methods and problems can be present.

Usage

expConcat(el, e2, name = NULL, tol = 1e-09)

Arguments
el First experiment object to concat.
e2 Second experiment object to concat. Must have the same configuration than el.
name Optional name, if not provided the new experiment will be called "el_name +
e2_name"
tol Tolerance value for duplicate checking.
Value

An experiment object having all the rows of el and e2

Examples

In this example we turn the wekaExperiment into two different experiments,
with different parameter values to combine them:

df_no <- wekaExperiment[wekaExperiment$featureSelection=="no",]
df_yes <- wekaExperiment[wekaExperiment$featureSelection=="yes",]

exp_yes <- expCreate(df_yes, name="fss-yes", parameter="fold")
exp_no <- expCreate(df_no, name="fss-no", parameter="fold")

expConcat(exp_yes, exp_no)

4 expCreate

expCreate Load data and create an exreport experiment

Description

This function loads a data.frame, checks its properties and formats an exreport experiment object.
The columns of an experiments must contain at least two categorical columns to be identified as the
method and problem variables and a thrid numerical column to be identified as an output variable.
Additional columns can be added as parameters or additional outputs.

Usage

expCreate(data, methods = "method”, problems = "problem”,
parameters = c(), respectOrder = FALSE, name, tol = 1e-09)

Arguments
data A data.frame object satisfying the experiment format
methods The name of the variable which contains the methods, by default is searches for
a column named "method".
problems The name of the variable which contains the problems, by default is searches for
a column named "problem".
parameters A list of the columns names to be identified as parameters. By default the re-

maining categorical columns are identified as parameters, so this list is useful
only to identify numeric columns.

respectOrder A logical parameter which indicates if the order of the elements of the method
and problem columns must be respected by appearance or ordered alphabeticaly.
It affects to the look of data representations.

name A string which will identify the experiment in the report.
tol Tolerance factor to identify repeated experiments for duplicated rows.
Value

A new exreport experiment object.

See Also

expCreateFromTable

Examples

Creates experiment specifying column names and the numerical variables that
are parameters

expCreate(wekaExperiment,
methods="method",

expCreateFromTable 5

problems="problem",
parameters="fold",
name="Test Experiment”)

expCreateFromTable Create an exreport experiment from a tabular representation

Description

Create an exreport experiment object from a tabular representation. The input data must be a ta-
ble having methods as rows and problems as columns. The values in such table correspond to a
particular output. The resulting experiment can be characterized with static parameters.

Usage

expCreateFromTable(data, output, name, parameters = list(),
respectOrder = FALSE)

Arguments
data Input tabular data satisfying the previous constraints.
output String indicating the name of the output that the table values represent.
name A string which will identify the experiment in the report.
parameters A list of strings containing the names and values for the static configuration of

the algorithm. The name of each element of the list will correspond with the
name of a parameter and the element with the value asigned.

respectOrder A logical parameter which indicates if the order of the elements of the method
and problem columns must be respected by appearance or ordered alphabeticaly.
It affects to the look of data representations.

Value

A new exreport experiment object.

See Also

expCreate

Examples

We generate a data frame where the methods are rows and the problems columns
from the wekaExperiment problem. (This is only an example, normally you
would prefer to load a proper experiment and process it.)

library(reshape2)
df <- dcast(wekaExperiment[wekaExperiment$featureSelection=="no",],
method ~ problem,

6 expExtend

value.var="accuracy",
fun.aggregate = mean)

We can create it and parametrice accordingly:
expCreateFromTable(df, output="accuracy”, name="weka")

Optionally we can set a fixed value for parameters, and ordered by appearance:
expCreateFromTable(df, output="accuracy”, name="weka",

parameters=list(featureSelection = "no"), respectOrder=TRUE)
expExtend Extend an experiment by adding new parameters
Description

This function extends an existing exreport experiment object by adding new parameters with fixed
values.

Usage

expExtend(e, parameters)

Arguments
e Input experiment
parameters A list of strings containing the values of the new parameters, the name for each
one of them will be given by the name of the corresponding object in the list.
Value

A modified exreport experiment object with additional parameters.

Examples

We load the wekaExperiment problem as an experiment and then add a new param
with a default value.

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
expExtend(experiment, list(discretization = "no"))

expExtract 7

expExtract Extract statistically equivalent methods from a multiple comparison
test

Description

This functions generates a new experiment incluing the methods that obtained an equivalent per-
formance with statisticall significance in the multiple comparison test i.e. those whose hypotheses
were not rejected

Usage

expExtract(ph)

Arguments

ph A testMultipleControl test object

Value

an experiment object

Examples

First we create an experiment from the wekaExperiment problem and prepare
it to apply the test:

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
experiment <- expReduce(experiment, "fold"”, mean)

experiment <- explInstantiate(experiment, removeUnary=TRUE)

Then we perform a testMultiplePairwise test procedure

test <- testMultipleControl(experiment, "trainingTime", "min")
expExtract(test)
expGetDuplicated Create a new experiment with only the duplicated rows
Description

This function computes the duplicated rows attending to the method, problem and input parameters
(but not the outputs). The resulting experiment will contain these duplicated rows.

Usage

expGetDuplicated(e, tol = 1e-09)

8 explnstantiate

Arguments
e The experiment to check for duplicated rows
tol The tolerance for numeric values to check if two outputs are numerically equal
or not.
Details

If duplicated rows show different outputs the function will launch a a warning message indicating
how many of them differ in the outputs from the original row, the extent to what two rows are
divergent in their output can be parametrized.

This function is useful to determine the consistency of the experiment, as a measure to sanitice the
original data source if needed,

Value

A new experiment containing the duplicated rows

Examples

We duplicate some of the rows of a given experiment:

e <- expCreate(wekaExperiment, parameters="fold"”, name="Test Experiment"”)

redundant <- expCreate(wekaExperiment[wekaExperiment$method=="NaiveBayes",],
parameters="fold"”, name="Test Experiment")

e2 <- expConcat(e,redundant)

Now we check for duplicates:

expGetDuplicated(e2)
expInstantiate Instatiate the methods in the experiment for each one of the different
parameter configurations.
Description

When performing statistical tests or summarizing an experiment for a given output variable there can
be different parameter configuration for each interaction of method and problem. Once applied the
desired transformations this function can be used to remove unary parameters from the experiment
or to instantiate the methods for each configuration.

Usage

expInstantiate(e, parameters = NULL, removeUnary = TRUE)

expReduce 9

Arguments
e The experiment object to be instantiated
parameters A vector indicating the parameters to be instantiaded. If NULL or default all
parameters would be considered.
removeUnary Boolean value indicating if the unary parameters will be used in an instantiation
or if the column can be erased.
Details

If any method is instantiated the cartesian product of the method and the selected parameters is
performed and included in the resulting experiment as the methods variable. The name of the
corresponding value will indicate the name of the former method and the value of each parameter
instantiated.

Value

an experiment object

Examples

Create an experiment from the wekaExperiment
experiment <- expCreate(wekaExperiment, name="test-exp”, parameter="fold")

We would like to reduce the fold parameter by its mean value. It becomes an
unary parameter.
experiment <- expReduce(experiment, "fold"”, mean)

Now we instantiate the experiment by the featureSelection parameter and
remove the unary fold parameter
expInstantiate(experiment, removeUnary=TRUE)

expReduce Reduce a parameter by a function for each method, problem and re-
maining parameter configuration interaction

Description

This functions reduces a parameter by aggregating the outputs variables for each value and for each
configuration of method, problem and remaining parameters. By default it computes the mean of
the variables.

Usage

expReduce(e, parameters = NULL, FUN = mean)

10 expRemoveDuplicated

Arguments
e An input experiment object.
parameters The parameter or parameters to be reduced, if NULL or default all parameters
are considered.
FUN The function used to agregate the ouput values
Value

An experiment object.

Examples

Create an experiment from the wekaExperiment
experiment <- expCreate(wekaExperiment, name="test-exp”, parameter="fold")

We would like to reduce the fold parameter by its mean value. This way
expReduce(experiment, "fold"”, mean)

expRemoveDuplicated Remove duplicated rows from an experiment

Description
This function removes duplicated rows of a given experiment attending to the interaction of meth-
ods, problems and parameters (but no outputs).

Usage

expRemoveDuplicated(e, tol = 1e-09)

Arguments
e The experiment to be analised
tol The tolerance for numeric values to check if two outputs are numerically equal
or not.
Details

The duplicated rows found are compared among themselves to determine if there is divergence
between the outputs, if the rows are not consistent a warning is raised to note this difference.

Value

an experiment object

expRename 11

Examples

We duplicate some of the rows of a given experiment:

e <- expCreate(wekaExperiment, parameters="fold"”, name="Test Experiment”)

redundant <- expCreate(wekaExperiment[wekaExperiment$method=="NaiveBayes",],
parameters="fold", name="Test Experiment”)

e2 <- expConcat(e,redundant)

Now we remove those duplicates:
expRemoveDuplicated(e2)

expRename Change the name of elements that an experiment contains

Description
This function change the name of problems, methods or parameter values that an existing experi-
ment object contains.

Usage

expRename (e, elements = list(), name = NULL)

Arguments
e Input experiment
elements A list of arrays of strings containing the new names. The old name will be spec-
ified as the name of the element in such array, and the name for the parameter,
method or problem will be given by the name of the corresponding object in the
list. If a name is not present in the set of parameter names or parameter values,
it will be ignored.
name The name of the new experiment. If NULL, the previous name will be used.
Value

A modified exreport experiment object with some changes on the name of the elements.

Examples

We load the wekaExperiment problem as an experiment and then change the name
of one value for the parameter discretization and for one method.

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
expRename (experiment, list(featureSelection = c("no"="false"),
method=c("RandomForest”="RndForest")))

12 expSubset

expReorder Change the order of elements that an experiment contains

Description
This function change the order of problems, methods or parameter values that an existing experi-
ment object contains. The order affects the look of the data representation (as tables and plots).
Usage
expReorder (e, elements, placeRestAtEnd = TRUE)

Arguments
e Input experiment
elements A list of arrays of strings containing the ordered names. The name for the pa-

rameter, method or problem will be given by the name of the corresponding
object in the list. The names which have not been specified will be placed at the
begining or at the end (depending on the parameter placeRestAtEnd). If a name
is not present in the set of parameter values, it will be ignored.

placeRestAtEnd Logical value which indicates if the non specified value names have to be placed
after the specified ones (TRUE) or before (FALSE).

Value

A modified exreport experiment object with some changes on the name of the elements.

Examples

We load the wekaExperiment problem as an experiment and then change the order
of the values for the parameter featureSelection and for one valoue for the method.

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")

n on

expReorder(experiment, list(featureSelection = c("yes"”,"no"),
method=c(”"OneR")))

expSubset Obtains a subset of an experiment matching the given conditions

Description

This function receives a named list indicating variables and values to filter the input experiment.

Usage

expSubset (e, columns, invertSelection = FALSE)

exreport 13

Arguments
e The experiment to be subsetted
columns A named list containing the variables to be filtered and the valid values.
invertSelection
If the filtering must match the inversion of the specified conditions.
Details

The names of the elements in the list correspond with the variables to be filtered, indicating either
the methos or problem variables as well as parameters. The values of the list correspond with the
valid states for the filtering.

Value

a filtered experiment object

Examples

We create a new experiment from the wekaExperiment problem
e <- expCreate(wekaExperiment, parameters="fold"”, name="Test Experiment")

We can filter the experiment to reduce the number of methods.
e <- expSubset(e, list(method = c("J48", "NaiveBayes")))

We can filter the experiment to remove a given problem
e <- expSubset(e, list(problem = "iris"), invertSelection=TRUE)

We can subset the experiment to obtain a specific parameter configuration

e <- expSubset(e, list("featureSelection” = "no"))
e
exreport Create a new exreport document
Description

This function inits a new exreport document to start adding elements for later rendering.

Usage

exreport(title)

Arguments

title A string representing a short title for this document

14 exreportAdd
Value

an empty exreport document

See Also

exreportRender, exreportAdd

exreportAdd Add elements to an existing exreport document

Description

This function allows to add one or more reportable objects to an exisiting exreport document.

Usage

exreportAdd(rep, elem)

Arguments
rep an exreport object in which the elem will be added
elem a reportable object or a list of them

Value

an extended exreport document

Examples

Create an empty document:
report <- exreport(”"Test document”)

Create a reportable object (an experiment)
experiment <- expCreate(wekaExperiment, name="test-exp”, parameter="fold")

Add this object to the document
exreportAdd(report, experiment)

exreportRender 15

exreportRender Render an exreport document

Description

This function renders an existing exreport object to a given file and format.

Usage
exreportRender(rep, destination = NULL, target = "html”, safeMode = TRUE,
visualize = TRUE)
Arguments

rep The exreport object to be rendered

destination Path to the rendered file. If NULL, it uses a temporary directory

target The format of the target rendering. HTML and PDF are allowed.
safeMode Denies or allows (TRUE or FALSE) output files overwriting
visualize Visualize the generated output or not

Value

an experiment object

plotCumulativeRank Area plot for the rank distribution from a multiple test

Description

This function builds an area plot from a testMultiple object displaying the cumulative value for each
method for all the evaluated problems. The value for the rankings is obtained from the Friedman
test independently of the scope of the test (control or pairwise).

Usage

plotCumulativeRank(testMultiple, grayscale = FALSE)

Arguments

testMultiple Statistical test from which the plot is generated. The rankings are obtained from
the Friedman test.

grayscale Configure the plot using a grayscale palette.

16

Value

plotExpSummary

an exPlot object

Examples

First we create an experiment from the wekaExperiment problem and prepare

it to apply
experiment <-
experiment <-
experiment <-
experiment <-

the test:

expCreate(wekaExperiment, name="test", parameter="fold")
expReduce(experiment, "fold”, mean)
expSubset(experiment, list(featureSelection = "no"))
expInstantiate(experiment, removeUnary=TRUE)

Then we perform a Friedman test included ina a testMultipleControl
test procedure
test <- testMultipleControl(experiment, "accuracy")

Finally we obtain the plot
plotCumulativeRank(test)

cat()

plotExpSummary

Barplot for summarizing an experiment output variable

Description

This function builds a barplot for a given experiment output variable, summarizing its distribution
according to the different methods and problems. The aspect of the plot can be parametrized in

several ways.

Usage

plotExpSummary(exp, output, columns = @, freeScale = FALSE,
fun = identity, grayscale = FALSE)

Arguments

exp
output
columns

freeScale
fun

grayscale

Details

- The experiment object to take the data from
- A string identifying the name of the output variable to be plotted

- Integer number, 0 for a wide aspect plot and any other value to include n
columns of facets separating the problems.

- Boolean, if using facets sets the scale of each one independent or not
- A function to be applied to the selected output variables before being plotted.
- Defaulted to False. True for a plot in grayscale.

Please notice that the plot function requires that an unique configuration of parameters is present in
the experiment. So the user must have processed and instantiated the experiment before.

plotRankDistribution 17

Value

an exPlot object

Examples

This example plots the distribution of the trainingTime variable in the
wekaExperiment problem.

First we create the experiment from the problem.
experiment <- expCreate(wekaExperiment, name="test", parameter="fold")

Next we must process it to have an unique parameter configuration:
We select a value for the parameter featureSelection:

experiment <- expSubset(experiment, list(featureSelection = "yes"))
Then we reduce the fold parameter:

experiment <- expReduce(experiment, "fold"”, mean)

Finally we remove unary parameters by instantiation:

experiment <- expInstantiate(experiment, removeUnary=TRUE)

Now we can generate several plots:

Default plot:
plotExpSummary(experiment, "accuracy”)

We can include faceting in the plot by dividing it into columns:
plotExpSummary(experiment, "accuracy”, columns=3)

If we want to show the independent interaction for the output variable

in each experiment we can make the scales for example, remark the difference
in :

plotExpSummary(experiment, "trainingTime"”, columns=3, freeScale=FALSE)
plotExpSummary(experiment, "trainingTime", columns=3, freeScale=TRUE)

plotRankDistribution Boxplot for the ranks distribution and control hypotheses from multiple
test

Description

This function generates a boxplot from a testMultiple statistical test showing the ordered distrubu-
tion of rankings for each method computed for the Friedman test. If the input test features a control
multiple comparison then the rejected hypotheses by the Holm methd are also indicates in the plot.

Usage

plotRankDistribution(testMultiple)

18 tabularExpSummary

Arguments

testMultiple The statistical test from which the plot is generated. The functions accepts either
control and pairwise multiple tests.

Value

an experiment object

Examples

First we create an experiment from the wekaExperiment problem and prepare
it to apply the test:

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
experiment <- expReduce(experiment, "fold"”, mean)

experiment <- expSubset(experiment, list(featureSelection = "yes"))
experiment <- expInstantiate(experiment, removeUnary=TRUE)

Then we perform a Friedman test included ina a testMultipleControl
test procedure
test <- testMultipleControl(experiment, "accuracy”)

Finally we obtain the plot
plotRankDistribution(test)
cat()

tabularExpSummary Summarize the experiment with a table for given outputs

Description

This function generates a table for the given outputs of the experiment, comparing all methods for
each one of the problems. In addition the function can highlight the best results for each problem
as well as display a range of parameters for the posterior renderization.

Usage

tabularExpSummary(exp, outputs, boldfaceColumns = "none”, format = "f",
digits = 4, tableSplit = 1, rowsAsMethod = TRUE)

Arguments
exp The ource experiment to generate the table from
outputs A given variable or list of them to be the target of the table
boldfaceColumns
Indicate ("none","max" or "min") to highlight the method optimizing the vari-
ables for each problem.
format Indicates the format of the numeric output using C formatting styles. Defaults

to’f’

tabularTestPairwise 19

digits The number of decimal digits to include for the numeric output.

tableSplit Indicates the number of parititions of the table that will be rendered. Usefull
when the the table is excessivelly wide.

rowsAsMethod Display the methods as the rows of the table, indicate FALSE for a transpose
table.

Value

An extabular object

Examples

This example plots the distribution of the trainingTime variable in the
wekaExperiment problem.

First we create the experiment from the problem.
experiment <- expCreate(wekaExperiment, name="test", parameter="fold")

Next we must process it to have an unique parameter configuration:
We select a value for the parameter featureSelection:

experiment <- expSubset(experiment, list(featureSelection = "yes"))
Then we reduce the fold parameter:

experiment <- expReduce(experiment, "fold"”, mean)

Finally we remove unary parameters by instantiation:

experiment <- expInstantiate(experiment, removeUnary=TRUE)

Generate the default table:
tabularExpSummary (experiment, "accuracy")

tabularTestPairwise Display pairwise information about a multiple test between the meth-
ods

Description

This function obtain a pairwise table comparing the methods among themselves for the specified
metrics. It takes an testMultiplePairwise object as an input.

Usage

tabularTestPairwise(ph, value = "pvalue”, charForNAs = "-")
Arguments

ph The input testMultiplePairwise object

value Indicates the metric to be displayed ("pvalue”, "wtl")

charForNAs Indicates the character included when there is not comparison available

20 tabularTestSummary

Value

An extabular object

Examples

First we create an experiment from the wekaExperiment problem and prepare
it to apply the test:

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
experiment <- expReduce(experiment, "fold"”, mean)

experiment <- explInstantiate(experiment, removeUnary=TRUE)

Then we perform a a testMultiplePairwise test procedure
test <- testMultiplePairwise(experiment, "accuracy”, "max")

Different tables can be obtained by using a range of metrics
tabularTestPairwise(test, "pvalue”)

tabularTestPairwise(test, "wtl")

tabularTestSummary Summarize the result of a multiple comparison statistical test in a table

Description

This function builds a table from a testMultiple object, either control or pairwise. The htpotheses
are added and compared in the table showing the methods and a range of different metrics than can
be added to the table. Also the table shows information about rejected hypotheses.

Usage

tabularTestSummary(ph, columns = c("pvalue"))

Arguments
ph The input testMultiple from which the table is generated
columns A vector indicating the metrics that will be shown in the table
Value

an extabular object

Examples

First we create an experiment from the wekaExperiment problem and prepare
it to apply the test:

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
experiment <- expReduce(experiment, "fold"”, mean)

experiment <- explInstantiate(experiment, removeUnary=TRUE)

testMultipleControl 21

Then we perform a a testMultiplePairwise test procedure
test <- testMultipleControl(experiment, "accuracy”, "min")

Different tables can be obtained by using a range of metrics
tabularTestSummary(test, c("pvalue”))

tabularTestSummary(test, c("rank”, "pvalue”, "wtl"))

testMultipleControl Multiple Comparison Statistical Test (Friedman + Control Holm
PostHoc)

Description

This function perfoms a multiple comparison statistical test for the given experiment. First of all it
performs a Friedman Test over all methods. In the case this test is rejected, meaning that significant
differences are present among the methods a post-hoc test is then executed. For that, a comparison
using the best method as a control is performed for each other method, finally a Holm familywise
error correction is applied to the resulting p-values.

Usage

testMultipleControl(e, output, rankOrder = "max", alpha = 0.05)

Arguments
e Input experiment
output The output for which the tet will be performed.
rankOrder The optimization strategy, can be either maximizing "max" or minimizing "min"
the target output variable.
alpha The significance level used for the whole testing procedure.
Value

an testMultipleControl object

Examples

First we create an experiment from the wekaExperiment problem and prepare
it to apply the test:

experiment <- expCreate(wekaExperiment, name="test", parameter="fold")
experiment <- expReduce(experiment, "fold"”, mean)

experiment <- expSubset(experiment, list(featureSelection = "yes"))
experiment <- explInstantiate(experiment, removeUnary=TRUE)

Then we perform a testMultiplePairwise test procedure
test <- testMultipleControl(experiment, "accuracy”, "max")

summary (test)

22

testMultiplePairwise

testMultiplePairwise Multiple Comparison Statistical Test (Friedman + Pairwise Shaffer

PostHoc)

Description

This function perfoms a multiple comparison statistical test for the given experiment. First of all it
performs a Friedman Test over all methods. In the case this test is rejected, meaning that significant
differences are present among the methods a post-hoc test is then executed. For that, each pair
of methods are compared between each other, and finally a Shaffer familywise error correction is
applied to the resulting p-values.

Usage

testMultiplePairwise(e, output, rankOrder = "max", alpha = 0.05)

Arguments

e
output

rankOrder

alpha

Value

Input experiment
The output for which the tet will be performed.

The optimization strategy, can be either maximizing "max" or minimizing "min"
the target output variable.

The significance level used for the whole testing procedure.

an testMultiplePairwise object

Examples

First we create an experiment from the wekaExperiment problem and prepare

it to apply
experiment <-
experiment <-
experiment <-
experiment <-

the test:

expCreate(wekaExperiment, name="test", parameter="fold")
expReduce(experiment, "fold"”, mean)
expSubset(experiment, list(featureSelection = "yes"))
expInstantiate(experiment, removeUnary=TRUE)

Then we perform a testMultiplePairwise test procedure
test <- testMultiplePairwise(experiment, "accuracy”, "max")

summary (test)

testPaired

23

testPaired

Paired Wilcoxon statistical test

Description

This function performs a Wilcoxon paired test to compare the methods of an experiment consisting
exactly on two of them. If more methods are present, then a multiple comparison test must be

applied.

Usage

testPaired(e, output, rankOrder = "max", alpha = 0.05)

Arguments

e
output

rankOrder

alpha

Value

Input experiment
The output for which the tet will be performed.

The optimization strategy, can be either maximizing "max" or minimizing "min"
the target output variable.

The significance level used for the whole testing procedure.

a testPaired object

Examples

First we create an experiment from the wekaExperiment problem and prepare
it to apply

experiment
experiment
experiment
experiment
experiment

<-
<-
<-
<-
<-

the test, we must subset it to only two methods:
expCreate(wekaExperiment, name="test", parameter="fold")
expSubset(experiment, list(method = c("J48", "NaiveBayes")))
expSubset(experiment, list(featureSelection = c("no")))
expReduce(experiment, "fold”, mean)
expInstantiate(experiment, removeUnary=TRUE)

Then we perform a Wilcoxon test procedure
test <- testPaired(experiment, "accuracy”, "max")

summary (test)

24 wekaExperiment

wekaExperiment Problem: Comparison between several Machine Learning algorithms
from the Weka library

Description

A problem containing experimental data obtaining by comparing several instances of Machine Al-
gorithms from the Weka library. The variables are as follows:

Usage

data(wekaExperiment)

Format

A data frame with

Details

* method. Classification algorithms used in the experimen (NaiveBayes, J48, IBk)
» problem. Problems used as benchmark in the comparison, up to 12.
« featureSelection. Boolean parameter indicating if the data was preprocessed

 fold. For each configuration a 10-fold cross validation was performed. This variable is a
numeric value ranging from 1 to 10.

* accuracy. This is a measure of the performance of each algorithm. Representing the percent-
age of correctly classified instances.

* trainingTime. A second measure of performance. This one indicates the time in seconds that
took the algorithm to build the model.

Index

* problems
wekaExperiment, 24

expCombine, 2
expConcat, 3
expCreate, 4
expCreateFromTable, 5
expExtend, 6
expExtract, 7
expGetDuplicated, 7
expInstantiate, 8
expReduce, 9
expRemoveDuplicated, 10
expRename, 11
expReorder, 12
expSubset, 12
exreport, 13
exreportAdd, 14
exreportRender, 15

plotCumulativeRank, 15
plotExpSummary, 16
plotRankDistribution, 17

tabularExpSummary, 18
tabularTestPairwise, 19
tabularTestSummary, 20
testMultipleControl, 21
testMultiplePairwise, 22
testPaired, 23

wekaExperiment, 24

25

	expCombine
	expConcat
	expCreate
	expCreateFromTable
	expExtend
	expExtract
	expGetDuplicated
	expInstantiate
	expReduce
	expRemoveDuplicated
	expRename
	expReorder
	expSubset
	exreport
	exreportAdd
	exreportRender
	plotCumulativeRank
	plotExpSummary
	plotRankDistribution
	tabularExpSummary
	tabularTestPairwise
	tabularTestSummary
	testMultipleControl
	testMultiplePairwise
	testPaired
	wekaExperiment
	Index

